1,509 research outputs found

    Supporting patient screening to identify suitable clinical trials.

    Get PDF
    To support the efficient execution of post-genomic multi-centric clinical trials in breast cancer we propose a solution that streamlines the assessment of the eligibility of patients for available trials. The assessment of the eligibility of a patient for a trial requires evaluating whether each eligibility criterion is satisfied and is often a time consuming and manual task. The main focus in the literature has been on proposing different methods for modelling and formalizing the eligibility criteria. However the current adoption of these approaches in clinical care is limited. Less effort has been dedicated to the automatic matching of criteria to the patient data managed in clinical care. We address both aspects and propose a scalable, efficient and pragmatic patient screening solution enabling automatic evaluation of eligibility of patients for a relevant set of trials. This covers the flexible formalization of criteria and of other relevant trial metadata and the efficient management of these representations

    Internet of things in health: Requirements, issues, and gaps

    Get PDF
    Background and objectives: The Internet of Things (IoT) paradigm has been extensively applied to several sectors in the last years, ranging from industry to smart cities. In the health domain, IoT makes possible new scenarios of healthcare delivery as well as collecting and processing health data in real time from sensors in order to make informed decisions. However, this domain is complex and presents several tech- nological challenges. Despite the extensive literature about this topic, the application of IoT in healthcare scarcely covers requirements of this sector. Methods: A literature review from January 2010 to February 2021 was performed resulting in 12,108 articles. After filtering by title, abstract, and content, 86 were eligible and examined according to three requirement themes: data lifecycle; trust, security, and privacy; and human-related issues. Results: The analysis of the reviewed literature shows that most approaches consider IoT application in healthcare merely as in any other domain (industry, smart cities…), with no regard of the specific requirements of this domain. Conclusions: Future effort s in this matter should be aligned with the specific requirements and needs of the health domain, so that exploiting the capabilities of the IoT paradigm may represent a meaningful step forward in the application of this technology in healthcare.Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía P18-TPJ - 307

    Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture

    Get PDF
    Objective: For realizing pervasive and ubiquitous health and social care services in a safe and high quality as well as efficient and effective way, health and social care systems have to meet new organizational, methodological, and technological paradigms. The resulting ecosystems are highly complex, highly distributed, and highly dynamic, following inter-organizational and even international approaches. Even though based on international, but domain-specific models and standards, achieving interoperability between such systems integrating multiple domains managed by multiple disciplines and their individually skilled actors is cumbersome. Methods: Using the abstract presentation of any system by the universal type theory as well as universal logics and combining the resulting Barendregt Cube with parameters and the engineering approach of cognitive theories, systems theory, and good modeling best practices, this study argues for a generic reference architecture model moderating between the different perspectives and disciplines involved provide on that system. To represent architectural elements consistently, an aligned system of ontologies is used. Results: The system-oriented, architecture-centric, and ontology-based generic reference model allows for re-engineering the existing and emerging knowledge representations, models, and standards, also considering the real-world business processes and the related development process of supporting IT systems for the sake of comprehensive systems integration and interoperability. The solution enables the analysis, design, and implementation of dynamic, interoperable multi-domain systems without requesting continuous revision of existing specifications

    Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture

    Get PDF
    Objective: For realizing pervasive and ubiquitous health and social care services in a safe and high quality as well as efficient and effective way, health and social care systems have to meet new organizational, methodological, and technological paradigms. The resulting ecosystems are highly complex, highly distributed, and highly dynamic, following inter-organizational and even international approaches. Even though based on international, but domain-specific models and standards, achieving interoperability between such systems integrating multiple domains managed by multiple disciplines and their individually skilled actors is cumbersome. Methods: Using the abstract presentation of any system by the universal type theory as well as universal logics and combining the resulting Barendregt Cube with parameters and the engineering approach of cognitive theories, systems theory, and good modeling best practices, this study argues for a generic reference architecture model moderating between the different perspectives and disciplines involved provide on that system. To represent architectural elements consistently, an aligned system of ontologies is used. Results: The system-oriented, architecture-centric, and ontology-based generic reference model allows for re-engineering the existing and emerging knowledge representations, models, and standards, also considering the real-world business processes and the related development process of supporting IT systems for the sake of comprehensive systems integration and interoperability. The solution enables the analysis, design, and implementation of dynamic, interoperable multi-domain systems without requesting continuous revision of existing specifications.publishedVersionPeer reviewe

    A standards-based ICT framework to enable a service-oriented approach to clinical decision support

    Get PDF
    This research provides evidence that standards based Clinical Decision Support (CDS) at the point of care is an essential ingredient of electronic healthcare service delivery. A Service Oriented Architecture (SOA) based solution is explored, that serves as a task management system to coordinate complex distributed and disparate IT systems, processes and resources (human and computer) to provide standards based CDS. This research offers a solution to the challenges in implementing computerised CDS such as integration with heterogeneous legacy systems. Reuse of components and services to reduce costs and save time. The benefits of a sharable CDS service that can be reused by different healthcare practitioners to provide collaborative patient care is demonstrated. This solution provides orchestration among different services by extracting data from sources like patient databases, clinical knowledge bases and evidence-based clinical guidelines (CGs) in order to facilitate multiple CDS requests coming from different healthcare settings. This architecture aims to aid users at different levels of Healthcare Delivery Organizations (HCOs) to maintain a CDS repository, along with monitoring and managing services, thus enabling transparency. The research employs the Design Science research methodology (DSRM) combined with The Open Group Architecture Framework (TOGAF), an open source group initiative for Enterprise Architecture Framework (EAF). DSRM’s iterative capability addresses the rapidly evolving nature of workflows in healthcare. This SOA based solution uses standards-based open source technologies and platforms, the latest healthcare standards by HL7 and OMG, Decision Support Service (DSS) and Retrieve, Update Locate Service (RLUS) standard. Combining business process management (BPM) technologies, business rules with SOA ensures the HCO’s capability to manage its processes. This architectural solution is evaluated by successfully implementing evidence based CGs at the point of care in areas such as; a) Diagnostics (Chronic Obstructive Disease), b) Urgent Referral (Lung Cancer), c) Genome testing and integration with CDS in screening (Lynch’s syndrome). In addition to medical care, the CDS solution can benefit organizational processes for collaborative care delivery by connecting patients, physicians and other associated members. This framework facilitates integration of different types of CDS ideal for the different healthcare processes, enabling sharable CDS capabilities within and across organizations

    The Healthgrid White Paper

    Get PDF

    The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

    Get PDF
    Background: Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results: We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions: This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability: TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql

    Identity in research infrastructure and scientific communication: Report from the 1st IRISC workshop, Helsinki Sep 12-13, 2011

    Get PDF
    Motivation for the IRISC workshop came from the observation that identity and digital identification are increasingly important factors in modern scientific research, especially with the now near-ubiquitous use of the Internet as a global medium for dissemination and debate of scientific knowledge and data, and as a platform for scientific collaborations and large-scale e-science activities.

The 1 1/2 day IRISC2011 workshop sought to explore a series of interrelated topics under two main themes: i) unambiguously identifying authors/creators & attributing their scholarly works, and ii) individual identification and access management in the context of identity federations. Specific aims of the workshop included:

• Raising overall awareness of key technical and non-technical challenges, opportunities and developments.
• Facilitating a dialogue, cross-pollination of ideas, collaboration and coordination between diverse – and largely unconnected – communities.
• Identifying & discussing existing/emerging technologies, best practices and requirements for researcher identification.

This report provides background information on key identification-related concepts & projects, describes workshop proceedings and summarizes key workshop findings
    corecore