9,502 research outputs found

    Bridging the Gap between Programming Languages and Hardware Weak Memory Models

    Full text link
    We develop a new intermediate weak memory model, IMM, as a way of modularizing the proofs of correctness of compilation from concurrent programming languages with weak memory consistency semantics to mainstream multi-core architectures, such as POWER and ARM. We use IMM to prove the correctness of compilation from the promising semantics of Kang et al. to POWER (thereby correcting and improving their result) and ARMv7, as well as to the recently revised ARMv8 model. Our results are mechanized in Coq, and to the best of our knowledge, these are the first machine-verified compilation correctness results for models that are weaker than x86-TSO

    An approach to relate business and application services using ISDL

    Get PDF
    This paper presents a service-oriented design approach that allows one to relate services modelled at different levels of granularity during a design process, such as business and application services. To relate these service models we claim that a 'concept gap' and an 'abstraction gap' need to be bridged. The concept gap represents the difference between the conceptual models used to construct service models by different stakeholders involved in the design process. The abstraction gap represents the difference in abstraction level at which service models are defined. Two techniques are presented that bridge these gaps. Both techniques are based on the Interaction System Design Language (ISDL). The paper illustrates the use of both techniques through an example

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing systemā€™s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT

    Full text link
    Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer.Comment: EMNLP 2019 Camera Read

    Connectors meet Choreographies

    Get PDF
    We present Cho-Reo-graphies (CR), a new language model that unites two powerful programming paradigms for concurrent software based on communicating processes: Choreographic Programming and Exogenous Coordination. In CR, programmers specify the desired communications among processes using a choreography, and define how communications should be concretely animated by connectors given as constraint automata (e.g., synchronous barriers and asynchronous multi-casts). CR is the first choreography calculus where different communication semantics (determined by connectors) can be freely mixed; since connectors are user-defined, CR also supports many communication semantics that were previously unavailable for choreographies. We develop a static analysis that guarantees that a choreography in CR and its user-defined connectors are compatible, define a compiler from choreographies to a process calculus based on connectors, and prove that compatibility guarantees deadlock-freedom of the compiled process implementations

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure
    • ā€¦
    corecore