7 research outputs found

    Intertwining connectivities in representable matroids

    Get PDF
    Let MM be a representable matroid and Q,R,S,TQ, R, S, T subsets of the ground set such that the smallest separation that separates QQ from RR has order kk, and the smallest separation that separates SS from TT has order ll. We prove that if MM is sufficiently large, then there is an element ee such that in one of M\eM\backslash e and M ⁣/eM\!/e both connectivities are preserved. For matroids representable over a finite field we prove a stronger result: we show that we can remove ee such that both a connectivity and a minor of MM are preserved

    Confinement of matroid representations to subsets of partial fields

    Get PDF
    Let M be a matroid representable over a (partial) field P and B a matrix representable over a sub-partial field P' of P. We say that B confines M to P' if, whenever a P-representation matrix A of M has a submatrix B, A is a scaled P'-matrix. We show that, under some conditions on the partial fields, on M, and on B, verifying whether B confines M to P' amounts to a finite check. A corollary of this result is Whittle's Stabilizer Theorem. A combination of the Confinement Theorem and the Lift Theorem from arXiv:0804.3263 leads to a short proof of Whittle's characterization of the matroids representable over GF(3) and other fields. We also use a combination of the Confinement Theorem and the Lift Theorem to prove a characterization, in terms of representability over partial fields, of the 3-connected matroids that have k inequivalent representations over GF(5), for k = 1, ..., 6. Additionally we give, for a fixed matroid M, an algebraic construction of a partial field P_M and a representation A over P_M such that every representation of M over a partial field P is equal to f(A) for some homomorphism f:P_M->P. Using the Confinement Theorem we prove an algebraic analog of the theory of free expansions by Geelen et al.Comment: 45 page

    Confinement of matroid representations to subsets of partial fields

    Get PDF
    Let M be a matroid representable over a (partial) field P and B a matrix representable over a sub-partial field P' of P. We say that B confines M to P' if, whenever a P-representation matrix A of M has a submatrix B, A is a scaled P'-matrix. We show that, under some conditions on the partial fields, on M, and on B, verifying whether B confines M to P' amounts to a finite check. A corollary of this result is Whittle's Stabilizer Theorem. A combination of the Confinement Theorem and the Lift Theorem from arXiv:0804.3263 leads to a short proof of Whittle's characterization of the matroids representable over GF(3) and other fields. We also use a combination of the Confinement Theorem and the Lift Theorem to prove a characterization, in terms of representability over partial fields, of the 3-connected matroids that have k inequivalent representations over GF(5), for k = 1, ..., 6. Additionally we give, for a fixed matroid M, an algebraic construction of a partial field P_M and a representation A over P_M such that every representation of M over a partial field P is equal to f(A) for some homomorphism f:P_M->P. Using the Confinement Theorem we prove an algebraic analog of the theory of free expansions by Geelen et al

    Recognizing Even-Cycle and Even-Cut Matroids

    Get PDF
    Even-cycle and even-cut matroids are classes of binary matroids that generalize respectively graphic and cographic matroids. We give algorithms to check membership for these classes of matroids. We assume that the matroids are 3-connected and are given by their (0,1)-matrix representations. We first give an algorithm to check membership for p-cographic matroids that is a subclass of even-cut matroids. We use this algorithm to construct algorithms for membership problems for even-cycle and even-cut matroids and the running time of these algorithms is polynomial in the size of the matrix representations. However, we will outline only how theoretical results can be used to develop polynomial time algorithms and omit the details of algorithms

    Inequivalent Representations of Matroids over Prime Fields

    Full text link
    It is proved that for each prime field GF(p)GF(p), there is an integer f(p)f(p) such that a 4-connected matroid has at most f(p)f(p) inequivalent representations over GF(p)GF(p). We also prove a stronger theorem that obtains the same conclusion for matroids satisfying a connectivity condition, intermediate between 3-connectivity and 4-connectivity that we term "kk-coherence". We obtain a variety of other results on inequivalent representations including the following curious one. For a prime power qq, let R(q){\mathcal R}(q) denote the set of matroids representable over all fields with at least qq elements. Then there are infinitely many Mersenne primes if and only if, for each prime power qq, there is an integer mqm_q such that a 3-connected member of R(q){\mathcal R}(q) has at most mqm_q inequivalent GF(7)-representations. The theorems on inequivalent representations of matroids are consequences of structural results that do not rely on representability. The bulk of this paper is devoted to proving such results

    Representations of even-cycle and even-cut matroids

    Get PDF
    In this thesis, two classes of binary matroids will be discussed: even-cycle and even-cut matroids, together with problems which are related to their graphical representations. Even-cycle and even-cut matroids can be represented as signed graphs and grafts, respectively. A signed graph is a pair (G,Σ)(G,\Sigma) where GG is a graph and Σ\Sigma is a subset of edges of GG. A cycle CC of GG is a subset of edges of GG such that every vertex of the subgraph of GG induced by CC has an even degree. We say that CC is even in (G,Σ)(G,\Sigma) if CΣ|C \cap \Sigma| is even. A matroid MM is an even-cycle matroid if there exists a signed graph (G,Σ)(G,\Sigma) such that circuits of MM precisely corresponds to inclusion-wise minimal non-empty even cycles of (G,Σ)(G,\Sigma). A graft is a pair (G,T)(G,T) where GG is a graph and TT is a subset of vertices of GG such that each component of GG contains an even number of vertices in TT. Let UU be a subset of vertices of GG and let D:=deltaG(U)D:= delta_G(U) be a cut of GG. We say that DD is even in (G,T)(G, T) if UT|U \cap T| is even. A matroid MM is an even-cut matroid if there exists a graft (G,T)(G,T) such that circuits of MM corresponds to inclusion-wise minimal non-empty even cuts of (G,T)(G,T).\\ This thesis is motivated by the following three fundamental problems for even-cycle and even-cut matroids with their graphical representations. (a) Isomorphism problem: what is the relationship between two representations? (b) Bounding the number of representations: how many representations can a matroid have? (c) Recognition problem: how can we efficiently determine if a given matroid is in the class? And how can we find a representation if one exists? These questions for even-cycle and even-cut matroids will be answered in this thesis, respectively. For Problem (a), it will be characterized when two 44-connected graphs G1G_1 and G2G_2 have a pair of signatures (Σ1,Σ2)(\Sigma_1, \Sigma_2) such that (G1,Σ1)(G_1, \Sigma_1) and (G2,Σ2)(G_2, \Sigma_2) represent the same even-cycle matroids. This also characterize when G1G_1 and G2G_2 have a pair of terminal sets (T1,T2)(T_1, T_2) such that (G1,T1)(G_1,T_1) and (G2,T2)(G_2,T_2) represent the same even-cut matroid. For Problem (b), we introduce another class of binary matroids, called pinch-graphic matroids, which can generate expo\-nentially many representations even when the matroid is 33-connected. An even-cycle matroid is a pinch-graphic matroid if there exists a signed graph with a blocking pair. A blocking pair of a signed graph is a pair of vertices such that every odd cycles intersects with at least one of them. We prove that there exists a constant cc such that if a matroid is even-cycle matroid that is not pinch-graphic, then the number of representations is bounded by cc. An analogous result for even-cut matroids that are not duals of pinch-graphic matroids will be also proven. As an application, we construct algorithms to solve Problem (c) for even-cycle, even-cut matroids. The input matroids of these algorithms are binary, and they are given by a (0,1)(0,1)-matrix over the finite field \gf(2). The time-complexity of these algorithms is polynomial in the size of the input matrix
    corecore