9 research outputs found

    Bringing Energy Aware Routing closer to Reality with SDN Hybrid Networks

    Get PDF
    Energy aware routing aims at reducing the energy consumption of ISP networks. The idea is to adapt routing to the traffic load in order to turn off some hardware. However, it implies to make dynamic changes to routing configurations which is almost impossible with legacy protocols. The Software Defined Network (SDN) paradigm bears the promise of allowing a dynamic optimization with its centralized controller.In this work, we propose SENAtoR, an algorithm to enable energy aware routing in a scenario of progressive migration from legacy to SDN hardware. Since in real life, turning off network equipments is a delicate task as it can lead to packet losses, SENAtoR provides also several features to safely enable energy saving services: tunneling for fast rerouting, smooth node disabling and detection of both traffic spikes and link failures.We validate our solution by extensive simulations and by experimentation. We show that SENAtoR can be progressively deployed in a network using the SDN paradigm. It allows to reduce the energy consumption of ISP networks by 5 to 35% depending on the penetration of SDN hardware, while, strikingly, diminishing the packet loss rate compared to legacy protocols

    Joint energy efficiency and load balancing optimization in hybrid IP/SDN networks

    Get PDF
    Software-defined networking (SDN) is a paradigm that provides flexibility and programmability to computer networks. By introducing SDN nodes in a legacy IP network topology, network operators can benefit on higher control over the infrastructure. However, this migration is not a fast or straightforward process. Furthermore, to provide an adequate quality of service in hybrid IP/SDN networks, the coordination of both IP and SDN paradigm is fundamental. In this paper, this coordination is used to solve two optimization problems that are typically solved separately: (i) traffic load balancing and (ii) power consumption minimization. Each of these problems has opposing objectives, and thus, their joint consideration implies striking a balance between them. Therefore, this paper proposes the Hybrid Spreading Load Algorithm (HSLA) heuristic that jointly faces the problems of balancing traffic by minimizing link utilization and network's power consumption in a hybrid IP/SDN network. HSLA is evaluated over differently sized topologies using different methods to select which nodes are migrated from IP to SDN. These evaluations reveal that alternative approaches that only address one of the objectives are outperformed by HSLA

    Energy-aware dynamic-link load balancing method for a software-defined network using a multi-objective artificial bee colony algorithm and genetic operators

    Get PDF
    Information and communication technology (ICT) is one of the sectors that have the highest energy consumption worldwide. It implies that the use of energy in the ICT must be controlled. A software-defined network (SDN) is a new technology in computer networking. It separates the control and data planes to make networks more programmable and flexible. To obtain maximum scalability and robustness, load balancing is essential. The SDN controller has full knowledge of the network. It can perform load balancing efficiently. Link congestion causes some problems such as long transmission delay and increased queueing time. To overcome this obstacle, the link load balancing strategy is useful. The link load-balancing problem has the nature of NP-complete; therefore, it can be solved using a meta-heuristic approach. In this study, a novel energy-aware dynamic routing method is proposed to solve the link load-balancing problem while reducing power consumption using the multiobjective artificial bee colony algorithm and genetic operators. The simulation results have shown that the proposed scheme has improved packet loss rate, round trip time and jitter metrics compared with the basic ant colony, genetic-ant colony optimisation, and round-robin methods. Moreover, it has reduced energy consumption. © 2020 Institution of Engineering and Technology. All rights reserved

    Energy Aware Data Centers and Networks: a Survey, Journal of Telecommunications and Information Technology, 2018, nr 4

    Get PDF
    The past years have brought about a great variety of clusters and clouds. This, combined with their increasing size and complexity, has resulted in an obvious need for power-saving control mechanisms. Upon presenting a basis on which such solutions - namely low-level power control interfaces, CPU governors and network topologies – are constructed, the paper summarizes network and cluster resources control algorithms. Finally, the need for integrated, hierarchical control is expressed, and specific examples are provided

    Energy-Aware Routing in Software-Defined Network using Compression

    Get PDF
    International audienceSoftware-defined Networks (SDN) is a new networking paradigm enabling innovation through network programmability. Over past few years, many applications have been built using SDN such as server load balancing, virtual-machine migration, trac engineering and access control. In this paper, we focus on using SDN for energy-aware routing (EAR). Since trac load has a small influence on the power consumption of routers, EAR allows putting unused links into sleep mode to save energy. SDN can collect trac matrix and then computes routing solutions satisfying QoS while being minimal in energy consumption. However, prior works on EAR have assumed that the SDN forwarding table switch can hold an infinite number of rules. In practice, this assumption does not hold since such flow tables are implemented in Ternary Content Addressable Memory (TCAM) which is expensive and power-hungry. We consider the use of wildcard rules to compress the forwarding tables. In this paper, we propose optimization methods to minimize energy consumption for a backbone network while respecting capacity constraints on links and rule space constraints on routers. In details, we present two exact formulations using Integer Linear Program (ILP) and introduce ecient heuristic algorithms. Based on simulations on realistic network topologies, we show that using this smart rule space allocation, it is possible to save almost as much power consumption as the classical EAR approach

    Bringing Energy Aware Routing Closer to Reality With SDN Hybrid Networks

    No full text

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives
    corecore