542,118 research outputs found

    Bring The Noise

    Get PDF

    Bring the Noise

    Get PDF
    Ole Miss Football Kicks off TONIGHT

    Bring the Noise: Introducing Noise Robustness to Pretrained Automatic Speech Recognition

    Full text link
    In recent research, in the domain of speech processing, large End-to-End (E2E) systems for Automatic Speech Recognition (ASR) have reported state-of-the-art performance on various benchmarks. These systems intrinsically learn how to handle and remove noise conditions from speech. Previous research has shown, that it is possible to extract the denoising capabilities of these models into a preprocessor network, which can be used as a frontend for downstream ASR models. However, the proposed methods were limited to specific fully convolutional architectures. In this work, we propose a novel method to extract the denoising capabilities, that can be applied to any encoder-decoder architecture. We propose the Cleancoder preprocessor architecture that extracts hidden activations from the Conformer ASR model and feeds them to a decoder to predict denoised spectrograms. We train our pre-processor on the Noisy Speech Database (NSD) to reconstruct denoised spectrograms from noisy inputs. Then, we evaluate our model as a frontend to a pretrained Conformer ASR model as well as a frontend to train smaller Conformer ASR models from scratch. We show that the Cleancoder is able to filter noise from speech and that it improves the total Word Error Rate (WER) of the downstream model in noisy conditions for both applications.Comment: Submitted and accepted for ICANN 2023 (32nd International Conference on Artificial Neural Networks

    Decreasing the uncertainty of atomic clocks via real-time noise distinguish

    Full text link
    The environmental perturbation on atoms is the key factor restricting the performance of atomic frequency standards, especially in long term scale. In this letter, we demonstrate a real-time noise distinguish operation of atomic clocks. The operation improves the statistical uncertainty by about an order of magnitude of our fountain clock which is deteriorated previously by extra noises. The frequency offset bring by the extra noise is also corrected. The experiment proves the real-time noise distinguish operation can reduce the contribution of ambient noises and improve the uncertainty limit of atomic clocks.Comment: 5 pages, 4 figures, 1 tabl

    Acquisition of pseudonoise signals by sequential estimation

    Get PDF
    Rapid Acquisition by Sequential Estimation /RASE/ system is used in the receivers of tracking and communications systems to bring identical locally generated pseudonoise digital modulation signal into time synchronization with the incoming pseudonoise signal. This acquisition system is particularly suited for medium input signal-to-noise ratios

    Stochastic Control via Entropy Compression

    Get PDF
    We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control is also possible in a noisy environment, where both the process of state-observation and the process of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new analysis where entropy plays a central role, both to measure the rate at which progress towards an acceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition in the noiseless case.Comment: 18 page

    Numerical simulations studies of the convective instability onset in a supercritical fluid

    Get PDF
    Numerical simulation studies in 2D with the addition of noise are reported for the convection of a supercritical fluid,3He, in a Rayleigh-Be'nard cell where the fluid parameters and cell height L are the same as in published laboratory experiments. The noise addition is to accelerate the instability onset after starting the heat flow across the fluid, so as to bring simulations into better agreement with experimental observations. Homogeneous temperature noise and spatial lateral periodic temperature variations in the top plate were programmed into the simulations. A speed-up in the instability onset was obtained, which was most effective through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 microK, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carle`s.Comment: 6 pages (2-column format) 4 figures, Proceedings of NASA2004 workshop, Solvang,C
    • …
    corecore