We consider an agent trying to bring a system to an acceptable state by
repeated probabilistic action. Several recent works on algorithmizations of the
Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for
the agent to succeed. Here we study whether such stochastic control is also
possible in a noisy environment, where both the process of state-observation
and the process of state-evolution are subject to adversarial perturbation
(noise). The introduction of noise causes the tools developed for LLL
algorithmization to break down since the key LLL ingredient, the sparsity of
the causality (dependence) relationship, no longer holds. To overcome this
challenge we develop a new analysis where entropy plays a central role, both to
measure the rate at which progress towards an acceptable state is made and the
rate at which noise undoes this progress. The end result is a sufficient
condition that allows a smooth tradeoff between the intensity of the noise and
the amenability of the system, recovering an asymmetric LLL condition in the
noiseless case.Comment: 18 page