Representations of Even-cycle and Even-cut Matroids

by

Cheolwon Heo

A thesis
presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2021
(C) Cheolwon Heo 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote.

External Examiner: Gordon Royle, Professor
Dept. of Mathematics and Statistics University of Western Australia

Supervisor:
Bertrand Guenin, Professor
Dept. of Combinatorics and Optimization
University of Waterloo

Internal Members: Jim Geelen, Professor
Dept. of Combinatorics and Optimization
University of Waterloo

Joseph Cheriyan, Professor
Dept. of Combinatorics and Optimization
University of Waterloo

Internal-External Member: Therese Biedl, Professor
David R. Cheriton School of Computer Science
University of Waterloo

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Statement of Contribution

Chapter 2 is based on paper [23], which is co-authored with B. Guenin and I. Pivotto. The main result Theorem 2.3.3 was originally proved by B. Guenin and I. Pivotto in [24], which is not published. Together with B. Guenin, we found a much shorter and accessible proof.

Chapters 3, 4 and 5 are based on papers [20, 21, 22, 31], which are co-authored with my advisor B. Guenin. I was responsible for the initial draft of all papers. I received help and feedback for multiple revisions.

Abstract

In this thesis, two classes of binary matroids will be discussed: even-cycle and even-cut matroids, together with problems which are related to their graphical representations. Evencycle and even-cut matroids can be represented as signed graphs and grafts, respectively. A signed graph is a pair (G, Σ) where G is a graph and Σ is a subset of edges of G. A cycle C of G is a subset of edges of G such that every vertex of the subgraph of G induced by C has an even degree. We say that C is even in (G, Σ) if $|C \cap \Sigma|$ is even. A matroid M is an even-cycle matroid if there exists a signed graph (G, Σ) such that circuits of M precisely corresponds to inclusion-wise minimal non-empty even cycles of (G, Σ). A graft is a pair (G, T) where G is a graph and T is a subset of vertices of G such that each component of G contains an even number of vertices in T. Let U be a subset of vertices of G and let $D:=\delta_{G}(U)$ be a cut of G. We say that D is even in (G, T) if $|U \cap T|$ is even. A matroid M is an even-cut matroid if there exists a graft (G, T) such that circuits of M corresponds to inclusion-wise minimal non-empty even cuts of (G, T).

This thesis is motivated by the following three fundamental problems for even-cycle and even-cut matroids with their graphical representations.
(a) Isomorphism problem: what is the relationship between two representations?
(b) Bounding the number of representations: how many representations can a matroid have?
(c) Recognition problem: how can we efficiently determine if a given matroid is in the class? And how can we find a representation if one exists?

These questions for even-cycle and even-cut matroids will be answered in this thesis, respectively. For Problem (a), it will be characterized when two 4 -connected graphs G_{1} and G_{2} have a pair of signatures $\left(\Sigma_{1}, \Sigma_{2}\right)$ such that $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ represent the same even-cycle matroids. This also characterize when G_{1} and G_{2} have a pair of terminal sets $\left(T_{1}, T_{2}\right)$ such that $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ represent the same even-cut matroid. For Problem (b), we introduce another class of binary matroids, called pinch-graphic matroids, which can generate exponentially many representations even when the matroid is 3 -connected. An even-cycle matroid is a pinch-graphic matroid if there exists a signed graph with a blocking pair. A blocking pair of a signed graph is a pair of vertices such that every odd cycles intersects with at least one of them. We prove that there exists a constant c such that if a matroid is even-cycle matroid that is not pinch-graphic, then the number
of representations is bounded by c. An analogous result for even-cut matroids that are not duals of pinch-graphic matroids will be also proven. As an application, we construct algorithms to solve Problem (c) for even-cycle, even-cut matroids. The input matroids of these algorithms are binary, and they are given by a $(0,1)$-matrix over the finite field GF(2). The time-complexity of these algorithms is polynomial in the size of the input matrix.

Acknowledgements

Foremost, I would like to express my deepest gratitude to my advisor Bertrand Guenin for his insight, patience, and encouragement. During my MMath and PhD programs, he has given countless pieces of advice and ideas to be a good researcher. I would like to thank him for giving me an opportunity to continue my research in this great environment. I will never forget the discussions with coffee and white boards full of graphs.

I wish to show my gratitude to the members of committee members-Jim Geelen, Joseph Cheriyan, Therese Biedl, and Gordon Royle - for their constructive feedback on my thesis.

I would also like to thank all of the faculty members at Department of Combinatorics and Optimization. Especially, I am thankful to Jim Geelen and Peter Nelson for invaluable advice on Matroid theory.

Finally, I would like to thank my family and Jihyun Kim for all their love and support.

Dedication

This thesis is dedicated to my parents and my brother.

Table of Contents

List of Figures xiv
1 Introduction 1
1.1 Matroids with graphical representations 1
1.1.1 Graphic and cographic matroids 1
1.1.2 Fundamental problems 2
1.1.3 Even-cycle and even-cut matroids 4
1.1.4 More matroids with graphical representations 8
1.2 Isomorphism problem 11
1.2.1 Equivalence classes for signed graphs and grafts 11
1.2.2 The pairing theorem 13
1.2.3 Shih's theorem 14
1.2.4 A general theorem 15
1.3 Bounding the number of representations 17
1.3.1 Signed-graph representations 17
1.3.2 Graft representations 19
1.3.3 Blocking-pair representations 21
1.4 Small separations in blocking-pair representations 21
1.4.1 Separations and sums 21
1.4.2 Reducible separations 22
1.4.3 Irreducible 3-separations 23
1.5 Recognition algorithm 24
1.5.1 Even-cycle and even-cut matroids 24
1.5.2 Pinch-graphic matroids 25
1.6 Organization of thesis 26
2 Isomorphism problem 28
2.1 Shih's theorem 29
2.1.1 Constructions 29
2.1.2 The characterization 32
2.2 Moves 32
2.2.1 Folding and unfolding 32
2.2.2 Two operations 33
2.3 Main results 35
2.3.1 A first characterization 35
2.3.2 A second characterization 36
2.3.3 Reduction 38
2.4 Counterexamples 39
2.4.1 Properties of counterexamples 40
2.4.2 Deleting a terminal 43
2.4.3 Mates 45
2.4.4 Organization of the remainder of the proof 46
2.5 Wheels and widgets 47
2.5.1 Connectivity 47
2.5.2 Terminals and interior vertices 52
2.5.3 Classification 55
2.5.4 Case analysis 58
2.6 The pinch case 63
3 Bounding the number of representations 67
3.1 Even-cycle matroids 69
3.1.1 The 3-connected case 69
3.1.2 A connectivity function and auxiliary graphs 71
3.1.3 1- and 2 -separations in signed graphs 73
3.1.4 The proof of Theorem 1.3.1 76
3.2 Even-cut matroids 80
3.2.1 The 3-connected case 80
3.2.2 A connectivity function and auxiliary graphs 81
3.2.3 1- and 2 -separations in grafts 81
3.2.4 The proof of Theorem 1.3.2 83
3.3 Pinch-graphic matroids 87
3.3.1 Chain theorems 87
3.3.2 (4, 6)-Connectivity 90
3.3.3 The proof of Theorem 3.3.6 92
3.3.4 Size of equivalent classes 101
4 Separations 112
4.1 Reducible separations 113
4.1.1 Sums 113
4.1.2 Completion 114
4.1.3 Examples of 3 -sums 115
4.1.4 Applications 116
4.2 1- and 2-separations 119
4.2.1 1-separations 119
4.2.2 Preliminaries 120
4.2.3 2-separations 122
4.3 Structure theorem for 3-separations 125
4.3.1 Representation of 3-connected even-cycle matroid 125
4.3.2 The statement 126
4.3.3 Closure and small separations 127
4.3.4 Choice of representation and separation 128
4.3.5 Edge condition 129
4.3.6 Degree condition 134
4.3.7 Proof of Proposition 1.4.3 135
5 Recognition Algorithms 140
5.1 Graphic matroids 142
5.1.1 Reduction to the 3-connected case 142
5.1.2 Graph representations 143
5.1.3 The algorithm 143
5.2 Decision problems on grafts and signed graphs 143
5.2.1 A decision problem on grafts 144
5.2.2 A decision problem on signed graphs 145
5.3 Even-cycle matroids 147
5.3.1 Keeping track of representations 147
5.3.2 Equivalence classes 149
5.3.3 Algorithm (1) 149
5.4 Even-cut matroids 151
5.4.1 Keeping track of representations 151
5.4.2 Equivalence classes 152
5.4.3 Algorithm (2) 153
5.5 Internally 4-connected pinch-graphic matroids 155
5.5.1 Keeping track of representations 155
5.5.2 Algorithm (4) 156
5.6 Pinch-graphic matroids with small separations 157
5.6.1 Compliant separations 157
5.6.2 Recalcitrant separations 159
5.6.3 Algorithm (5) 167
6 Future works 172
6.1 Isomorphism problem 172
6.2 Excluded minors 175
6.2.1 Well-known classes 175
6.2.2 Even-cycle and even-cut matroids 175
References 178
List of Notations 184
Index 187

List of Figures

1.1 An example of a 2-flip. 3
1.2 A signed-graph representation of F_{7}. 5
1.3 A graft representation of F_{7}. 7
1.4 Circuits of frame matroids. 9
1.5 Circuits of lift matroids. 10
1.6 An example of inequivalent representations. 13
1.7 Signed-graph representations of $\operatorname{cut}\left(K_{5}\right)$. 16
1.8 Graft representations of $\operatorname{cycle}\left(K_{3,3}\right)$. 16
1.9 Constructing donuts. 18
1.10 Constructing shuffles. 20
1.11 Examples of irreducible 3-separations. 23
2.1 A wheel pair. 31
2.2 A widget pair. 31
2.3 Folding and unfolding 33
2.4 Potential 2-separation in wheel pairs. 49
2.5 Two edges incident to the hub. 51
2.6 Case (a) in Proposition 2.5.12. 58
2.7 Case (b) in Proposition 2.5.12. 60
2.8 Case (c) in Proposition 2.5.12. 61
3.1 Examples of auxiliary graphs 72
4.1 A Lovász-flip. 121
4.2 A theta 124
4.3 A double ear. 125
4.4 Case (2) in Proposition 4.3.13 139
6.1 A bad example. 174
6.2 Graphic siblings after a T_{4}-move 174

Chapter 1

Introduction

1.1 Matroids with graphical representations

1.1.1 Graphic and cographic matroids

Before we get into even-cycle and even-cut matroids, let us start with simplest classes of matroids with graphical representations, which are graphic and cographic matroids. Let $G:=(V, E)$ be a graph with vertex set V and edge set E. In this thesis, we allow parallel edges and loops in graphs. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. For a subset W of $V(G)$ and a subset F of $E(G)$, we denote the induced subgraph of G by W (resp. by F) by $G[U]$ (resp. $G[F]$). A cycle of a graph G is a subset C of $E(G)$ such that every vertex of $G[C]$ has an even degree. A polygon of a graph G is an inclusion-wise minimal non-empty cycle of G. Equivalently, a non-empty subset C of $E(G)$ is a polygon if $G[C]$ is a connected 2-regular subgraph of G.

Let M be a matroid. We denote by $E(M)$ the ground set (or the edge set) of M. We
say that M is graphic if there exists a graph G such that circuits of M precisely correspond to polygons of G. Then, G is a graph representation of M, and we denote this by $M=$ cycle (G). Let A be a vertex-edge incidence matrix of G. Then, A represents cycle (G) over $\mathrm{GF}(2)$, so every graphic matroid is binary.

Let G be a graph, and let $I, J \subseteq E(G)$ where $I \cap J=\emptyset$. We denote by $G / I \backslash J$ the minor obtained from G by contracting edges in I and deleting edges in J. For a matroid M, we denote by $M / I \backslash J$ the minor obtained from M by contracting elements in I and deleting elements in J. For the contraction (resp. deletion) of one edge e, we simply write $/ e($ resp. $\backslash e)$ instead of $/\{e\}($ resp. $\backslash\{e\})$. Let $M=\operatorname{cycle}(G)$. Then, $G / I \backslash J$ is a graph representation of $M / I \backslash J$. In particular, the class of graphic matroids is minor-closed.

For a subset W of $V(G)$, a cut generated by W is the set of edges which have exactly one end in W, denoted by $\delta_{G}(W)$. We say that W is a shore of the cut $\delta_{G}(W)$. If W contains only one vertex v, then we simply write $\delta_{G}(v)$ instead of $\delta_{G}(\{v\})$. A matroid M is cographic if there exists a graph G such that circuits of M precisely correspond to inclusion-wise minimal non-empty cuts of G. We say that G is a graph representation of M, and denote this by $M=\operatorname{cut}(G)$. Graphic and cographic matroids are dual to each other, and thus, cographic matroids are also binary. Let $M=\operatorname{cut}(G)$. Then, $G / I \backslash J$ is a graph representation of $M \backslash I / J$. In particular, the class of cographic matroids is minor-closed.

1.1.2 Fundamental problems

For graphic matroids, the following three fundamental questions arise:
(a) Isomorphism problem: what is the relationship between two graph representations of a graphic matroid?
(b) Bounding the number of representations: how many graph representations are there for a graphic matroid?
(c) Recognition problem: how can we efficiently determine if a given matroid is graphic? How can we find a representation if one exists?

In [55], Whitney proved a theorem that solves (a) and (b). As seen in [51], Tutte solved (c). Before we state Whitney's theorem, we need to define two operations. For a graph G, a 1-flip is either identifying two vertices in distinct components of G or its reverse, that is, splitting a vertex to increase the number of components by 1 . Let (X, Y) be a partition of $E(G)$. We say that a vertex v is a boundary vertex of X in G if v is a common vertex of $G[X]$ and $G[Y]$. We denote the set of boundary vertices of X in G by $\partial_{G}(X)$. Note that $\partial_{G}(X)=\partial_{G}(Y)$. Suppose $\partial_{G}(X)=\left\{v_{1}, v_{2}\right\}$ for some distinct vertices v_{1} and v_{2} of G. For a positive integer k, we denote $[k]=\{1,2, \ldots, k\}$. Let G^{\prime} be the graph obtained from $G[X]$ and $G[Y]$ by identifying, for $i \in[2]$, vertex v_{i} of $G[X]$ and vertex v_{3-i} of $G[Y]$. We say that G^{\prime} is obtained from G by a 2-flip on the set X. Note that 2 -flips on X and Y are the same operation. Two graphs are equivalent if they are related by a sequence of 1-flips and 2-flips; otherwise, they are inequivalent. Note that this relation is indeed an equivalence relation. A single 2-flip on X is illustrated in Figure 1.1.

Figure 1.1: An example of a 2-flip.

Now, we are ready to state Whitney's 2-isomorphism theorem.

Theorem 1.1.1 (Whitney's 2-isomorphism Theorem). Any two graph representations of a graphic matroid are equivalent.

Note that Theorem 1.1.1 directly solves Problem (a). It also implies that every graphic matroid has a unique equivalence class, which solves Problem (b). We denote by r_{M} the rank function of M and write $\mathrm{r}(M)$ for the rank of M, i.e., $\mathrm{r}(M)=\mathrm{r}_{M}(E(M))$. The connectivity function takes $X \subseteq E(M)$ as input and returns $\lambda_{M}(X):=\mathrm{r}_{M}(X)+\mathrm{r}_{M}(E(M)-X)-\mathrm{r}(M)$. For both r and λ, we omit the index when unambiguous. Consider $X \subseteq E(M)$ where $X \neq \emptyset$ and $X \neq E(M)$, and let k be a positive integer. Then X is k-separating if $\lambda(X) \leq k-1$. It is exactly k-separating if equality holds. X is a k-separation if it is exactly k-separating and $|X|,|E(M)-X| \geq k$. A 3-separation X is proper if $|X|,|E(M)| \geq 4$. A matroid is 2 -connected if it has no 1 -separation; it is 3 -connected if it 2 -connected and has no 2 -separation. For a graph G, if cycle (G) is 3-connected, then G is loopless and 3-connected. Thus, Theorem 1.1.1 implies that every 3 -connected graphic matroid has a unique graph representation up to isolated vertices. As an application, we can construct an efficient algorithm to determine if a given matroid is graphic, which solves Problem (c). A detailed description of the algorithm will be given in Chapter 5.

1.1.3 Even-cycle and even-cut matroids

Now, we consider analogous problems for generalized classes of graphic and cographic matroids, which are even-cycle and even-cut matroids. These matroids have graphical representations, called signed graphs and grafts, respectively.

A signed graph is a pair (G, Σ) where G is a graph and $\Sigma \subseteq E(G)$. We say that G and Σ are the underlying graph and the sign of (G, Σ), respectively. We say that $\Gamma \subseteq E(G)$ is a signature of (G, Σ) if $\Sigma \Delta \Gamma:=(\Sigma \cup \Gamma)-(\Sigma \cap \Gamma)$ is a cut of G. The operation that
consists of replacing a signature by another signature is called re-signing. An edge e of G is odd in (G, Σ) if $e \in \Sigma$; otherwise, e is even. Also, a cycle C of G is odd in (G, Σ) if C contains an odd number of odd edges of (G, Σ), i.e., $|C \cap \Sigma|$ is odd; otherwise, C is an even cycle. A matroid M is an even-cycle matroid if there exists a signed graph (G, Σ) such that circuits of M precisely correspond to inclusion-wise minimal non-empty even cycles of (G, Σ). Then, (G, Σ) is a signed-graph representation of M, and we denote this by $M=\operatorname{ecycle}(G, \Sigma)$. Let A be a binary matrix representing cycle (G) over $\mathrm{GF}(2)$, and let A^{\prime} be a matrix obtained from A by adding a row corresponding to Σ. Then, A^{\prime} represents ecycle (G, Σ) over GF (2). Thus, even-cycle matroids are binary, and they are elementary lifts of graphic matroids [40]. Every graphic matroid is an even-cycle matroid since, for a graph G, $\operatorname{cycle}(G)=\operatorname{ecycle}(G, \emptyset)$. However, the converse is not true because the Fano matroid F_{7} is not graphic while it is an even-cycle matroid as it is shown in Figure 1.2. The bold edges represent its signature in Figure 1.2. If an even-cycle matroid M has a

Figure 1.2: A signed-graph representation of F_{7}.
signed-graph representation (G, Σ) with a vertex $v \in V(G)$ such that v intersects every odd cycle, then M is graphic [40].

Consider a signed graph (G, Σ) and $I, J \subseteq E(G)$ where $I \cap J=\emptyset$. The minor $(G, \Sigma) / I \backslash J$ of (G, Σ) is the signed graph defined as follows: If there exists an odd polygon of (G, Σ) contained in I, then we define $(G, \Sigma) / I \backslash J=(G / I \backslash J, \emptyset)$; otherwise, there exists a signature
Γ of (G, Σ) where $\Gamma \cap I=\emptyset$, and $(G, \Sigma) / I \backslash J=(G / I \backslash J, \Gamma-J)$. Note that minors are only defined up to re-signing. For $F \subseteq E(G)$, we denote by $(G, \Sigma) \mid F$ the signed graph induced by F, i.e., $(G, \Sigma) \mid F=(G, \Sigma) \backslash E(G)-F$. Consider an even-cycle matroid M with a signed-graph representation (G, Σ). Then, $(G, \Sigma) / I \backslash J$ is a signed-graph representation of $M / I \backslash J$ [40], page 21. In particular, the class of even-cycle matroids is minor-closed.

A graft is a pair (G, T) where G is a graph and $T \subseteq V(G)$ such that each component of G contains an even number of vertices of T. We say that G and T are the underlying graph and the terminal set of (G, T), respectively. The vertices of T are called terminal vertices (or simply terminals) of (G, T). Let $W \subseteq V(G)$ and let $D:=\delta_{G}(W)$ be a cut of G. Then, D is odd if $|W \cap T|$ is odd; otherwise, D is even. It is well-defined because every component of G contains an even number of terminal vertices. A matroid M is an even-cut matroid if there exists a graft (G, T) such that circuits of M precisely correspond to inclusion-wise minimal non-empty even cuts of (G, T). Then, (G, T) is a graft representation of M, and we denote by $M=\operatorname{ecut}(G, T)$. For a graph G, we denote the subset of vertices of G whose degrees are odd by $V_{\text {odd }}(G)$. A subset J of $E(G)$ is a T-join of a graft (G, T) if $V_{o d d}(G[J])=T$, i.e., if T is precisely the set of vertices of odd degree of the graph induced by J. Let A be a binary matrix representing $\operatorname{cut}(G)$ over $\operatorname{GF}(2)$, and let A^{\prime} be a matrix obtained from A by adding a row corresponding a T-join J of (G, T). Then, A^{\prime} represents ecut (G, T) over $\mathrm{GF}(2)$. Thus, even-cut matroids are binary, and they are elementary lifts of cographic matroids [40]. Every cographic matroid is an even-cut matroid since for a graph $G, \operatorname{cut}(G)=\operatorname{ecut}(G, \emptyset)$. However, the converse is not true, as is shown in Figure 1.3, namely, F_{7} is not cographic while it is an even-cut matroid. The white vertices represent its terminals in Figure 1.3. If an even-cut matroid M has a graft representation (G, T) where $|T| \leq 2$, then M is cographic [40].

Consider a graft (G, T) and $I, J \subseteq E(G)$ where $I \cap J=\emptyset$. The minor $(G, T) / I \backslash J$

Figure 1.3: A graft representation of F_{7}.
is the graft defined as follows: Let $H:=G / I \backslash J$. If there exists an odd cut of (G, T) contained in J, then $(G, T) / I \backslash J=(H, \emptyset)$; otherwise, there exists a T-join K of (G, T) where $K \cap J=\emptyset$, and $(G, T) / I \backslash J=\left(H, V_{\text {odd }}(H[K-I])\right)$. For $F \subseteq E(G)$, we denote by $(G, T) \mid F$ the graft induced by F, i.e., $(G, T) \mid F=(G, T) \backslash E(G)-F$. Consider an even-cut matroid M with a graft representation (G, T). Then, $(G, T) / I \backslash J$ is a graft representation of $M \backslash I / J$ [40], page 23. In particular, the class of even-cut matroids is minor-closed.

In this thesis, we are interested in the following problems for even-cycle and even-cut matroids, which are analogous to ones that we have seen in Section 1.1.2.
(a) Isomorphism problem: what is the relationship between two signed-graph representations (resp. graft representations) of an even-cycle (resp. even-cut) matroid?
(b) Bounding the number of representations: how many signed-graph representations (resp. graft representations) are there for an even-cycle (resp. even-cut) matroid?
(c) Recognition problem: how can we efficiently determine if a given matroid is an even-cycle (resp. even-cut) matroid? How can we find a representation if one exists?

Through Sections 1.2, 1.3, 1.4 and 1.5, we will see details for each problems.

1.1.4 More matroids with graphical representations

In this section, we review matroids with graphical representations other than even-cycle and even-cut matroids. In [56] and [57], Zaslavsky generalized graphs to biased graphs and introduced two classes of matroids that arise from biased graphs. A biased graph is a pair (G, \mathcal{B}) where G is a graph and \mathcal{B} is a linear class of cycles of G that satisfies the "theta property". A theta graph is a graph composed of three internally-disjoint paths of length at least 1 sharing their end vertices. Note that a theta graph contains exactly three polygons as subgraphs, each of which is the union of two internally-disjoint paths. We say that (G, \mathcal{B}) satisfies the theta property if, for each theta subgraph H containing two polygons of \mathcal{B}, the third polygon of H is also in \mathcal{B}. A cycle of G is called balanced if it is in \mathcal{B}; otherwise it is called unbalanced. The following are examples of biased graphs introduced in [56].
(a) (G, \mathcal{C}) where \mathcal{C} is the set of all cycles of G.
(b) (G, \emptyset), that is, no cycle of G is balanced.
(c) (G, \mathcal{B}) where G is a gain graph and \mathcal{B} is the set of cycles whose gain product is 1 . A gain graph (also called a group-labelled graph) is a directed graph, whose edges are labelled by elements of a group. A gain product of a cycle C with the given orientation is the product of group elements labelled in each edge of C according to their direction. That is, for backward edges, their inverses will be multiplied.

Zaslavsky introduced two classes of matroids that arise from biased graphs: frame and lift matroids. A frame matroid $\operatorname{FM}(G, \mathcal{B})$ which arises from biased graph (G, \mathcal{B}) is a matroid with ground set $E(G)$ such that each circuit precisely corresponds to either
(i) a balanced polygon of (G, \mathcal{B});
(ii) a tight handcuff of (G, \mathcal{B}) - the union of two unbalanced polygons of (G, \mathcal{B}) sharing exactly one common vertex;
(iii) a loose handcuff of (G, \mathcal{B}) - the union of two vertex-disjoint unbalanced polygons C_{1}, C_{2} and a path P such that for each $i \in\{1,2\}$, the intersection of C_{i} and P is exactly one vertex; or
(iv) an unbalanced theta subgraph of (G, \mathcal{B})-a theta subgraph containing three distinct unbalanced polygons.

Figure 1.4 illustrates circuits of frame matroids.

(ii)

(iii)

(iv)

Figure 1.4: Circuits of frame matroids.

Now, consider frame matroids corresponding to biased graphs (a),(b), and (c). For (a), every polygon of G is balanced, so there are neither tight handcuffs, loose handcuffs nor unbalanced theta subgraphs. Thus, circuits of $\operatorname{FM}(G, \mathcal{C})$ precisely correspond to polygons of G, which means $\operatorname{FM}(G, \mathcal{C})=\operatorname{cycle}(G)$. For (b), no polygon of G is balanced, so each circuit of $\operatorname{FM}(G, \emptyset)$ is either a tight handcuff, loose handcuff or unbalanced theta subgraph. This matroid is called bicircular. For (c) with the two-element (say, 1 and -1) group, the direction of G can be omitted, and each edge of G is labelled by 1 or -1 . Then, there is no unbalanced theta subgraph, so each circuit of $\operatorname{FM}(G, \mathcal{B})$ is either a balanced polygon,
tight handcuff or loose handcuff. This matroid is called signed-graphic. Classes of frame matroids have been researched in $[2,3,5,6,35,39]$.

The second class of matroids which arises from a biased graphs is lift matroids. A lift matroid $\operatorname{LM}(G, \mathcal{B})$ which arises from a biased graph (G, \mathcal{B}) is a matroid with ground set $E(G)$ such that each circuit precisely corresponds to either
(i) a balanced polygon of (G, \mathcal{B});
(ii) a tight handcuff of (G, \mathcal{B});
(iii) a broken handcuff of (G, \mathcal{B}) - the union of two vertex-disjoint unbalanced polygons of (G, \mathcal{B}); or
(iv) an unbalanced theta subgraph of (G, \mathcal{B}).

Figure 1.5 illustrates circuits of lift matroids.

Figure 1.5: Circuits of lift matroids.

Similarly, let us consider lift matroids corresponding to biased graphs (a), (b), and (c). For (a), every polygon of G is balanced, so there are neither tight handcuffs, broken handcuffs nor unbalanced theta subgraphs. Thus, circuits of $\operatorname{LM}(G, \mathcal{C})$ precisely corresponds to polygons of G, which means that $\operatorname{LM}(G, \mathcal{C})=\operatorname{cycle}(G)$. For (b), no polygon of G
is balanced, so each circuit of $\operatorname{LM}(G, \emptyset)$ is either a tight handcuff, broken handcuff or unbalanced theta subgraph. This matroid is called a bicircular-lift matroid. For (c) with the two-element (say, 1 and -1) group, there is no unbalanced theta subgraph, so each circuit of $\operatorname{LM}(G, \mathcal{B})$ is either a balanced polygon, tight handcuff, or broken handcuff. Note that these are precisely inclusion-wise minimal non-empty even cycles of (G, Σ) where Σ is the set of all edges labelled with -1 . Thus, $\operatorname{LM}(G, \mathcal{B})=\operatorname{ecycle}(G, \Sigma)$. Classes of lift matroids have been researched in $[4,5,6]$; in particular, even-cycle matroids have been researched in [19, 20, 21, 22, 25, 26, 27, 40, 47].

1.2 Isomorphism problem

1.2.1 Equivalence classes for signed graphs and grafts

In this section, we will discuss the following isomorphism problems for even-cycle and even-cut matroids.

Question 1.2.1.

(a) For an even-cycle matroid M, describe the relationship between two signed-graph representations, $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ of M.
(b) For an even-cut matroid M, describe the relationship between two graft representations, $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ of M.

Theorem 1.1.1 states that any two graph representations of a graphic matroid are equivalent. The equivalence relation can be generalized to signed graphs and grafts. Note that $\Sigma \subseteq E(G)$ is a signature of (G, Σ) if and only if ecycle $(G, \Sigma)=\operatorname{ecycle}(G, \Gamma)$ [29]. Let
$\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ be signed graphs such that $E\left(G_{1}\right)=E\left(G_{2}\right)$, that is, the set of edgelabels of G_{1} and G_{2} are the same. Then, we say that $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ are equivalent if they are related by a sequence of 1-flips, 2-flips, and re-signing; otherwise, they are inequivalent. Note that this relation is indeed an equivalence relation. The following remark in [40] implies that the isomorphism problem for even-cycle matroids in Question 1.2.1 can be easily solved when underlying graphs are equivalent.

Remark 1.2.2. Let $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ be signed graphs such that $E\left(G_{1}\right)=E\left(G_{2}\right)$. Then, they are equivalent if and only if G_{1} and G_{2} are equivalent and ecycle $\left(G_{1}, \Sigma_{1}\right)$ $=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$.

Thus, it suffices to restrict our attention to the case where underlying graphs are not equivalent.

Now, we consider grafts instead of signed graphs. Let $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ be grafts such that $E\left(G_{1}\right)=E\left(G_{2}\right)$. We say $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ are equivalent if G_{1} and G_{2} are equivalent and there exists a T_{1}-join J of $\left(G_{1}, T_{1}\right)$ that is a T_{2}-join of $\left(G_{2}, T_{2}\right)$; otherwise, they are inequivalent. Note that this relation is indeed an equivalence relation. The following remark in [40] implies that the isomorphism problem for even-cut matroids in Question 1.2.1 can be easily solved when underlying graphs are equivalent.

Remark 1.2.3. Let $\left(G_{1}, T_{1}\right),\left(G_{2}, T_{2}\right)$ be grafts such that $E\left(G_{1}\right)=E\left(G_{2}\right)$. Then, they are equivalent if and only if G_{1} and G_{2} are equivalent and $\operatorname{ecut}\left(G_{1}, T_{1}\right)=\operatorname{ecut}\left(G_{2}, T_{2}\right)$

Similarly, Remark 1.2.3 reduces the isomorphism problem for even-cut matroids to the case of inequivalent underlying graphs.

1.2.2 The pairing theorem

In contrast to Theorem 1.1.1, even-cycle matroids (resp. even-cut matroids) can have inequivalent signed-graph representations (resp. graft representations). Consider Figure 1.6 and denote by G_{1} the (edge labelled) graph on the left and by G_{2} the (edge labelled) graph on the right. Let $\Sigma_{1}=\{3,5,8,13,14\}$ and $\Sigma_{2}=\{1,2,3,4,5\}$. Then, observe that $\left(G_{1}, \Sigma_{1}\right)$

Figure 1.6: An example of inequivalent representations.
and $\left(G_{2}, \Sigma_{2}\right)$ have the same set of even cycles. Hence, an answer to Question 1.2.1(a) will involve the aforementioned construction. For $i \in[2]$, let $T_{i}=V\left(G_{i}\right)$. Then, observe that $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ have the same set of even cuts. Thus, an answer to Question 1.2.1(b) will involve the aforementioned construction as well. Note that, in this example, a pair of inequivalent graphs for which we were able to construct both a pair of signed graphs with the same even-cycles and a pair of grafts with the same even cuts. This is part of a general phenomena as proven in [26], Proposition 11.

Theorem 1.2.4 (Pairing theorem). Let G_{1} and G_{2} be a pair of inequivalent graphs such that $E\left(G_{1}\right)=E\left(G_{2}\right)$. Then, the following are equivalent:
(a) there exist $\Sigma_{1}, \Sigma_{2} \subseteq E\left(G_{1}\right)$ such that ecycle $\left(G_{1}, \Sigma_{1}\right)=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$.
(b) there exist $T_{1} \subseteq V\left(G_{1}\right)$ and $T_{2} \subseteq V\left(G_{2}\right)$ such that $\operatorname{ecut}\left(G_{1}, T_{1}\right)=\operatorname{ecut}\left(G_{2}, T_{2}\right)$.

Moreover, if (a) and (b) occur, then Σ_{1} and Σ_{2} are unique up to re-signing, and T_{1} and T_{2} are unique.

A pair of inequivalent graphs $\left(G_{1}, G_{2}\right)$ for which (a) and (b) hold in Theorem 1.2.4 are called siblings. Also, we say that $\left(\Sigma_{1}, \Sigma_{2}\right)$ and $\left(T_{1}, T_{2}\right)$ are the matching-signature pair and the matching-terminal pair for $\left(G_{1}, G_{2}\right)$, respectively. Thus, Theorem 1.2.4 implies that the isomorphism problems for even-cycle and even-cut for inequivalent underlying graphs are equivalent to the following problem.

Question 1.2.5. For siblings $\left(G_{1}, G_{2}\right)$, describe the relationship between G_{1} and G_{2}.

1.2.3 Shih's theorem

In his Ph.D. thesis [47], Shih solved the following problem.
Question 1.2.6. Let G_{1}, G_{2} be graphs where $E\left(G_{1}\right)=E\left(G_{2}\right)$, and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be cycle spaces of G_{1}, G_{2}, respectively. Suppose that

$$
\begin{equation*}
\mathcal{C}_{1} \supseteq \mathcal{C}_{2} \quad \& \quad \operatorname{dim}\left(\mathcal{C}_{1}\right)=\operatorname{dim}\left(\mathcal{C}_{2}\right)+1 . \tag{1.1}
\end{equation*}
$$

Then, describe the relationship between G_{1} and G_{2}.

As proven in [11], Proposition 5, the following proposition shows equivalent properties of (1.1) in Question 1.2.6.

Proposition 1.2.7. Let G_{1}, G_{2} be graphs where $E\left(G_{1}\right)=E\left(G_{2}\right)$, and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be cycle spaces of G_{1}, G_{2}, respectively. Then, the following are equivalent:
(a) (1.1) holds;
(b) $\left(G_{1}, G_{2}\right)$ are siblings with a matching-signature pair (Σ, \emptyset); and
(c) $\left(G_{1}, G_{2}\right)$ are siblings with a matching-terminal pair (\emptyset, T).

In this case, we say that $\left(G_{1}, G_{2}\right)$ are Shih siblings. We will state Shih's theorem in Chapter 2, which illustrate every possible construction of Shih siblings.

1.2.4 A general theorem

Let $\left(G_{1}, G_{2}\right)$ be siblings with a matching-signature pair $\left(\Sigma_{1}, \Sigma_{2}\right)$, and let $M:=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right)$ $=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$. Suppose that M is graphic. Then, there exists a graph G such that $M=\operatorname{cycle}(G)=\operatorname{ecycle}(G, \emptyset)$. Thus, for each $i \in[2],\left(G_{i}, G\right)$ are Shih siblings. Then, we say that $\left(G_{1}, G_{2}\right)$ (and also $\left.\left(G_{2}, G_{1}\right)\right)$ are graphic siblings. Similarly, consider siblings $\left(G_{1}, G_{2}\right)$ with a matching-terminal pair $\left(T_{1}, T_{2}\right)$, and let $M:=\operatorname{ecut}\left(G_{1}, T_{1}\right)=\operatorname{ecut}\left(G_{2}, T_{2}\right)$. Suppose that M is cographic. Then, there exists a graph H such that $M=\operatorname{cut}(G)=\operatorname{ecut}(G, \emptyset)$. Thus, for each $i \in[2],\left(G, G_{i}\right)$ are Shih siblings. Then, we say that $\left(G_{1}, G_{2}\right)$ (and also $\left.\left(G_{2}, G_{1}\right)\right)$ are cographic siblings. This observation reduces Question 1.2.5 to the case when graphs are neither graphic nor cographic siblings.

Question 1.2.8. For siblings $\left(G_{1}, G_{2}\right)$ that are neither graphic nor cographic siblings, describe the relationship between G_{1} and G_{2}.

Recall the example of siblings in Figure 1.6. We will argue that they are neither graphic nor cographic siblings. Consider the induced signed graphs of siblings in Figure 1.6 by edge set $\{1,2,3,4,5,6,10,11,14,15\}$, as illustrated in Figure 1.7. The bold edges represent its signature in Figure 1.7. Note that they are signed-graph representations of $\operatorname{cut}\left(K_{5}\right)$, which is not graphic. Since the class of graphic matroids is minor-closed, siblings in Figure 1.6 are not graphic siblings.

Figure 1.7: Signed-graph representations of $\operatorname{cut}\left(K_{5}\right)$.
Similarly, consider the induced grafts of siblings in Figure 1.6 by edge set $\{1,3,5,8,9,10$, $11,12,15\}$, as illustrated in Figure 1.8. The white vertices represent its terminals in Figure 1.8. Note that they are graft representations of cycle $\left(K_{3,3}\right)$, which is not cographic. Since the class of cographic matroids is minor-closed, siblings in Figure 1.6 are not cographic siblings.

Figure 1.8: Graft representations of $\operatorname{cycle}\left(K_{3,3}\right)$.

A graph is k-connected if it contains at least $(k+1)$ vertices, and it does not contain a set of $(k-1)$ vertices whose removal disconnects the graph. We will prove a theorem in Chapter 2 that gives a partial answer to Question 1.2 .8 by assuming 4 -connectivity of siblings; that is, we solve the following problem:

Question 1.2.9. Let G_{1}, G_{2} be 4-connected graphs such that $\left(G_{1}, G_{2}\right)$ are siblings that are neither graphic nor cographic siblings. Describe the relationship between G_{1} and G_{2}.

1.3 Bounding the number of representations

1.3.1 Signed-graph representations

Note that Theorem 1.1.1 implies that every graphic matroid has a unique equivalence class. Similarly, we wonder if the number of equivalence classes of even-cycle matroids are bounded by a polynomial function of the size of the matroids. However, this is not true, even when the matroid is 3 -connected [30, 40], as we illustrate next.

For a graph G and a subset F of $E(G)$, we denote by $V_{G}(F)$ the set of vertices of the induced graph $G[F]$. Consider a 2-connected graph H with subsets $X_{1} \subset \ldots \subset X_{k} \subset E(H)$ $(k \geq 1)$ where, for all $i \in[k],\left|\partial\left(X_{i}\right)\right|=2$ and, for all distinct $i, j \in[k], \partial\left(X_{i}\right) \cap \partial\left(X_{j}\right)=\emptyset$. Consider distinct vertices $u_{1}, u_{2}, v_{1}, v_{2}$ of H where $u_{1}, u_{2} \in V_{H}\left(X_{1}\right)-\partial\left(X_{1}\right)$ and $v_{1}, v_{2} \in$ $\left.V_{H}\left(E(H)-X_{k}\right)\right)-\partial\left(X_{k}\right)$. Let G be obtained from H by identifying u_{i} and v_{i} for $i \in[2]$. Let $\Sigma=\delta_{H}\left(u_{1}\right) \Delta \delta_{H}\left(u_{2}\right)$. We call the signed graph (G, Σ) obtained from that construction a donut. This construction is illustrated in Figure 1.9(i) for the case $k=3$.

In that example, let $A=X_{1}, B=X_{2}-X_{1}, C=X_{3}-X_{2}$ and $D=E(H)-X_{3}$. The shaded region next to vertices $u_{1}=v_{1}$ and $u_{2}=v_{2}$ of G corresponds to edges in Σ. Let $M=\operatorname{ecycle}(G, \Sigma)$. Let us now show how to construct other donuts that are also signed-graph representations of M. Let $S \subseteq[k]$, and let H^{\prime} be obtained from H by doing a 2-flip on the set X_{i} for each $i \in S$. Let G^{\prime} be obtained from H by identifying for u_{i} and v_{3-i} for $i \in[2]$. Then $\left(G^{\prime}, \Sigma\right)$ is a donut that is also a signed-graph representation of M, i.e., (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ have the same even cycles [40]. This construction is illustrated in

Figure 1.9: Constructing donuts.
Figure 1.9(ii). In this example, we pick $S=\{1,2,3\}$. There are 2^{k} donuts that we can obtain in that way, and they will be pairwise inequivalent for suitable choice of graph H.

Consider a signed-graph (G, Σ). A pair of vertices a, b of G is a blocking pair if every odd polygon of (G, Σ) uses at least one of the vertices a or b. A matroid M is pinch-graphic if there exists a signed-graph representation (G, Σ) of M with a blocking pair. We say that (G, Σ) is a blocking-pair representaion of M. Every graphic matroid is pinch-graphic and every pinch-graphic matroid is an even-cycle matroid. Moreover, the inclusions are strict. For instance, F_{7}^{*} is pinch-graphic but not graphic, and R_{10} is an even-cycle matroid that is not pinch-graphic. We saw that even-cycle matroids are elementary lifts of graphic matroids. Pinch-graphic matroids are also elementary projections of graphic matroids [40], page 30 .

If a signed graph has a blocking pair, then so does every minor. In particular, the
class of pinch-graphic matroids is minor-closed. Observe that all of the donuts defined in Figure 1.9 have a blocking pair. Hence, pinch-graphic matroids can have an exponential number of pairwise inequivalent blocking-pair representations. On the other hand, there is a reasonable bound for even-cycle matroids that are not pinch-graphic as the next result illustrates.

Theorem 1.3.1. There exists a constant c such that every even-cycle matroid that is not pinch-graphic has fewer than c pairwise inequivalent signed-graph representations.

This result will be the basis for the recognition algorithm for even-cycle matroids. We will prove Theorem 1.3.1 in Chapter 3.

1.3.2 Graft representations

In this section, we introduce an example in [30, 40] which is analogous to Figure 1.9 in Section 1.3.1. Consider a graft (G, T) where $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Let P_{1}, \ldots, P_{n} be a partition of $E(G)$ such that, for $i \in[n], \partial_{G}\left(P_{i}\right)=T$. Note that we can construct an example where $n=\mathcal{O}(|E(G)|)$ and $\operatorname{ecut}(G, T)$ is 3-connected. For every $i \in[n]$, let $G_{i}=G\left[P_{i}\right]$. Pick $I \subseteq[n]$ and for every $i \in I$, let G_{i}^{\prime} be a graph constructed from G_{i} by relabelling the terminals in one of three possible ways: (i) interchange the labels of t_{1} and t_{2} and interchange the labels of t_{3} and t_{4}; (ii) interchange the labels of t_{1} and t_{3} and interchange the labels of t_{2} and t_{4}; or (iii) interchange the labels of t_{1} and t_{4} and interchange the labels of t_{2} and t_{3}. Now, let G^{\prime} be obtained by identifying vertices t_{1} (resp. t_{2}, t_{3}, t_{4}) in each of G_{i}^{\prime} for $i \in[n]$. We say that (G, T) and $\left(G^{\prime}, T\right)$ are related by shuffing. We illustrate this in Figure 1.10. It can be readily checked ([40], page 28 and [25]) that ecut $(G, T)=\operatorname{ecut}\left(G^{\prime}, T\right)$. It is now straightforward to see that we can have an exponential number of inequivalent graft representations all related by shuffling.

Figure 1.10: Constructing shuffles.

A matroid M is pinch-cographic if there is a graft representation (G, T) of M where $|T| \leq 4$. We say that (G, T) is a T_{4} representation of the pinch-cographic matroid M. If a graft has at most four terminal vertices, then so does every minor. In particular, the class of pinch-cographic matroids is minor-closed. Observe that for the shuffling operation defined in Figure 1.10, we have four terminals, i.e., a T_{4} representation. Hence, pinch-cographic matroids can have an exponential number of pairwise inequivalent T_{4} representations. On the other hand, as the next result illustrates, there is a reasonable bound for even-cut matroids that are not pinch-cographic.

Theorem 1.3.2. There exists a constant c such that every even-cut matroid that is not pinch-cographic has fewer than c pairwise inequivalent graft representations.

This result will be the basis for the recognition algorithm for even-cut matroids. We will prove Theorem 1.3.2 in Chapter 3.

1.3.3 Blocking-pair representations

In Section 1.3.2, we showed that there exists non-graphic matroids that are 3-connected, that have an exponential number of blocking-pair representaions, and where the graph is 3 -connected for each blocking-pair representaion. Thus, a stronger condition than 3connectivity is critical in the case for pinch-graphic matroids. Recall that a matroid is 3 -connected if it 2-connected and has no 2 -separation. Let $\ell \geq 3$ be an integer, then M is $(4, \ell)$-connected if it is 3-connected and for every 3-separation $X,|X| \leq \ell$ or $|E(M)-X| \leq \ell$. In particular, M is internally 4-connected if it is $(4,3)$-connected. Now, we state a theorem to bound the number of blocking-pair representaions of a pinch-graphic matroid that is not graphic under a connectivity condition.

Theorem 1.3.3. Let M be a pinch-graphic matroid that is not graphic. If M is $(4,5)$ connected, then the number of blocking-pair representations of M is in $\mathcal{O}\left(|E(M)|^{4}\right)$.

We postpone the proof of Theorem 1.3.3 until Chapter 3. Note that we could remove the condition that M be pinch-graphic in the previous result as otherwise the number of blocking-pair representations is 0 and the result trivially holds. We kept the condition to emphasize that this is a result about pinch-graphic matroids.

1.4 Small separations in blocking-pair representations

1.4.1 Separations and sums

In Theorem 1.3.3, we assume $(4,5)$-connectivity of a pinch-graphic matroid. Thus, we need to analyze the structure of 1 -separations, 2 -separations, and proper 3 -separations
in pinch-graphic matroids. A matroid M has a 1 -separation if and only if M can be expressed as a 1-sum, $M_{1} \oplus_{1} M_{2}$. A 2-connected matroid has a 2 -separation if and only if M can be expressed as a 2 -sum, $M_{1} \oplus_{2} M_{2}[1,8,44]$. A 3-connected binary matroid has a proper 3 -separation if and only if it can be expressed as a 3 -sum, $M_{1} \oplus_{3} M_{2}$ where $\left|E\left(M_{i}\right)-E\left(M_{3-i}\right)\right| \geq 4$ for $i \in[2][44]$. (Sums will be formally defined in Section 3.1.3 and Section 4.1.1.)

1.4.2 Reducible separations

Consider a binary matroid M where $M=M_{1} \oplus_{k} M_{2}$ for $k \in[3]$. If M_{1} or M_{2} are graphic, we say that the k-separation $X=E\left(M_{1}\right)-E\left(M_{2}\right)$ of M is reducible. The following result will justify the term:

Proposition 1.4.1. Let $M=M_{1} \oplus_{k} M_{2}$ for $k \in[3]$ where M_{1} is graphic. If $k \in\{2,3\}$, then assume that M is k-connected. Then, M is pinch-graphic if and only if M_{2} is pinch-graphic.

In addition, we have the following useful property,

Proposition 1.4.2. Every 1- and 2-separation of a pinch-graphic matroid is reducible.

Now, suppose that we wish to recognize if a binary matroid M is pinch-graphic. If M has a 1- or 2-separation X, then you may assume it is reducible; otherwise, by Proposition 1.4.2, you can deduce M is not pinch-graphic. Then, for some $k \in[2]$, you can express M as $M_{1} \oplus_{k} M_{2}$ where $X=E\left(M_{1}\right)-E\left(M_{2}\right)$ and M_{i} is graphic for some $i \in[2]$. Finally, because of Proposition 1.4.1, it suffices to check if M_{3-i} is pinch-graphic. This allows you to reduce the recognition problem to 3 -connected matroids.

1.4.3 Irreducible 3-separations

If every proper 3 -separation of a pinch-graphic matroid was reducible, Proposition 1.4.1 would allow you to reduce the recognition problem to internally 4-connected matroids. Alas, it is not true. Consider the signed graphs illustrated in Figure 1.11 (i) and (ii). The shaded

Figure 1.11: Examples of irreducible 3-separations.
region corresponds to edges X. We indicate a signature with all black edges incident to the blocking pair a, b. Then, X is a 3 -separation of the corresponding pinch-graphic matroid, and X is generally not reducible. (i) is an example of a compliant 3 -separation X, and (ii) is an example of a recalcitrant 3 -separation X, defined below.

Given a matroid M and $X \subseteq E(M)$, denote by $\operatorname{cl}_{M}(X)$ the closure of X for matroid M. We denote by M^{*} the dual of M. Let M be a matroid, and let $X \subseteq E(M)$ be a proper 3 -separation. Suppose $|X| \geq 5$ and there exists $e \in X$ with $e \in \operatorname{cl}_{M^{*}}(E(M)-X)$ and $e \in \operatorname{cl}_{M^{*}}(X-e)$ (here, we simply write $X-e$ instead of $\left.X-\{e\}\right)$. Then, observe that $X-e$ is also a proper 3 -separation. We say that $X-e$ is homologous to X and so is any set that is obtained by repeat application of the aforementioned procedure.

Let (G, Σ) be a connected signed-graph and consider $X \subseteq E(G)$. The triple (G, Σ, X) is a Type I or Type II configuration if $|X|,|E(G)-X| \geq 4 ; G[X]$ and $G[E(G)-X]$ are both connected; and $\left|\partial_{G}(X)\right|=2$. We denote the set of interior vertices of X in G by $\mathcal{I}_{G}(X)$. In addition, for Type I, there exists a blocking pair u, v where $u \in \mathcal{I}_{G}(X)$ and
$v \in \mathcal{I}_{G}(E(G)-X)$ and for Type II, $\partial_{G}(X)$ is a blocking pair (see Figure 1.11 (i) for a representation of a Type I configuration and Figure 1.11 (ii) for a representation of a Type II configuration). Consider a pinch-graphic matroid M with a proper 3 -separation X. We say that X is compliant if there exists a representation (G, Σ) for which (G, Σ, X) is a Type I configuration. We say that X is recalcitrant if there exists a representation (G, Σ) for which (G, Σ, X) is a Type II configuration.

Here is the promised characterization, which is proven in Chapter 4.
Proposition 1.4.3. Let M be a 3 -connected pinch-graphic matroid and let X^{\prime} be a proper 3-separation. Then there exists a homologous proper 3-separation X that is reducible, compliant, or recalcitrant.

1.5 Recognition algorithm

1.5.1 Even-cycle and even-cut matroids

Tutte [51] gives a recognition algorithm for graphic matroids (as well as for cographic matroids) when the matroid is given with its binary representation. This algorithm gives a graph representation when the given matroid is graphic. If there was a polynomial-time algorithm to recognize binary matroids for general matroids described by an independence oracle, then we could extend Tutte's algorithm to general matroids. Alas, Seymour([46]) proved that such an algorithm does not exist. In the same paper, he gives a recognition algorithm for graphic matroids described by an independence oracle. For frame matroids, there are analogous results. In [2], it is proven that there is no polynomial-time recognition algorithm for bicircular matroids even if the matrix representation of a matroid is given. In [39], they give two recognition algorithms for binary signed graphic matroids: one for
when a matroid is given by its binary representation, and the other for when a general matroid is described by an independence oracle. Chen and Whittle [6] proved that there is no polynomial-time algorithm to recognize frame and lift matroids described by a rank oracle. The aforementioned classes of lift matroids have not received as much attention. We will present the following algorithms in Chapter 5:
(1) Given a binary matroid M described by its 0,1 matrix representation A, we present an algorithm that will check if M is an even-cycle matroid in time polynomial in the number of entries of A.
(2) Given a binary matroid M described by its 0,1 matrix representation A, we present an algorithm that will check if M is an even-cut matroid in time polynomial in the number of entries of A.

We believe that these algorithms ought to be fast in practice but have not conducted numerical experiments. For both algorithms, the bound on the running time depends on a constant c that arises from the Matroid Minors Project and that has no explicit bound [13]. However, the algorithm does not use the value c for its computation. Rather, these algorithms rely on the existence of a polynomial algorithm to check if a binary matroid is pinch-graphic.

1.5.2 Pinch-graphic matroids

Next, we describe the relation between pinch-graphic and pinch-cographic matroids.

Proposition 1.5.1 ([40], page 26). The dual of a pinch-graphic matroid is a pinch-cographic matroid, and the dual of a pinch-cographic matroid is a pinch-graphic matroid.

If $[I \mid A]$ is a 0,1 matrix representation of a binary matroid, then $\left[A^{\top} \mid I\right]$ is a 0,1 matrix representation of its dual. Thus a polynomial time algorithm to check if a binary matroid is pinch-graphic can be used to check in polynomial time if a binary matroid is pinch-cographic.

We present an algorithm that solves the following problem in Chapter 5,
(1) Given an internally 4-connected binary matroid M, check if M is a pinch-graphic matroid in polynomial time.
(2) Given a binary matroid M, check if M is a pinch-graphic matroid or return an internally 4-connected matroid N that is isomorphic to a minor of M such that M is pinch-graphic if and only if N is pinch-graphic in polynomial time.

By combining algorithms (1) and (2), we get a polynomial algorithm to check if a binary matroid M is pinch-graphic, and therefore, we obtain an algorithm for recognizing even-cycle and even-cut matroids. Namely, we first apply algorithm (2) and establish whether M is pinch-graphic, or we construct the matroid N and use algorithm (1) to determine whether N is pinch-graphic.

For all the aforementioned algorithms, we assume that the matroid M is given in terms of its 0,1 matrix representation A, and, by a polynomial algorithm, we mean an algorithm that runs in time polynomial in the number of entries of A.

1.6 Organization of thesis

In Chapter 2, we state Shih's theorem and aim to prove a theorem to answer Question 1.2.9. In Chapter 3, we will give some bounds for the number of equivalence classes of graphical
representations of even-cycle and even-cut matroids. We also bounds the number of blockingpair representations of a $(4,6)$-connected, pinch-graphic matroid that is not graphic. We will prove Theorems 1.3.1, 1.3.2 and 1.3.3 in Chapter 3. These theorems will be used to construct recognition algorithms in Chapter 5. In Chapter 4, we characterize $1-, 2-$, and proper 3 -separations of pinch-graphic matroids, and then prove Propositions 1.4.1, 1.4.2 and 1.4.3. Furthermore, we characterize compliant and recalcitrant 3-separations. This characterization is essential to reducing the recognition algorithm for pinch-graphic matroids into the $(4,3)$-connected case. In Chapter 5, we will describe details of algorithms to recognize even-cycle and even-cut matroids. As a subroutine, these algorithms use a recognition algorithm for pinch-graphic matroids. In Chapter 6, we discuss other open questions related to graphical representations of even-cycle and even-cut matroids.

Chapter 2

Isomorphism problem

The work in this chapter appears in [23]. Let us recall Theorem 1.1.1 and Question 1.2.1 from Section 1.2.

Theorem 1.1.1. Any two graph representations of a graphic matroid are equivalent.

Note that Theorem 1.1.1 also implies that any two graph representations of a cographic matroid are equivalent since, for a graph $G, \operatorname{cycle}(G)=\operatorname{cut}(G)^{*}$. In this chapter, we are interested in generalizing Theorem 1.1.1 to even-cycle and even-cut matroids, namely, we are interested in the following problems:

Question 1.2.1.

(a) For an even-cycle matroid M, describe the relationship between two signed-graph representations, $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ of M.
(b) For an even-cut matroid M, describe the relationship between two graft representations, $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ of M.

Since ecycle $\left(G_{i}, \Sigma_{i}\right)=\operatorname{cycle}\left(G_{i}\right)$ when $\Sigma_{i}=\emptyset$, Question 1.2.1(a) generalizes the problem of characterizing when two graphs have the same cycles. Similarly, ecut $\left(G_{i}, T_{i}\right)=\operatorname{cut}\left(G_{i}\right)$ when $T_{i}=\emptyset$. Hence, Question 1.2.1(b) generalizes the problem of characterizing when two graphs have the same cuts.

Recall that $\left(G_{1}, G_{2}\right)$ are siblings if they are inequivalent and there exists a matchingsignature pair $\left(\Sigma_{1}, \Sigma_{2}\right)$ and a matching-terminal pair $\left(T_{1}, T_{2}\right)$, that is, ecycle $\left(G_{1}, \Sigma_{1}\right)=$ $\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$ and ecut $\left(G_{1}, T_{1}\right)=\operatorname{ecut}\left(G_{2}, T_{2}\right)$. As seen in Section 1.2.2, the questions in Question 1.2.1 are equivalent to each other when $\left(G_{1}, G_{2}\right)$ are siblings, and therefore, it suffices to describe the relationship between siblings.

In Section 2.1, we review a beautiful result of Shih that solves Question 1.2.1(a) for the case when $\left(G_{1}, G_{2}\right)$ are siblings and $\Sigma_{2}=\emptyset$. Equivalently, it solves Question 1.2.1(b) for the case when $\left(G_{1}, G_{2}\right)$ are siblings and $T_{1}=\emptyset$. In this case, the siblings are called Shih siblings.

The main results of this chapter partially solve Question 1.2.1, namely, when G_{1} and G_{2} are 4-connected. We define operations that preserve even-cycles and operations that preserve even-cuts in Section 2.2. The formal statement will require a number of definitions and will be stated in Section 2.3. The proof of these results appears in Sections 2.4, 2.5 and 2.6.

2.1 Shih's theorem

2.1.1 Constructions

Before we state Shih's theorem, recall that Shih's theorem solves the following problems:

Question 1.2.6. Let G_{1}, G_{2} be graphs where $E\left(G_{1}\right)=E\left(G_{2}\right)$, and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be cycle spaces of G_{1}, G_{2}, respectively. Suppose that

$$
\begin{equation*}
\mathcal{C}_{1} \supseteq \mathcal{C}_{2} \quad \& \quad \operatorname{dim}\left(\mathcal{C}_{1}\right)=\operatorname{dim}\left(\mathcal{C}_{2}\right)+1 . \tag{2.1}
\end{equation*}
$$

Then, describe the relationship between G_{1} and G_{2}.

Next, we see constructions for pairs of graphs $\left(G_{1}, G_{2}\right)$ satisfying (2.1).

Pinching.

Consider a connected graph G_{2} with distinct vertices a and b, and let G_{1} be obtained from G_{2} by identifying vertices a and b. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be the set of cycles of G_{1}, G_{2}, respectively. Then clearly, every cycle of G_{2} is a cycle of G_{1}. Moreover, as $\operatorname{dim}\left(\mathcal{C}_{1}\right)=\left|E\left(G_{1}\right)\right|-\left|V\left(G_{1}\right)\right|+1$ and $\operatorname{dim}\left(\mathcal{C}_{2}\right)=\left|E\left(G_{2}\right)\right|-\left|V\left(G_{2}\right)\right|+1$, we have $\operatorname{dim}\left(\mathcal{C}_{1}\right)=\operatorname{dim}\left(\mathcal{C}_{2}\right)+1$.

Wheel pairs.

Consider graphs R_{1}, \ldots, R_{k} with $k \geq 3$ and distinct vertices $x_{i}, y_{i}, z_{i} \in V\left(R_{i}\right)$ for all $i \in[k]$. Let G_{1} be obtained from R_{1}, \ldots, R_{k} by identifying y_{i}, z_{i+1}, x_{i+2} to a vertex for all $i \in[k]$ (where $k+1=1$ and $k+2=2$). Let G_{2} be obtained from R_{1}, \ldots, R_{k} by identifying z_{1}, \ldots, z_{k} to a vertex and, for all $i \in[k]$, identifying y_{i} and x_{i+1} to a vertex (where $k+1=1$). We say that G_{2} is a wheel and G_{1}, G_{2} is a wheel pair. R_{1}, \ldots, R_{k} are the parts of the wheel G_{2}. Moreover, the wheel pair is proper if we require that for all $i \in[k]$, there exists an $x_{i} y_{i}$-path of $G_{2}\left[R_{i}\right]$ that avoids z_{i}.

The construction is illustrated in Figure 2.1 for the case $k=6$.

Figure 2.1: Wheel pair G_{1}, G_{2} with G_{1} on the left and G_{2} on the right.

Widget pairs.

Consider graphs $R_{1}, R_{2}, R_{3}, R_{4}$ with distinct vertices $x_{i}, y_{i}, z_{i} \in V\left(R_{i}\right)$ for all $i \in[4]$. Let G_{1} be obtained from $R_{1}, R_{2}, R_{3}, R_{4}$ by identifying $y_{1}, z_{2}, x_{3}, x_{4}$, identifying $x_{1}, y_{2}, z_{3}, y_{4}$, and identifying $z_{1}, x_{2}, y_{3}, z_{4}$. Let G_{2} be obtained from $R_{1}, R_{2}, R_{3}, R_{4}$ by identifying z_{1}, z_{2}, z_{3}, identifying y_{1}, x_{2}, y_{4}, identifying y_{2}, x_{3}, z_{4}, and identifying x_{1}, y_{3}, x_{4}. We say that G_{2} is a widget and G_{1}, G_{2} is a widget pair. $R_{1}, R_{2}, R_{3}, R_{4}$ are the parts of the widget G_{2}. Moreover, the widget pair is proper if it is not a wheel pair. The construction is illustrated in Figure 2.2.

Figure 2.2: Widget pair G_{1}, G_{2} with G_{1} on the left and G_{2} on the right.

2.1.2 The characterization

We are now ready to state Shih's Theorem,
Theorem 2.1.1 (Theorem 1, Chapter 2 in [47], Theorem 3 in [11]). Let G_{1}, G_{2} be siblings satisfying (2.1). Then there exist G_{1}^{\prime} equivalent to G_{1} and G_{2}^{\prime} equivalent to G_{2} such that
(a) G_{1}^{\prime} is obtained from G_{2}^{\prime} by identifying two distinct vertices;
(b) $G_{1}^{\prime}, G_{2}^{\prime}$ is a proper wheel pair; or
(c) $G_{1}^{\prime}, G_{2}^{\prime}$ is a proper widget pair.

2.2 Moves

2.2.1 Folding and unfolding

Let (G, Σ) be a signed graph. Recall that $v, w \in V(G)$ is a blocking pair if every odd cycle of (G, Σ) uses at least one of v or w. Equivalently, v, w is a blocking pair if there exists a signature Γ such that every edge of Γ has at least one end in $\{v, w\}$ [29]. Consider a graft (H, T) with terminals $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Let G be obtained from H by identifying vertices t_{1} and t_{2} and by identifying vertices t_{3} and t_{4}. Denote by a the vertex of G corresponding to $t_{1}=t_{2}$ and by b the vertex of G corresponding to $t_{3}=t_{4}$. Let $\Sigma=\delta_{H}\left(t_{1}\right) \Delta \delta_{H}\left(t_{3}\right)$. Then (G, Σ) is a signed graph with blocking pair a, b. We say that (G, Σ) is obtained from (H, T) by folding and that (H, T) is obtained from (G, Σ) by unfolding. When unfolding, even edges with both ends in a, b can be chosen to have ends t_{1}, t_{3} or t_{2}, t_{4}; and odd edges with both ends in a, b can be chosen to have ends t_{1}, t_{4} or t_{2}, t_{3}. The construction is illustrated in Figure 2.3. The shaded regions represent the signature in Figure 2.3.

Figure 2.3: Folding and unfolding.

Proposition 2.2.1 (page 26, [40]). Let (G, Σ) be a signed graph with a blocking pair and let (H, T) be obtained from (G, Σ) by unfolding. Then ecycle $(G, \Sigma)=\operatorname{ecut}(H, T)^{*}$.

2.2.2 Two operations

We now leverage Proposition 2.2.1 to construct operations that preserve even-cycles in signed graphs and that preserve even-cuts in grafts.

BP-moves

Consider a signed graph (G, Σ) that has a blocking pair u, w. There exists a signature Γ where all edges of Γ have at least one end in $\{u, w\}$. Denote by (H, T) a graft obtained from (G, Σ) by unfolding. Let $\left(H^{\prime}, T^{\prime}\right)$ be a graft equivalent to (H, T) (see Section 1.2.1). Suppose $\left|T^{\prime}\right|=4$ and let $\left(G^{\prime}, \Sigma^{\prime}\right)$ be obtained from $\left(H^{\prime}, T^{\prime}\right)$ by folding. Then $\left(G^{\prime}, \Sigma^{\prime}\right)$ is obtained from (G, Σ) by a $B P$-move (short for blocking-pair-move). We say that siblings $\left(G_{1}, G_{2}\right)$ are blocking-pair siblings if there exist a matching-signature pair $\left(\Sigma_{1}, \Sigma_{2}\right)$ such that $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ are related by a BP-move.

Next, we observe that BP-moves preserve even-cycles.

Proposition 2.2.2. If $\left(G^{\prime}, \Sigma^{\prime}\right)$ is obtained from (G, Σ) by a BP-move then ecycle $\left(G^{\prime}, \Sigma^{\prime}\right)=$ ecycle (G, Σ).

Proof. In the aforementioned construction, Proposition 2.2.1 implies that ecycle $(G, \Sigma)=$ $\operatorname{ecut}(H, T)^{*}$ and $\operatorname{ecycle}\left(G^{\prime}, \Sigma^{\prime}\right)=\operatorname{ecut}\left(H^{\prime}, T^{\prime}\right)^{*}$. Moreover, by Remark 1.2.3, ecut $(H, T)=$ $\operatorname{ecut}\left(H^{\prime}, T^{\prime}\right)$. Thus, ecycle $(G, \Sigma)=\operatorname{ecycle}\left(G^{\prime}, \Sigma^{\prime}\right)$, as required.

T_{4}-moves

Consider a graft (H, T) where $|T|=4$. Denote by (G, Σ) a signed graph obtained from (H, T) by folding. Let $\left(G^{\prime}, \Sigma^{\prime}\right)$ be a signed graph equivalent to (G, Σ) (see Section 1.2.1). Suppose that $\left(G^{\prime}, \Sigma^{\prime}\right)$ has a blocking pair a, b and that all odd edges are incident to at least one of $\{a, b\}$. Let $\left(H^{\prime}, T^{\prime}\right)$ be a graft obtained from $\left(G^{\prime}, \Sigma^{\prime}\right)$ by unfolding. Then we say that (H^{\prime}, T^{\prime}) is obtained from (H, T) by a T_{4}-move. We say that siblings $\left(H_{1}, H_{2}\right)$ are T_{4} siblings if there exist a matching-terminal pair $\left(T_{1}, T_{2}\right)$ such that $\left(H_{1}, T_{1}\right)$ and $\left(H_{2}, T_{2}\right)$ are related by a T_{4}-move.

Next, we observe that T_{4}-moves preserve even-cuts.

Proposition 2.2.3. If $\left(H^{\prime}, T^{\prime}\right)$ is obtained from (H, T) by a T_{4}-move then ecut $\left(H^{\prime}, T^{\prime}\right)=$ $\operatorname{ecut}(H, T)$.

Proof. In the aforementioned construction, Proposition 2.2.1 implies that ecut $(H, T)=$ $\operatorname{ecycle}(G, \Sigma)^{*}$ and $\operatorname{ecut}\left(H^{\prime}, T^{\prime}\right)=\operatorname{ecycle}\left(G^{\prime}, \Sigma^{\prime}\right)^{*}$. Moreover, by Remark 1.2.2, ecycle $(G, \Sigma)=$ $\operatorname{ecut}\left(G^{\prime}, \Sigma^{\prime}\right)$. Thus, ecut $\left(H^{\prime}, T^{\prime}\right)=\operatorname{ecut}(H, T)$, as required.

2.3 Main results

2.3.1 A first characterization

Recall Question 1.2.8 from Section 1.2.4. In this section, we characterize such siblings under suitable connectivity assumptions.

Question 1.2.8. For siblings $\left(G_{1}, G_{2}\right)$ that are neither graphic nor cographic siblings, describe the relationship between G_{1} and G_{2}.

We say that siblings $\left(G_{1}, G_{2}\right)$ are 4 -connected if both G_{1} and G_{2} are 4-connected. Here is our first main result:

Theorem 2.3.1. Let $\left(G_{1}, G_{2}\right)$ be 4-connected siblings that are neither graphic nor cographic. Denote by $\left(\Sigma_{1}, \Sigma_{2}\right)$ the matching-signature pair and denote by $\left(T_{1}, T_{2}\right)$ the matching-terminal pair. Then, one of the following holds:
(a) si $\left(G_{1}\right)$ and si $\left(G_{2}\right)$ are isomorphic to subgraphs of K_{6};
(b) $\left(G_{1}, G_{2}\right)$ are blocking-pair siblings;
(c) $\left(G_{1}, G_{2}\right)$ are T_{4} siblings; or
(d) there exists $i \in[2]$ (say $i=1$) and a graph G_{1}^{\prime} such that $\left(G_{1}, G_{1}^{\prime}\right)$ are blocking-pair siblings and $\left(G_{1}^{\prime}, G_{2}\right)$ are cographic siblings.

Here $s i\left(G_{i}\right)$ denotes the graph obtained from G_{i} by replacing each parallel class by a single edge. Observe that the condition that G_{1}, G_{2} not be both isomorphic to a subgraph of K_{6} is necessary because of the example in Figure 1.6. Indeed, for that example, neither $\left(G_{1}, \Sigma_{1}\right)$
nor $\left(G_{2}, \Sigma_{2}\right)$ has a blocking pair, so in particular, no BP-move is possible. Moreover, in that example, $\left|T_{1}\right|=\left|T_{2}\right|=6$, so in particular, no T_{4}-move is possible. In the next section, we will state a more refined version of Theorem 2.3.1 and show how it implies this result.

2.3.2 A second characterization

Before we proceed, we need to introduce a key idea. Let G_{1} and G_{2} be graphs where $E\left(G_{1}\right)=E\left(G_{2}\right)=E$. For a subset F of E where $|F| \geq 2$, we say that F is a pseudo-path of pair $\left(G_{1}, G_{2}\right)$ if $\left|V_{o d d}\left(G_{i}[F]\right)\right| \leq 2$ for $i \in[2]$. We say that $\left(G_{1}, G_{2}\right)$ is closed if, for each pseudo-path F of $\left(G_{1}, G_{2}\right)$, either
(a) F is a cycle in both G_{1} and G_{2}; or
(b) there exists an edge $e_{F} \in E$ such that $F \cup\left\{e_{F}\right\}$ is a cycle of both G_{1} and G_{2}.

Proposition 2.3.2. Let $\left(G_{1}, G_{2}\right)$ be siblings that are not closed. Then, there exists a pair of graphs $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ where $E\left(G_{1}^{\prime}\right)=E\left(G_{2}^{\prime}\right)$ such that
(a) $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ are siblings;
(b) for $i \in[2], V\left(G_{i}\right)=V\left(G_{i}^{\prime}\right)$; and
(c) there exists an edge $e \in E\left(G_{1}^{\prime}\right)-E\left(G_{1}\right)$ such that, for $i \in[2], G_{i}^{\prime} \backslash e=G_{i}$.
(d) G_{1}^{\prime} and G_{2}^{\prime} have no common cycle C of size at most 2 that contains e.

Proof. Let $\left(\Sigma_{1}, \Sigma_{2}\right)$ be the matching-signature pair for $\left(G_{1}, G_{2}\right)$. Since $\left(G_{1}, G_{2}\right)$ are not closed, there exists a pseudo-path F of $\left(G_{1}, G_{2}\right)$ such that F is not a cycle in at least one of G_{1} and G_{2}, and, for any edge $f \in E\left(G_{1}\right), F \cup\{f\}$ is not a cycle in at least one
of G_{1} and G_{2}. For $i \in[2]$, construct G_{i}^{\prime} as follows: if $\left|V_{\text {odd }}\left(G_{i}[F]\right)\right|=2$, then add an edge e joining two odd-degree vertices of G_{i}, and add a loop e otherwise. Note that $E\left(G_{1}^{\prime}\right)=E\left(G_{1}\right) \cup\{e\}$, and $F \cup\{e\}$ is a cycle in both G_{1} and G_{2}. By the construction, (b) and (c) hold. For (a), we define Σ_{i}^{\prime} for $i \in[2]$ as follows: if $\left|F \cap \Sigma_{i}\right|$ is odd, then let $\Sigma_{i}^{\prime}=\Sigma_{i} \cup\{e\}$, and let $\Sigma_{i}^{\prime}=\Sigma_{i}$ otherwise. Then, by construction, $\left|(F \cup\{e\}) \cap \Sigma_{i}^{\prime}\right|$ is even. Since ecycle $\left(G_{1}, \Sigma_{1}\right)=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$ and $(F \cup\{e\}) \cap\{e\}$ is an even in both $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$, $\operatorname{ecycle}\left(G_{1}^{\prime}, \Sigma_{1}^{\prime}\right)=\operatorname{ecycle}\left(G_{2}^{\prime}, \Sigma_{2}^{\prime}\right)$, in particular, $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ are siblings. For (d), let C be a common cycle of G_{1}^{\prime} and G_{2}^{\prime} such that $e \in C$ and $|C| \leq 2$. Note that $C \neq\{e\}$; otherwise, F is a cycle in both G_{1}, G_{2}, giving a contradiction. Suppose by contradiction that $C=\{e, f\}$ for some edge $f \in E\left(G_{1}\right)$. Then, $F \cup\{f\}$ is a cycle in both G_{1}, G_{2}, giving a contradiction as well.

It follows from the previous result that, for any siblings $\left(G_{1}, G_{2}\right)$, there exists closed siblings $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ where, for $i \in[2], G_{i}$ is a subgraph of G_{i}^{\prime}. Thus it will suffice to characterize closed siblings. By an adjacent blocking pair v, w, we mean a blocking pair v, w where v, w are joined by an edge. Here is our second main result,

Theorem 2.3.3. Let $\left(G_{1}, G_{2}\right)$ be 4-connected, closed siblings that are neither graphic nor cographic. Denote by $\left(\Sigma_{1}, \Sigma_{2}\right)$ the matching-signature pair and denote by $\left(T_{1}, T_{2}\right)$ the matching-terminal pair. Then one of the following holds:
(a) si $\left(G_{1}\right)$ and si $\left(G_{2}\right)$ are isomorphic to K_{6};
(b) $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ are blocking-pair siblings;
(c) $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ are T_{4} siblings; or
(d) for some $i \in[2],\left(G_{i}, \Sigma_{i}\right)$ has an adjacent blocking pair.

Theorem 2.3.3 was originally proved by B. Guenin and I. Pivotto in [24], which is not published. In the following sections, we will see a much shorter and accessible proof. For both Theorem 2.3.1 and Theorem 2.3.3, we impose the condition that the siblings be 4-connected.

2.3.3 Reduction

We will show that Theorem 2.3.3 implies Theorem 2.3.1. First we require the following:

Theorem 2.3.4 ([26] Theorem 6). Let $\left(G_{1}, G_{2}\right)$ be siblings with a matching-signature pair $\left(\Sigma_{1}, \Sigma_{2}\right)$ and a matching-terminal pair $\left(T_{1}, T_{2}\right)$.
(a) If D is a an odd cut of $\left(G_{1}, T_{1}\right)$, then D is a signature of $\left(G_{2}, \Sigma_{2}\right)$.
(b) If C is an odd cycle of $\left(G_{1}, \Sigma_{1}\right)$, then C is a T_{2}-join of $\left(G_{2}, T_{2}\right)$.

Consider for example the siblings $\left(G_{1}, G_{2}\right)$ in Figure 1.6 where G_{1} is the graph on the left and G_{2} the graph on the right. The thick edges denote the matching-signature pair (Σ_{1}, Σ_{2}) and the matching-signature pair $\left(T_{1}, T_{2}\right)$ is the set of all vertices of G_{1} and G_{2}, respectively. Let u denote the shaded vertex in G_{1}. Since $u \in T_{1}, \delta_{G_{1}}(u)=\{1,2,3,4,5\}$ is an odd cut of $\left(G_{1}, T_{1}\right)$, hence a signature of $\left(G_{2}, \Sigma_{2}\right)$. Since $C=\{3,4,10\}$ is an odd cycle of $\left(G_{1}, \Sigma_{1}\right), C$ is a T_{2}-join of G_{2}.

Remark 2.3.5. Let $\left(G_{1}, G_{2}\right)$ be siblings with matching-terminal pairs $\left(T_{1}, T_{2}\right)$. If $\left|T_{1}\right| \leq 2$ or $\left|T_{2}\right| \leq 2$, then $\left(G_{1}, G_{2}\right)$ is cographic.

Proof. We may assume $\left|T_{1}\right| \leq 2$. If $T_{1}=\emptyset$ then let $H=G_{1}$ and if $\left|T_{1}\right|=2$ let H be obtained from G_{1} by identifying the vertices in T_{1}. In both cases, $\operatorname{cut}(H)=\operatorname{ecut}\left(G_{1}, T_{1}\right)$.

Proof of Theorem 2.3.1 (assuming Theorem 2.3.3). By Proposition 2.3.2, there exist closed siblings $\left(\hat{G}_{1}, \hat{G}_{2}\right)$ such that, for $i \in[2], G_{i}$ is a subgraph of \hat{G}_{i}. As $\left(G_{1}, G_{2}\right)$ are 4-connected, so are $\left(\hat{G}_{1}, \hat{G}_{2}\right)$ by Proposition 2.3.2 (b). Furthermore, as $\left(G_{1}, G_{2}\right)$ are neither graphic nor cographic siblings, neither are $\left(\hat{G}_{1}, \hat{G}_{2}\right)$. Denote by $\left(\hat{\Sigma}_{1}, \hat{\Sigma}_{2}\right)$ the matching-signature pair of $\left(\hat{G}_{1}, \hat{G}_{2}\right)$. Note that $\left(T_{1}, T_{2}\right)$ is the matching-terminal pair for $\left(\hat{G}_{1}, \hat{G}_{2}\right)$. We can apply Theorem 2.3.3 to siblings $\left(\hat{G}_{1}, \hat{G}_{2}\right)$. Let us review each of possible outcomes (a)-(d). For (a), each of $s i\left(G_{1}\right)$ and $s i\left(G_{2}\right)$ is isomorphic to subgraphs of K_{6}. Note that (b) and (c) are also outcomes of Theorem 2.3.1. Thus, it suffices to consider outcome (d), and we may assume it is neither outcome (a),(b), nor (c). After possibly interchanging the role of \hat{G}_{1} and \hat{G}_{2} we may assume that $\left(\hat{G}_{1}, \hat{\Sigma}_{1}\right)$ has an adjacent blocking pair u, w. After possibly re-signing, we may assume that edges of $\hat{\Sigma}_{1}$ are incident to at least one of $\{u, w\}$ and that there exists an edge $f=(u, w) \in \hat{\Sigma}_{1}$. Let (H, T) be obtained from $\left(\hat{G}_{1}, \hat{\Sigma}_{1}\right)$ by unfolding where $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ and $f=\left(t_{1}, t_{2}\right)$. Let $\left(\hat{G}_{1}^{\prime}, \hat{\Sigma}_{1}^{\prime}\right)$ be obtained by folding (H, T) so that we have blocking pair a, b where $a=t_{1}=t_{2}$. Then f is an odd loop of $\left(\hat{G}_{1}^{\prime}, \hat{\Sigma}_{1}^{\prime}\right)$. Since it is not outcome (b), $\left(\hat{G}^{\prime}{ }_{1}, \hat{G}_{2}\right)$ are siblings. Let $\left(R_{1}, R_{2}\right)$ be the matching-terminal pair for $\left(\hat{G}^{\prime}{ }_{1}, \hat{G}_{2}\right)$. Since f is an odd loop, Theorem 2.3.4 implies $\left|R_{2}\right|=2$. By Remark 2.3.5, $\hat{G}_{1}^{\prime}, \hat{G}_{2}$ are cographic siblings. Let $B=E\left(\hat{G}_{i}\right)-E\left(G_{i}\right)$ and $G_{1}^{\prime}=\hat{G}_{1}^{\prime} \backslash B$. Then, $\left(G_{1}, G_{1}^{\prime}\right)$ are blocking-pair siblings, and $\left(G_{1}^{\prime}, G_{2}\right)$ are cographic siblings, as required.

2.4 Counterexamples

We say that $\left(G_{1}, G_{2}\right)$ are counterexamples if $\left(G_{1}, G_{2}\right)$ are 4 -connected, closed siblings that are neither graphic nor cographic, but none of outcomes (a)-(d) of Theorem 2.3.3 hold.

2.4.1 Properties of counterexamples

Let e, f be parallel edges in a signed graph (G, Σ). We say that $\{e, f\}$ is a diamond of (G, Σ) if exactly one of e, f is in Σ. A signed graph (G, Σ) is simple if G is loopless and, for every pair of parallel edges e and $f,\{e, f\}$ is a diamond.

Proposition 2.4.1. If there exists a counterexample then there exists a counterexample G_{1}, G_{2} with matching-signature pair Σ_{1}, Σ_{2} with the property that for $i \in[2],\left(G_{i}, \Sigma_{i}\right)$ is simple.

Proof. We may assume that we picked G_{1} and G_{2} to be a counterexample with as few edges as possible. Let $\left(T_{1}, T_{2}\right)$ be the matching-terminal pair for $\left(G_{1}, G_{2}\right)$. Suppose that, for some $i \in[2]$ (say $i=1),\left(G_{1}, \Sigma_{1}\right)$ is not simple. Then, either G_{1} has a loop e or G_{1} has parallel edges e, f that form an even cycle of $\left(G_{1}, \Sigma_{1}\right)$. First, suppose G_{1} has a loop e. Then, $e \notin \Sigma_{1}$; otherwise, by Theorem 2.3.4, $\left|T_{2}\right|=2$, giving a contradiction. Then, $\left(G_{1} \backslash e, G_{2} \backslash e\right)$ are also counterexamples. Now, suppose that G_{1} has parallel edges e, f that form an even cycle of $\left(G_{1}, \Sigma_{1}\right)$. It follows that $\{e, f\}$ is an even cycle of $\left(G_{2}, \Sigma_{2}\right)$. Moreover, as e is not a loop, e, f are parallel edges of G_{2} and $G_{1} \backslash e, G_{2} \backslash e$ are also counterexamples. In either case, there exists a counterexample with a fewer number of edges, giving a contradiction.

Let (G, Σ) be a signed graph. We say that $v \in V(G)$ is a blocking vertex if every odd polygon of (G, Σ) uses v. Equivalently, v is a blocking vertex if there exists a signature Γ such that every edge of Γ is incident to v [29].

Remark 2.4.2 ([27], Lemma 6). If an even-cycle matroid has a representation with a blocking vertex, then it is graphic.

Proposition 2.4.3. Let G_{1}, G_{2} be a counterexample with matching-signature pair Σ_{1}, Σ_{2} and matching-terminal pair T_{1}, T_{2}. Then for $i \in[2]$,
(a) $\left(G_{i}, \Sigma_{i}\right)$ has no blocking vertex,
(b) $\left|T_{i}\right| \geq 4$.

Proof. Note that (b) follows from Remark 2.3.5. For (a), we may assume $i=1$. If $\left(G_{1}, \Sigma_{1}\right)$ has a blocking vertex v, then Remark 2.4.2 implies that ecycle $\left(G_{1}, \Sigma_{1}\right)$ is graphic, contradicting that $\left(G_{1}, G_{2}\right)$ are not graphic.

The following is an immediate consequence of Theorem 1.1.1 and Remark 1.2.2:

Remark 2.4.4. Let (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ be signed-graph representations of the same evencycle matroid. Let $C \subseteq E(G)$ be an odd cycle of both (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$. Then, (G, Σ) and ($G^{\prime}, \Sigma^{\prime}$) are equivalent.

Proposition 2.4.5. Let $\left(G_{1}, G_{2}\right)$ be a counterexample with a matching-terminal pair $\left(T_{1}, T_{2}\right)$. If $\left|T_{1}\right|=\left|T_{2}\right|=4$, then no edge of G_{1} has both ends in T_{i} for all $i \in[2]$.

Proof. Suppose for a contradiction that we have edge $f \in E\left(G_{1}\right)$ such that $f=\left(t_{i}, t_{i}^{\prime}\right)$ where $t_{i}, t_{i}^{\prime} \in T_{i}$ for all $i \in[2]$. Then, for each $i \in[2]$, let $\left(H_{i}, \Gamma_{i}\right)$ be obtained from $\left(G_{i}, T_{i}\right)$ by folding so that $t_{i}=t_{i}^{\prime}$ in H_{i}. By Proposition 2.2.1,

$$
\operatorname{ecycle}\left(H_{1}, \Gamma_{1}\right)=\operatorname{ecut}\left(G_{1}, T_{1}\right)^{*}=\operatorname{ecut}\left(G_{2}, T_{2}\right)^{*}=\operatorname{ecycle}\left(H_{2}, \Gamma_{2}\right)
$$

Moreover, by construction, f is an odd loop of $\left(H_{1}, \Gamma_{1}\right)$ and $\left(H_{2}, \Gamma_{2}\right)$. By Remark 2.4.4, $\left(H_{1}, \Gamma_{1}\right)$ and $\left(H_{1}, \Gamma_{2}\right)$ are equivalent. But then, $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ are related by a T_{4}-move, contradicting that $\left(G_{1}, G_{2}\right)$ are not T_{4} siblings.

The following is an immediate consequence of Theorem 1.1.1 and Remark 1.2.3:

Remark 2.4.6. Let (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ be graft representations of the same even-cut matroid. Let $D \subseteq E(G)$ be an odd cut of both (G, T) and $\left(G^{\prime}, T^{\prime}\right)$. Then, (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ are equivalent.

Proposition 2.4.7. Let $\left(G_{1}, G_{2}\right)$ be a counterexample with a matching-signature pair $\left(\Sigma_{1}, \Sigma_{2}\right)$. Suppose, for $i \in[2]$, we have vertices u_{i}, w_{i} of G_{i} such that all edges of Σ_{i} are incident to at least one of u_{i}, w_{i}. Then, $\delta_{G_{1}}\left(u_{1}\right) \cap \Sigma_{1} \neq \delta_{G_{2}}\left(u_{2}\right) \cap \Sigma_{2}$.

Proof. Suppose that, for contradiction, we have $B:=\delta_{G_{1}}\left(u_{1}\right) \cap \Sigma_{1}=\delta_{G_{2}}\left(u_{2}\right) \cap \Sigma_{2}$. Observe that for $i \in[2], u_{i}, w_{i}$ is a blocking pair of $\left(G_{i}, \Sigma_{i}\right)$. Since G_{1}, G_{2} is a counterexample, u_{i}, w_{i} are non-adjacent. For $i \in[2]$, let $\left(H_{i}, R_{i}\right)$ be obtained from $\left(G_{i}, \Sigma_{i}\right)$ by unfolding. By Proposition 2.2.1,

$$
\operatorname{ecut}\left(H_{1}, R_{1}\right)=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right)^{*}=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)^{*}=\operatorname{ecut}\left(H_{2}, T_{2}\right)
$$

Moreover, by construction B is an odd cut of $\left(H_{1}, R_{1}\right)$ and $\left(H_{2}, R_{2}\right)$. By Remark 2.4.6, $\left(H_{1}, R_{1}\right)$ and $\left(H_{2}, R_{2}\right)$ are equivalent. But then, $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ are related by a BP-move, contradicting that $\left(G_{1}, G_{2}\right)$ are not blocking-pair siblings.

Proposition 2.4.8. Let $\left(G_{1}, G_{2}\right)$ be counterexamples with a matching-signature pair $\left(\Sigma_{1}, \Sigma_{2}\right)$ and matching-terminal pair $\left(T_{1}, T_{2}\right)$ where $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ are simple. Then, the following hold for $i \in[2]$,
(a) If $\left(G_{i}, \Sigma_{i}\right)$ has a diamond $\{e, f\}$, then $\{e, f\}$ is a matching of G_{3-i} covering T_{3-i}.
(b) If $\left|T_{i}\right|=4$, then there is no diamond of $\left(G_{i}, \Sigma_{i}\right)$ with both ends in T_{i}.
(c) $\left(G_{i}, \Sigma_{i}\right)$ has at most 3 distinct diamonds.
(d) If $\left|T_{1}\right| \leq\left|T_{2}\right|$, then there exists $v \in T_{1}$ not incident to a diamond.

Proof. For (a), since $\{e, f\}$ is an odd cycle of $\left(G_{i}, \Sigma_{i}\right)$, it is a T_{3-i}-join of G_{3-i} by Theorem 2.3.4. Moreover, $\left|T_{3-i}\right|=4$ by Proposition 2.4.3(b). For (b), suppose for a contradiction that there is a diamond $\{e, f\}$ with both ends in T_{i}. By (a), $\left|T_{3-i}\right|=4$ and the ends of e are in T_{3-i}. But this contradicts Proposition 2.4.5. For (c), suppose for a contradiction that we have, for $j \in[4]$, disjoint diamonds e_{j}, f_{j} of $\left(G_{i}, T_{i}\right)$. By (a), e_{j}, f_{j} are matchings of G_{3-i} with ends in T_{3-i}. It follows that two edges, say $e_{j}, e_{j^{\prime}}$ of these matching are parallel in G_{2}. Since $\left(G_{3-i}, \Sigma_{3-i}\right)$ is simple, $e_{j}, e_{j^{\prime}}$ is a diamond of $\left(G_{2}, \Sigma_{2}\right)$, contradicting (b). For (d), assume $\left|T_{1}\right| \leq\left|T_{2}\right|$. By Proposition 2.4.3(b), we have $\left|T_{i}\right| \geq 4$ for $i \in[2]$. We may assume $\left(G_{1}, \Sigma_{1}\right)$ has a diamond. Thus, by (a), we have $\left|T_{2}\right|=4$ and in particular $\left|T_{1}\right|=4$. Suppose for a contradiction for every vertex v of T_{1} we have diamond e_{v}, f_{v} incident to v. It follows from (c) that two of these diamonds are the same, contradicting (b).

2.4.2 Deleting a terminal

To keep the notation light, throughout the remainder of the paper we will use the following assumptions:
(h1) $\left(G_{1}, G_{2}\right)$ is a counterexample;
(h2) $\left(\Sigma_{1}, \Sigma_{2}\right)$ is the matching-signature pair for $\left(G_{1}, G_{2}\right)$;
(h3) $\left(T_{1}, T_{2}\right)$ is the matching-terminal pair for $\left(G_{1}, G_{2}\right)$ where $\left|T_{1}\right| \leq\left|T_{2}\right|$;
(h4) $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ are simple;
(h5) Let $\hat{v} \in T_{1}$ that is incident to no diamond, and, subject to that, the degree of \hat{v} is minimized.
(h6) $A:=\delta_{G_{1}}(\hat{v})$ and for $i \in[2], H_{i}:=G_{i} \backslash A$.
Note that if we have a counterexample then by Proposition 2.4.1 we can assume (h4). The existence of \hat{v} in (h5) is guaranteed by Proposition 2.4.8. Note that H_{1} is obtained from G_{1} by deleting terminal \hat{v}. Next we identify key properties of H_{1}, H_{2}.

Proposition 2.4.9. Assume (h1)-(h6). Then,
(a) $\left(H_{1}, H_{2}\right)$ are closed siblings;
(b) $\left(H_{1}, H_{2}\right)$ have matching-signature pair $\left(\Sigma_{1}-A, \emptyset\right)$; and
(c) $\left(H_{1}, H_{2}\right)$ have matching-terminal pair $\left(\emptyset, T_{2}\right)$.

Proof. Since $\left(G_{1}, G_{2}\right)$ are counterexamples, they are not cographic siblings, in particular, $T_{1}, T_{2} \neq \emptyset$. Note that A is an odd cut of $\left(G_{1}, T_{1}\right)$, but observe that A does not contain an odd cut A^{\prime} of $\left(G_{2}, T_{2}\right)$; otherwise, by Theorem 2.3.4, A^{\prime} would be a signature of $\left(G_{1}, \Sigma_{1}\right)$, and, in particular, \hat{v} would be a blocking vertex, contradicting Proposition 2.4.3. Note that $\operatorname{ecut}\left(G_{1}, T_{1}\right) / A=\operatorname{cut}\left(G_{1} \backslash A\right)$ and $\operatorname{ecut}\left(G_{2}, T_{2}\right) / A=\operatorname{ecut}\left(G_{2} \backslash A, T_{2}\right)$ (see Section 1.1.3). Since $\operatorname{ecut}\left(G_{1}, T_{1}\right)=\operatorname{ecut}\left(G_{2}, T_{2}\right)$, we have cut $\left(H_{1}\right)=\operatorname{ecut}\left(H_{2}, T_{2}\right)$. As $T_{2} \neq \emptyset,\left(H_{1}, H_{2}\right)$ are cographic siblings with the matching-terminal pair $\left(\emptyset, T_{2}\right)$. Hence, (c) holds. To show (a), it remains to prove that $\left(H_{1}, H_{2}\right)$ are closed. Suppose otherwise. Then, there exists a pseudo-path F of $\left(H_{1}, H_{2}\right)$ such that (i) F is not a cycle in one of H_{1} and H_{2}, and, (ii) for any edge $f \in E\left(H_{1}\right), F \cup\{f\}$ is not a cycle in one of H_{1} and H_{2}. Since $\left(G_{1}, G_{2}\right)$ is closed, there exists an edge $e \in E\left(G_{1}\right)$ such that $F \cup\{e\}$ is a cycle in both G_{1} and G_{2}. Thus, $e \notin E\left(H_{1}\right)$ and $e \in A$. This contradicts that no edge of F is incident with \hat{v}. By Theorem 2.3.4, A is a signature of $\left(G_{2}, \Sigma_{2}\right)$. Thus, ecycle $\left(G_{1}, \Sigma_{1}\right)=\operatorname{ecycle}\left(G_{2}, A\right)$. Then, $\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right) \backslash A=\operatorname{ecycle}\left(G_{1} \backslash A, \Sigma_{1}-A\right)$ and $\operatorname{ecycle}\left(G_{2}, A\right) \backslash A=\operatorname{ecycle}\left(G_{2} \backslash A, \emptyset\right)$ (see Section 1.1.3). Hence, $\operatorname{ecycle}\left(H_{1}, \Sigma_{1}-A\right)=\operatorname{ecycle}\left(H_{2}, \emptyset\right)$ which implies (b).

2.4.3 Mates

In a connected graph G, a cut B of G determines the shore of the cut uniquely up to complementation, i.e. if we have $\delta(U)=\delta(W)$ then $U=W$ or $U=V(G)-W$.

Proposition 2.4.10. Let G be a graph with a cut B and let H be a connected spanning subgraph of G. If $\delta_{H}(U)=B \cap E(H)$ then $\delta_{G}(U)=B$.

Proof. Since B is a cut of $G, B=\delta_{G}(W)$ for some $W \subseteq E(G)$. It follows that, $B \cap E(H)=$ $\delta_{H}(W)$. Since the cut $B \cap E(H)$ of H determines the shore of the cut uniquely, up to complementation, $U=W$ or $U=V(H)-W=V(G)-W$. Hence, $\delta_{G}(U)=\delta_{G}(W)=B$ as required.

Proposition 2.4.11. Assume (h1)-(h6) and let $B \subseteq A$ be a cut of G_{1}. Then,
(a) if B is an even cut of $\left(G_{1}, T_{1}\right)$, then $B=\emptyset$; and
(b) if B is an odd cut of $\left(G_{1}, T_{1}\right)$, then $B=A$.

Proof. Let $G=G_{1} \backslash(A-B)$. Consider first the case where $B \neq \emptyset$. Then as H_{1} is connected, so is G. By construction, we have $\delta_{G}(\hat{v})=B=B \cap E(G)$. Then, it follows by Proposition 2.4.10 that $\delta_{G_{1}}(\hat{v})=B$. But, $A=\delta_{G_{1}}(\hat{v})$ by definition, so we proved that if $B \neq \emptyset$, then $B=A$. If B is an even cut of $\left(G_{1}, T_{1}\right)$, then $B=\emptyset$ for otherwise $B=A$ but A is an odd cut of $\left(G_{1}, T_{1}\right)$. If B is an odd cut of $\left(G_{1}, T_{1}\right)$, then clearly $B \neq \emptyset$ and then $B=A$.

Consider H_{1}, H_{2} as defined in (h1)-(h6) and let $U_{1} \subseteq V\left(H_{1}\right)$. It follows from Proposition 2.4.9 that $\delta_{H_{1}}\left(U_{1}\right)=\delta_{H_{2}}\left(U_{2}\right)$ for some U_{2} where $\left|U_{2} \cap T_{2}\right|$ is even. We say that U_{2} is a mate of U_{1}.

Proposition 2.4.12. Assume (h1)-(h6) and let $U_{1} \subseteq V\left(H_{1}\right)$ and let U_{2} be a mate of U_{1}. For $i \in[2]$, let $S_{i}=\delta_{G_{i}}\left(U_{i}\right) \cap A$. Then, the following hold:
(a) if $\left|U_{1} \cap T_{1}\right|$ even, then $S_{1}=S_{2}$, and
(b) if $\left|U_{1} \cap T_{1}\right|$ odd, then $A=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}=\emptyset$.

Proof. By definition of mate, $\delta_{G_{2}}\left(U_{2}\right)$ is an even cut of $\left(G_{2}, T_{2}\right)$ and hence of $\left(G_{1}, T_{1}\right)$. Hence, $\delta_{G_{1}}\left(U_{1}\right) \Delta \delta_{G_{2}}\left(U_{2}\right)=S_{1} \Delta S_{2}$ is a cut of $\left(G_{1}, T_{1}\right)$ which is even if and only if $\left|U_{1} \cap T_{1}\right|$ is even. Since $S_{1} \Delta S_{2} \subseteq A$, Proposition 2.4.11 implies that if $\left|U_{1} \cap T_{1}\right|$ is even, then $S_{1} \Delta S_{2}=\emptyset$, proving (a), and if $\left|U_{1} \cap T_{1}\right|$ is odd, then $S_{1} \Delta S_{2}=A$, proving (b).

2.4.4 Organization of the remainder of the proof

Our proof will leverage Theorem 2.1.1 as follows,
Proposition 2.4.13. Assume (h1)-(h6). Then there exists H_{2}^{\prime} equivalent to H_{2} such that at least one of the following holds:
(a) H_{1}, H_{2}^{\prime} is a proper widget pair.
(b) H_{1}, H_{2}^{\prime} is a proper wheel pair.
(c) H_{1} is obtained from H_{2}^{\prime} by identifying two vertices.

Proof. Proposition 2.4.9 implies that H_{1}, H_{2} satisfy (2.1). Moreover, H_{1} is 3 -connected since G_{1} is 4-connected. The result then follows from Theorem 2.1.1 as $H_{1}^{\prime}=H_{1}$ in this case.

Outcomes (a) and (b) of the previous proposition are analyzed in Section 2.5 and outcome (c) is analyzed in Section 2.6. In all cases we will derive a contradiction.

2.5 Wheels and widgets

2.5.1 Connectivity

Consider a wheel pair $\left(H_{1}, H_{2}\right)$ with parts R_{1}, \ldots, R_{k} for $k \geq 3$. Recall that each part R_{i} has special vertices x_{i}, y_{i}, z_{i} (see Section 2.1.1). Vertices x_{i}, y_{i}, z_{i} for $i \in[k]$ are the boundary vertices of H_{1} respectively H_{2}. Vertices of H_{1} respectively H_{2} that are not boundary vertices are interior vertices. For H_{2} vertices x_{1}, \ldots, x_{k} are the rim vertices and $z_{1}=\ldots=z_{k}$ is the hub. Note, that if v is an interior vertex of H_{1}, H_{2} then $\delta_{H_{1}}(v)=\delta_{H_{2}}(v)$. Similarly, if H_{1}, H_{2} is a widget pair with parts $R_{1}, R_{2}, R_{3}, R_{4}$, then x_{i}, y_{i}, z_{i} for $i \in[4]$ are the boundary vertices and the non-boundary vertices are the interior vertices.

We describe the matching-terminal pairs for wheels and widgets [11].
Proposition 2.5.1. If $\left(H_{1}, H_{2}\right)$ is a wheel pair, then the matching-terminal pair is $\left(T_{1}, T_{2}\right)$ where $T_{1}=\emptyset$ and $T_{2}=\left\{x_{1}, \ldots, x_{k}\right\}$ for even k and $T_{2}=\left\{x_{1}, \ldots, x_{k}, z_{1}\right\}$ for odd k. If H_{1}, H_{2} is a widget pair, then the matching-terminal pair is $\left(T_{1}, T_{2}\right)$ where $T_{1}=\emptyset$ and $T_{2}=\left\{x_{1}, x_{2}, x_{3}, z_{1}\right\}$.

Recall that, for a graph $G, X \subseteq E(G)$ is a 2-separation if $G[X], G[E(G)-X]$ are connected and $\partial(X)=\{u, v\}$ for some distinct vertices u, v.

Proposition 2.5.2. Assume (h1)-(h6). If $\left(H_{1}, H_{2}^{\prime}\right)$ is a proper widget pair for some H_{2}^{\prime} equivalent to H_{2}, then H_{2}^{\prime} is 3-connected. In particular, $H_{2}=H_{2}^{\prime}$.

Proof. Recall that H_{1} is 3 -connected by Proposition 2.4.9. It follows readily that H_{2}^{\prime} is 2-connected. Furthermore, if H_{2}^{\prime} is not 3-connected then it must have a 2-separation X. Then, X is contained in one of its part R_{i}, i.e. $X \subseteq E\left(R_{i}\right)$. This implies in turn that X is a 2-separation of H_{1}, giving a contradiction.

Proposition 2.5.3. Assume (h1)-(h6). If H_{1}, H_{2}^{\prime} is a proper wheel pair for some H_{2}^{\prime} equivalent to H_{2} then H_{2}^{\prime} is 3-connected. In particular, $H_{2}=H_{2}^{\prime}$.

Proof. Let R_{1}, \ldots, R_{k} denote the parts of the wheel pair H_{1}, H_{2}^{\prime} where $k \geq 3$. As the wheel pair is proper, for all $i \in[k]$, there exists an $x_{i} y_{i}$-path of $H_{2}^{\prime}\left[R_{i}\right]$ that avoids z_{i}. Denote by C the polygon formed by the union of these paths. We call C the rim polygon of H_{2}^{\prime}. Denote by h the hub $z_{1}=\ldots=z_{k}$ of H_{2}^{\prime}. Note that H_{1} is 3 -connected since G_{1} is 4 -connected. We leave it as an exercise to show that this implies in particular that H_{2}^{\prime} is 2-connected.

Claim 1. Let X be a 2-separation of H_{2}^{\prime}. Then there does not exist $i \in[k]$ such that $X \subseteq E\left(R_{i}\right)$.

Subproof. Otherwise, X is also a 2-separation of H_{1}, a contradiction as H_{1} is 3-connected. \diamond

Claim 2. There do not exist series edges e, f, g of H_{2}^{\prime} contained in C.
Subproof. Otherwise, two of e, f, g will be in series in H_{1}, a contradiction as H_{1} is 3connected.

A spoke of H_{2}^{\prime} is a path Q with ends h and v where v is the only vertex of Q in the rim polygon C. Let \mathcal{P} be a maximal collection of spokes that are pairwise vertex disjoint except for the hub h. Since H_{2}^{\prime} is 2 -connected, $|\mathcal{P}| \geq 2$. We will consider two cases in the proof: $|\mathcal{P}| \geq 3$ and $|\mathcal{P}|=2$. A part R_{i} is trivial if it consists of a unique edge (which, as H_{1}, H_{2}^{\prime} is a proper wheel pair, is in C).

Case 1. $|\mathcal{P}| \geq 3$.

Claim 3. If X is a 2-separation of H_{2}^{\prime}, then (after possibly replacing X by $E\left(H_{2}^{\prime}\right)-X$) we have $X=\{e, f\}$ and for some $i \in[k], e \in R_{i}, f \in R_{i+1}(k+1=1)$ and $h \notin \partial_{H_{2}^{\prime}}(X)$.

Proof. Suppose for a contradiction that X is a 2-separation of H_{2}^{\prime}. Then X (resp. $\left.X-E(G)\right)$ is not contained in a part R_{i} by Claim 1 . Since H_{1}, H_{2}^{\prime} is a proper wheel and $|\mathcal{P}| \geq 3$, we may assume (after possibly interchanging the role of X and $E\left(H_{2}^{\prime}\right)-X$ and relabeling the parts) that X is contained in the union of consecutive parts, say $R_{1}, R_{2}, \ldots, R_{j}$ where u is a vertex of R_{1}, v a vertex of $R_{j}, \partial_{H_{2}^{\prime}}(X)=\{u, v\}$ and $X \cap E\left(R_{\ell}\right) \neq \emptyset$ for $\ell \in[j]$. By Claim 1, each part R_{2}, \ldots, R_{j-1} is trivial, $X \cap E\left(R_{1}\right)$ consists of a single edge (say e), and $X \cap E\left(R_{j}\right)$ consists of a single edge (say f). But then, Claim 2 implies that $j=2$, and the result follows. We illustrate this in Figure 2.4.

Figure 2.4: Potential 2-separation in wheel pairs.

We call a pair of edges e, f as in Claim 3 an i-series pair. By Claim 2 no i-series and j-series pair share an edge. It follows that H_{2}^{\prime} is obtained from H_{2} by a sequence of 2-flips on disjoint i-series pairs. To complete the proof of Case 1 , it suffices to show that there is no i-series pair for any $i \in[k]$. Suppose for a contradiction we have say, a 1 -series pair e, f. If R_{1} consists of a single edge e then we define Q to be a $y_{k} z_{k}$-path in R_{k}. If e is not the only edge of R_{1} then denote by u the end of e distinct from y_{1} and we then define Q to be a $u z_{1}$-path in R_{1} (note that Q exists as H_{1} is 3-connected). Then both $Q \cup e$ and $Q \cup f$ form a path of H_{1} (for a set A and element of the ground set a, we write $A \cup a$ for $A \cup\{a\}$ and write $A-a$ for $A-\{a\})$. If H_{2}^{\prime} is obtained from H_{2} without a 2-flip on $\{e, f\}$ then $Q \cup e$
is a path of H_{2}^{\prime}. But then as H_{1}, H_{2} is closed by Proposition 2.4.9, there exists $g \neq f$ such that $Q \cup\{e, g\}$ form a cycle of H_{1}, H_{2}^{\prime}, a contradiction as e, f are in series in H_{2}^{\prime}. If H_{2}^{\prime} is obtained from H_{2} using a 2-flip on $\{e, f\}$ then $Q \cup f$ is a path of H_{2}^{\prime}. But then as H_{1}, H_{2} is closed there exists $g \neq e$ such that $Q \cup\{f, g\}$ form a cycle of H_{1}, H_{2}^{\prime}, again a contradiction.

Case 2. $|\mathcal{P}|=2$.

Claim 4. There exists exactly two edges e_{i}, e_{j} incident to h in H_{2}^{\prime} with $e_{i} \in E\left(R_{i}\right)$ and $e_{j} \in E\left(R_{j}\right)$ for distinct $i, j \in[k]$.

Subproof. Since $|\mathcal{P}|=2$, there exists, by Menger's theorem, a pair of vertices $u_{i} \in V\left(R_{i}\right)$ and $u_{j} \in V\left(R_{j}\right)$ that separates h from C in H_{2}^{\prime}. Thus there exists a 2-separation Y with $\partial_{H_{2}^{\prime}}(Y)=\left\{u_{i}, u_{j}\right\}$ such that $h \in \mathcal{I}_{H_{2}^{\prime}}(Y)$ and $C \cap Y=\emptyset$. Moreover, since h is the hub of H_{2}^{\prime}, Y can be partitioned into 2-separations Y_{i}, Y_{j} so that $\partial_{H_{2}^{\prime}}\left(Y_{i}\right)=\left\{u_{i}, h\right\}$ and $\partial_{H_{2}^{\prime}}\left(Y_{j}\right)=\left\{u_{j}, h\right\}$. It suffices to show now that Y_{i} (and by the same argument Y_{j}) consists of a single edge. If u_{i} is an interior vertex of R_{i} then Y_{i} is a 2-separation contained in R_{i} and it follows by Claim 1 that Y_{i} consists of a single edge. Thus, we may assume u_{i} is a rim vertex $y_{i}=x_{i+1}$ and Y_{i} is contained in $E\left(R_{i}\right) \cup E\left(R_{i+1}\right)$. Let $Y_{i}^{\prime}=Y_{i} \cap E\left(R_{i}\right)$ and let $Y_{i}^{\prime \prime}=Y_{i} \cap E\left(R_{i+1}\right)$. Then $\partial_{H_{2}^{\prime}}\left(Y_{i}^{\prime}\right)=\partial_{H_{2}^{\prime}}\left(Y_{i}^{\prime \prime}\right)=\left\{y_{i}, h\right\}$. It follows by Claim 1 that Y_{i}^{\prime} and $Y_{i}^{\prime \prime}$ consists of parallel edges, giving a contradiction as H_{2} and thus H_{2}^{\prime} is simple.

Claim 5. We may assume $k=5$, i.e., H_{1}, H_{2}^{\prime} is a wheel pair with parts R_{1}, \ldots, R_{5}.
Subproof. If $k=3$, we can exchange the role of h with any rim vertex $y_{i}=x_{i+1}$. Note, not all these vertices can have degree 2 , so pick as a hub such a vertex with degree at least three. It then follows from Claim 4 that we are now in Case 1. Suppose that k is even. Let $\left(\emptyset, T_{2}^{\prime}\right)$ be the matching-terminal pair for $\left(H_{1}, H_{2}^{\prime}\right)$. Then by Proposition 2.5.1, $h \notin T_{2}^{\prime}$. Consider R_{i}, R_{j} and e_{i}, e_{j} as in Claim 4. Then $\delta_{H_{2}^{\prime}}(h)=\left\{e_{i}, e_{j}\right\}$, is an even cut of $\left(H_{2}^{\prime}, T_{2}^{\prime}\right)$
and hence a cut of H_{1}, a contradiction as H_{1} is 3 -connected. Finally, Claim 2 and the fact R_{i}, R_{j} are the only non-trivial parts imply $k \leq 6$.

By Claim 1 and Claim 4 there are only two non-trivial parts among R_{1}, \ldots, R_{5}. We may assume because of Claim 2 that the non-trivial parts are R_{1} and R_{3}. Denote by e_{1} and e_{3} the edges of R_{1} and R_{3} incident to h in H_{2}^{\prime}. Let $R_{1}^{\prime}=R_{1} \backslash e_{1}$ and let $R_{3}^{\prime}=R_{3} \backslash e_{3}$. Denote by r_{2}, r_{4}, r_{5} the unique edge in R_{2}, R_{4}, R_{5} respectively. We describe H_{1}, H_{2}^{\prime} in Figure 2.5. Observe that H_{2}^{\prime} has exactly two 2-separations, which are $\left\{e_{1}, e_{3}\right\}$ and $\left\{r_{4}, r_{5}\right\}$. We also

Figure 2.5: Two edges incident to the hub.
describe H_{2} in Figure 2.5. Denote by w the vertex of H_{1} incident to e_{1}, r_{2}, r_{5} and by w^{\prime} the vertex of H_{1} incident to e_{3}, r_{2}, r_{4}. Recall that \hat{v} is the vertex picked in (h5).

Claim 6. $\operatorname{deg}_{G_{1}}(\hat{v})=4$.
Subproof. By Proposition 2.5.1, $\left|T_{1}\right| \geq 6$. Proposition 2.4.8 implies that $\left(G_{1}, \Sigma_{1}\right)$ has no diamond. Note, $\operatorname{deg}_{H_{1}}(w)=3$. It follows that $\operatorname{deg}_{G_{1}}(w)=4$. The result now follows from (h5).

Now, let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Denote by u_{1} the vertex of H_{2} incident to e_{1}, e_{3} and denote by u_{2} the vertex of H_{2} incident to r_{4}, r_{5}. As G_{2} is 4-connected, there exist two edges of A, say a_{1} and a_{2}, incident to u_{1}. Since G_{1}, G_{2} are closed, there exists an edge $\beta_{1} \in E\left(H_{1}\right)=E\left(H_{2}\right)$
such that $\Delta_{1}:=\left\{a_{1}, a_{2}, \beta_{1}\right\}$ is a triangle of both H_{1} and H_{2}. Similarly, for some $i, j \in[4]$ and $\beta_{2} \in E\left(H_{1}\right)$, we have that a_{i}, a_{j} are incident to u_{2} and $\Delta_{2}:=\left\{a_{i}, a_{j}, \beta_{2}\right\}$ is a triangle of both H_{1} and H_{2}. Now, consider G_{1}. Since G_{1} is 4-connected, there are two edges in A joining \hat{v}, w and \hat{v}, w^{\prime}, respectively. Moreover, for some $x \in \mathcal{I}_{H_{1}}\left(R_{1}^{\prime}\right)$ and $x^{\prime} \in \mathcal{I}_{H_{1}}\left(R_{3}^{\prime}\right)$, there are two edges in A joining \hat{v}, x and \hat{v}, x^{\prime}, respectively; otherwise, either $E\left(R_{1}^{\prime}\right) \cup e_{1}, E\left(R_{1}^{\prime}\right) \cup r_{4}$, $E\left(R_{3}^{\prime}\right) \cup e_{3}$, or $E\left(R_{3}^{\prime}\right) \cup r_{5}$ is a 3 -separation of G_{1}, giving a contradiction. Note that, among $\left\{w, w^{\prime}, x, x^{\prime}\right\}$, only w and w^{\prime} are adjacent. Thus, $\{i, j\}=\{1,2\}$ and $\beta_{1}=\beta_{2}=r_{2}$. This implies that $\Delta_{1}=\Delta_{2}$, giving a contradiction.

2.5.2 Terminals and interior vertices

Proposition 2.5.4. Assume (h1)-(h6). If H_{1}, H_{2} is a proper wheel pair with parts $R_{1}, \ldots, R_{k}(k \geq 3)$, then every part R_{i} is either a complete graph spanning x_{i}, y_{i}, z_{i} or a single edge with ends x_{i}, y_{i}. If H_{1}, H_{2} is a proper widget pair with parts $R_{1}, R_{2}, R_{3}, R_{4}$, then every part R_{i} is a complete graph spanning x_{i}, y_{i}, z_{i}.

Proof. This follows from the fact that H_{1} is 3 -connected by hypothesis and that H_{1}, H_{2} are closed siblings by Proposition 2.4.9.

Proposition 2.5.5. Assume (h1)-(h6). If H_{1}, H_{2} is a proper wheel pair then every vertex $x_{i}, i \in[k]$ is incident to at least one edge of A in G_{2}.

Proof. By Proposition 2.5.1, $x_{i} \in T_{2}$. It follows by Theorem 2.3.4 that $\Gamma=\delta_{G_{2}}\left(x_{i}\right)$ is a signature of $\left(G_{1}, \Sigma_{1}\right)$. Suppose that x_{i} is not incident to any edge of A for some $i \in[k]$. Then $\Gamma=\delta_{G_{2}}\left(x_{i}\right)=\delta_{H_{2}}\left(x_{i}\right)$. But then observe that $\left(G_{1}, \Sigma_{1}\right)$ has an adjacent blocking pair.

For proper widget pairs or wheel pairs, Proposition 2.5.1 shows that interior vertices are not in T_{2}. We show that they are also not in T_{1}, i.e. all terminals are boundary vertices.

Proposition 2.5.6. Assume (h1)-(h6) and that H_{1}, H_{2} is a proper widget pair or a proper wheel pair. Let u be an interior vertex of H_{1}, then $u \notin T_{1}$.

Proof. We have $\delta_{H_{1}}(u)=\delta_{H_{2}}(u)$. By Proposition 2.5.1, $u \notin T_{2}$. It follows that $\{u\} \subseteq V\left(H_{2}\right)$ is a mate of $\{u\} \subseteq V\left(H_{1}\right)$. For $i \in[2]$ let $S_{i}=\delta_{G_{i}}(u) \cap A$. Suppose for a contradiction that $u \in T_{1}$. Then Proposition 2.4.12 implies that $S_{1} \cup S_{2}=A$ and that $S_{1} \cap S_{2}=\emptyset$. By (h5), $\left|S_{1}\right| \leq 1$. Moreover, by Theorem 2.3.4, $\delta_{G_{1}}(u)$ is a signature of $\left(G_{2}, \Sigma_{2}\right)$. Since by Proposition 2.4.3 $\left(G_{2}, \Sigma_{2}\right)$ has no blocking vertex, S_{1} contains a single edge, say e. Hence, e is the only edge of A incident to u in G_{1} and e is the only edge of A not incident to u in G_{2}.

Case 1. H_{1}, H_{2} is a widget pair.

Consider first the case where there exists an interior vertex u^{\prime} of H_{1} where $u^{\prime} \in T_{1}$ and $u^{\prime} \neq u$. Then proceeding as above we deduce that there exists $e^{\prime} \in A$ such that e^{\prime} is the only edge of A incident to u^{\prime} in G_{1} and e^{\prime} is the only edge of A not incident to u^{\prime} in G_{2}. It follows that in G_{2}, e is incident to u^{\prime} but not u, e^{\prime} is incident to u but not u^{\prime} and every edge of $A-\left\{e, e^{\prime}\right\}$ has ends u, u^{\prime}. Hence, u, u^{\prime} is a blocking pair of $\left(G_{2}, \Sigma_{2}\right)$ since by Proposition 2.4.9 A is a signature. Thus u, u^{\prime} are not adjacent in G_{2}. Therefore, $A=\left\{e, e^{\prime}\right\}$ and u, u^{\prime} are not in the same part R_{i} by Proposition 2.5.4. But then observe that any pair of boundary vertices of H_{1} is an adjacent blocking pair of $\left(G_{1}, \Sigma_{1}\right)$, a contradiction. It follows that u is the unique interior vertex of H_{1} contained in T_{1}. Suppose now that e has an end u^{\prime} in G_{2} that is an interior vertex of some part R_{i}. As $u^{\prime} \notin T_{1}$, it follows from Proposition 2.4.12 that e has end u^{\prime} in G_{1} as well. Since H_{1}, H_{2} are closed there exist edges $f \in A, g \in H_{1}$ such that $\{e, f, g\}$ is triangle of G_{1}, G_{2} and f is incident to a boundary
vertex of R_{i}. But then $f \neq e$ and f is not incident to u in G_{2} a contradiction. Hence, both ends of e are boundary vertices. By Proposition 2.5.4 there exists an edge f of H_{2} such that e, f is a diamond of $\left(G_{1}, \Sigma_{2}\right)$ which contradicts Proposition 2.4.8(b).

Case 2. H_{1}, H_{2} is a proper wheel pair.

Let R_{1}, \ldots, R_{k} be the parts of the proper wheel pair. Note that if $k=3$, then the wheel pair is also a widget pair. Thus, we may assume $k \geq 4$. Since H_{1}, H_{2} are closed, for all edges of $A-e$ the end distinct from \hat{v} is in the same part R_{j} for some $j \in[k]$. Without loss of generality assume $j=1$. By Proposition 2.5.1, $T_{2}=\left\{x_{1}, \ldots, x_{k}\right\}$ when k is even and $T_{2}=\left\{x_{1}, \ldots, x_{k}, z_{1}\right\}$ otherwise. Proposition 2.5.5 says that every vertex $x_{i}, i \in[k]$ is incident to at least one edge of A in G_{2}. Thus none of x_{3}, \ldots, x_{k} are incident to edges of $A-e$ in G_{2}. Hence, $k=4$ and by Proposition 2.5.5, x_{3}, x_{4} are the ends of e in G_{2}. Since H_{1}, H_{2} are complete, there exists an edge f of H_{2} such that e, f is a diamond of $\left(G_{2}, \Sigma_{2}\right)$ with ends in T_{2}, contradicting Proposition 2.4.8(b).

We can now combine the previous propositions to get the following useful result,

Proposition 2.5.7. Assume (h1)-(h6) and suppose that H_{1}, H_{2} is a proper widget pair or a proper wheel pair. Let u be an interior vertex in some part R_{i} with a boundary vertex x_{i}. If there exists $e \in A$ where e is incident to u in either G_{1} or G_{2}, then
(a) e is incident to u in both G_{1} and G_{2};
(b) the other end, say w, of e distinct from u in G_{2} is a boundary vertex; and
(c) there exists $f \in A$ such that for $G_{1}\left(r e s p . G_{2}\right) f$ one has end \hat{v} (resp. w) and one end in x_{i}.

Proof. By Proposition 2.5.6, $u \notin T_{1}$ and by Proposition 2.5.1 $u \notin T_{2}$. Then (a) follows by Proposition 2.4.12. Let w denote the end of e in G_{2} that is distinct from u. Then w is not an interior vertex, for otherwise by (a), e is incident to both u and w, a contradiction as e is incident to \hat{v}. Hence, (b) holds. Finally, (c) follows from (a) and (b) and the fact that H_{1}, H_{2} are closed (see Proposition 2.4.9).

2.5.3 Classification

We can now exclude the case of the widgets, namely,

Proposition 2.5.8. Assume (h1)-(h6). Then H_{1}, H_{2} is not a widget pair, and if it is a proper wheel pair, then it has at least 4 parts.

Proof. Because of Proposition 2.5.7 there exists an edge of A in G_{2} with both ends in the boundary of H_{2}. Recall that each part R_{i} is a complete graph. Hence, there exists f that is parallel to e. Note that e, f is a diamond of $\left(G_{2}, \Sigma_{2}\right)$. If H_{1}, H_{2} is a widget or a wheel with 3 parts, then the boundary vertices are $\left\{x_{1}, x_{2}, x_{3}, z_{1}\right\}$, and then e, f have both ends in T_{2}. But, this contradicts Proposition 2.4.8(b).

Combining the previous result with Proposition 2.5.2 and Proposition 2.5.3 yields,

Proposition 2.5.9. Assume (h1)-(h6), and suppose we have outcome (a) or (b) of Proposition 2.4.13. Then we may assume H_{1}, H_{2} is a proper wheel pair and it has at least 4 parts.

In light of the previous result, we define (h7).
(h7) H_{1}, H_{2} is a proper wheel pair with $k \geq 4$ parts.

Assume now (h1)-(h7). We wish to classify proper wheel pairs H_{1}, H_{2}. First we require a definition. Denote by R_{1}, \ldots, R_{k} the parts of the wheel pair H_{1}, H_{2}. The boundary vertices of H_{1} are $\left\{z_{1}, \ldots, z_{k}\right\}$. Because of Proposition 2.5.4 for each $i \in[k]$ there exists an edge f_{i} of H_{2} with ends x_{i}, y_{i}. We define the mapping $\Theta:\left\{z_{1}, \ldots, z_{k}\right\} \rightarrow E\left(H_{2}\right)$ where $\Theta\left(z_{i}\right)=f_{i}$. Proposition 2.5.10. Assume (h1)-(h7) and let S denote the boundary vertices of H_{1} that are not in T_{1}. Then for every $v \in S$ there exists an edge $e \in A$ such that $e, \Theta(v)$ is a diamond of $\left(G_{2}, \Sigma_{2}\right)$.

Proof. We may assume that $v=z_{1}$. Then $\Theta(v)=f$ where f is the edge of H_{2} with ends x_{1}, y_{1}. Let $U=V\left(R_{1}\right)-\left\{z_{1}\right\}$ and observe that U is a mate of $\{v\}$. Let $S_{1}=\delta_{G_{1}}(v) \cap A$ and let $S_{2}=\delta_{G_{2}}(U) \cap A$. By Proposition 2.4.12, we have $S_{1}=S_{2}$. Moreover, by (h5), we know that $\left|S_{1}\right| \leq 1$. It follows by Proposition 2.5.5 that there exist edges $e_{x}, e_{y} \in A$ incident to x_{1} and y_{1} respectively in G_{2}. Because of Proposition 2.5.7 we may assume that both ends of e_{x} and e_{y} are in the boundary. As $\left|S_{2}\right| \leq 1$ it follows that $e_{x}=e_{y}$ and $e_{x}, \Theta(v)$ is the required diamond.

Proposition 2.5.11. Assume (h1)-(h7). Then $\left|T_{1}\right| \leq 6$.

Proof. By Proposition 2.5.7 there exists an edge $e \in A$ that has both ends in the boundary of H_{2}. Let Q be an arbitrary path of H_{2} that has the same ends as e. Then observe that Q is either a path of H_{1} or the union of two path of H_{1}. Since $Q \cup e$ is an odd cycle of $\left(G_{2}, \Sigma_{2}\right)$, by Theorem 2.3.4 $Q \cup e$ is a T_{1}-join of G_{1} and the result follows.

The next proposition reduces classifies the possible configurations for wheel pairs.
Proposition 2.5.12. Assume (h1)-(h7) and let S denote the boundary vertices of H_{1} that are not in T_{1}. Suppose H_{1}, H_{2} is a proper wheel pair with $k \geq 4$ parts. Then exactly one of the following holds,
(a) $k=5, S=\emptyset$ and $\left|T_{1}\right|=\left|T_{2}\right|=6$.
(b) $k=5,|S|=2,\left|T_{1}\right|=4$ and $\left|T_{2}\right|=6$.
(c) $k=6,|S|=3,\left|T_{1}\right|=4$ and $\left|T_{2}\right|=6$.

Proof. First, we prove the following claim.

Claim 1.

(i) For every $v \in S$, there exists a diamond of $\left(G_{2}, \Sigma_{2}\right)$ where one of the edge is $\theta(v)$.
(ii) If $S \neq \emptyset$ then $\left|T_{1}\right|=4$.
(iii) $|S| \leq 3$.
(iv) If $S \neq \emptyset$ then $\left|T_{2}\right| \geq 6$.
(v) H_{1}, H_{2} is a wheel pair with $k=|S|+\left|T_{1}\right|-1$ parts.

Subproof. Proposition 2.5.10 implies (i). Proposition 2.4.8(a) and (i) then imply (ii). (iii) follows from Proposition 2.4.8(c) and (i). For (iv), note that, for $v \in S$, the ends of $\Theta(v)$ are contained in T_{2}. Hence, Proposition 2.4.8(b) and (i) imply (iv). Finally, (v) holds because the boundary vertices of H_{1} are contained in $S \cup\left(T_{1}-\hat{v}\right)$.

Consider first the case where $S=\emptyset$. Then, by the hypothesis and Claim $1(\mathrm{v}), k \geq 4$ and $k=\left|T_{1}\right|-1$. It follows that $\left|T_{1}\right| \geq 6$ and thus by Proposition 2.5.11 that $\left|T_{1}\right|=6$. Therefore, $k=5$ and by Proposition 2.5.1 we have $\left|T_{2}\right|=6$. This is outcome (a). Thus we may assume that $S \neq \emptyset$. It follows by Claim 1 (ii) that $\left|T_{1}\right|=4$. By Claim $1(\mathrm{v}), k=|S|+3$ where $|S| \leq 3$ by Claim 1(iii). Claim 1(iv) imply that $\left|T_{2}\right| \geq 6$. Therefore, by Proposition 2.5.1 we must have $k \geq 5$. As $k=|S|+3$, it follows that $|S| \in\{2,3\}$. Since $k=|S|+3$ and by

Proposition 2.5.1 it follows that $\left|T_{2}\right|=6$. When $|S|=2$ we have outcome (b) and when $|S|=3$ we have outcome (c).

2.5.4 Case analysis

Next we show that each outcome of Proposition 2.5.12 leads to a contradiction.
Proposition 2.5.13. Case (a) in Proposition 2.5.12 does not occur.

We illustrate this proof in Figure 2.6. G_{1} and G_{2} are the left and right graphs, respectively. The square vertices represent T_{1} and T_{2}.

Figure 2.6: Case (a) in Proposition 2.5.12.

Proof of Proposition 2.5.13. Recall that case (a) is $k=5, S=\emptyset$ and $\left|T_{1}\right|=\left|T_{2}\right|=6$. The boundary vertices of H_{2} which are distinct from $z_{1}=\ldots=z_{k}$ are the rim vertices.

Claim. If $e \in A$ then the ends of e in G_{2} are non-consecutive rim vertices. In particular, $|A| \leq 5$.

Subproof. Suppose u, v denote the ends of e in G_{2}. It follows from the fact that $\left|T_{1}\right|=6$ and Proposition 2.4.8(a) that $\left(G_{2}, \Sigma_{2}\right)$ has no diamond. Thus u, v are not consecutive rim vertices
and u, v are not a rim vertex and the center vertex z_{i}. Therefore, by Proposition 2.5.7, u, v are all boundary vertices and the result follows.

Since H_{1}, H_{2} is a proper closed wheel pair we have, for both G_{1}, G_{2} edges $e_{i}=\left(x_{i}, y_{i}\right)$ for all $i \in[5]$ where $5+1=1$. By the Claim and by Proposition 2.5 .5 we may assume, up to symmetry, that we have edges $f_{1}, f_{2}, f_{3} \in A$ where for G_{2},

$$
f_{1}=\left(x_{2}, x_{4}\right), \quad f_{2}=\left(x_{3}, x_{5}\right), \quad f_{3}=\left(x_{1}, x_{4}\right)
$$

Since $\left\{f_{1}, e_{2}, e_{3}\right\}$ is an odd cycle of $\left(G_{2}, \Sigma_{2}\right)$ it follows that $\left\{f_{1}, e_{2}, e_{3}\right\}$ is a T_{1}-join of G_{1}. Therefore, $f_{1}=\left(\hat{v}, x_{1}\right)$ in G_{1}. Similarly, we show that $f_{2}=\left(\hat{v}, x_{2}\right)$ and $f_{3}=\left(\hat{v}, x_{3}\right)$ in G_{1}. Denote by g the edge with ends x_{4}, y_{4} in G_{1}, G_{2}. Note that $\left\{f_{1}, g\right\}$ is a path of both G_{1} and G_{2}. It follows as G_{1}, G_{2} are closed that there exists an edge f_{4} that has ends \hat{v}, x_{4} in G_{1} and ends x_{2}, x_{5} in G_{2}. Similarly, we also have an edge f_{5} that has ends \hat{v}, x_{5} in G_{1} and x_{1}, x_{3} in G_{2}. But then G_{1}, G_{2} are both isomorphic to K_{6}, a contradiction.

Proposition 2.5.14. Case (b) in Proposition 2.5.12 does not occur.

We illustrate this proof in Figure 2.7. G_{1} and G_{2} are the left and right graphs, respectively. The square vertices represent T_{1}, T_{2}, and the shaded edges represent the signature of $\left(G_{1}, \Sigma_{1}\right)$.

Proof of Proposition 2.5.14. Recall that case (b) is $k=5,|S|=2,\left|T_{1}\right|=4$ and $\left|T_{2}\right|=6$. Let v_{1}, v_{2} denote the vertices of S. For all $i \in[5]$ denote by e_{i} in R_{i} with ends x_{i}, y_{i}. Then for $i \in[2], \Theta\left(v_{i}\right)=e_{i}$. By Proposition 2.5.10 for all $i \in[2]$ there exists $f_{i} \in A$, for which e_{i}, f_{i} is a diamond of $\left(G_{2}, \Sigma_{2}\right)$. Note that f_{1}, f_{2} are independent edges of G_{2}, for otherwise as G_{1}, G_{2} are closed, we would have an edge $f_{3} \in H_{2}$ such that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a triangle, contradicting the fact that H_{1}, H_{2} is a wheel pair. Thus we may assume that in G_{1} and

Figure 2.7: Case (b) in Proposition 2.5.12.
$G_{2}, e_{1}=\left(x_{1}, y_{1}\right), e_{2}=\left(x_{3}, y_{3}\right)$. For $i \in[2], e_{i}, f_{i}$ is a diamond of $\left(G_{2}, \Sigma_{2}\right)$ and hence by Theorem 2.3.4 a T_{1}-join of G_{1}. It follows that $T_{1}=\left\{x_{1}, y_{1}=x_{3}, y_{3}, \hat{v}\right\}$ and that $f_{1}=\left(\hat{v}, y_{3}\right)$ and $f_{2}=\left(\hat{v}, x_{1}\right)$ in G_{1}. Since $\left\{f_{1}, e_{5}\right\}$ is a path of G_{1}, G_{2} there exists $g_{1} \in A$ such that $\left\{g_{1}, f_{1}, e_{5}\right\}$ is a triangle of G_{1} and G_{2}. Since $\left\{f_{2}, e_{4}\right\}$ is a path of G_{1}, G_{2} there exists $g_{2} \in A$ such that $\left\{g_{2}, f_{2}, e_{4}\right\}$ is a triangle of G_{1} and G_{2}. Let h be the x_{3}, z_{3} edge of G_{1}, G_{2}. Then as $\left\{h, g_{2}\right\}$ is a path of G_{1}, G_{2} there exists g_{3} such that $\left\{h, g_{2}, g_{3}\right\}$ is triangle of G_{1}, G_{2}. Define, $A_{1}:=\left\{f_{1}, f_{2}, g_{1}, g_{2}, g_{3}\right\}$. We have proved that $A \supseteq A_{1}$.

Claim 1.

(a) There is no edge $h \in A$ incident to $x_{1}\left(\right.$ resp. $\left.z_{5}, z_{4}, y_{3}\right)$ in both G_{1} and G_{2}.
(b) There is no edge $h \in A-\left\{g_{1}, g_{2}, g_{3}\right\}$ incident to any of $\left\{x_{2}, y_{2}, z_{2}\right\}$ in both G_{1} and G_{2}.

Subproof. For (a), note that $f_{2} \in A$ is incident to x_{1} in G_{1} but not in G_{2}. Suppose that we have $h \in A$ incident to x_{1} in both G_{1} and G_{2}. Then $f_{2} \neq h$ and f_{2}, h are parallel in G_{1}. Since $\left(G_{1}, \Sigma_{1}\right)$ is simple, h, f_{2} is a diamond. It follows by Proposition 2.4.8(a) that $\left|T_{2}\right| \leq 4$, giving a contradiction. The cases for z_{5}, z_{4}, and y_{3} are similar. For (b), it follows as in (a) for if we had such an edge h then g_{i}, h would be a diamond of $\left(G_{1}, \Sigma_{1}\right)$ for some $i \in[3]$. \diamond

Let A_{2} denote the set of edges of A that have an end in the interior of R_{2}.
Claim 2. $A=A_{1} \cup A_{2}$.
Subproof. Suppose for a contradiction that there exists an edge $h \in A-\left(A_{1} \cup A_{2}\right)$. It follows from Claim 1 that h has an end that is an interior vertex u of R_{i} for some $i \in\{1,3,4,5\}$. Let $L=\delta_{H_{1}}(u)=\delta_{H_{2}}(u)$. As $u \notin T_{1}, \delta_{G_{1}}(u) \supseteq L \cup h$. It follows from Proposition 2.4.10 that $\delta_{G_{2}}(u)=\delta_{G_{1}}(u)$. In particular, e is incident to u in G_{2}. But then, for all $i \in\{1,3,4,5\}$, e together with Proposition 2.5.7 contradicts Claim 1(b).

By Theorem 2.3.4, $\Gamma=\delta_{G_{2}}\left(x_{1}=y_{5}\right) \Delta \delta_{G_{2}}\left(V\left(R_{5}\right)-\left\{x_{5}, y_{5}, z_{5}\right\}\right)$ is a signature of $\left(G_{1}, \Sigma_{1}\right)$ where all edges of Γ are incident to y_{4} or z_{4}. Hence, y_{4}, z_{4} is an adjacent blocking pair of $\left(G_{1}, \Sigma_{1}\right)$, a contradiction.

Proposition 2.5.15. Case (c) in Proposition 2.5.12 does not occur.

We illustrate this proof in Figure 2.8. G_{1} and G_{2} are the left and right graphs, respectively. The square vertices represent T_{1} and T_{2}.

Figure 2.8: Case (c) in Proposition 2.5.12.

Proof of Proposition 2.5.15. Recall that case (c) is $k=6,|S|=3,\left|T_{1}\right|=4$ and $\left|T_{2}\right|=6$. Let v_{1}, v_{2}, v_{3} denote the vertices of S. For all $i \in[3]$ denote by e_{i} the edge $\Theta\left(v_{i}\right)$. By

Proposition 2.5.10 for all $i \in[3]$ there exists $f_{i} \in A$, for which e_{i}, f_{i} is a diamond of $\left(G_{2}, \Sigma_{2}\right)$. As in the proof of Proposition 2.5.14 we argue that f_{1}, f_{2}, f_{3} are independent edges of G_{2}. Thus we may assume that in G_{1} and G_{2},

$$
e_{1}=\left(x_{1}, y_{1}\right), \quad e_{2}=\left(x_{3}, y_{3}\right), \quad e_{3}=\left(x_{5}, y_{5}\right)
$$

Proposition 2.4.8(a) implies that for all $i \in[3], e_{i}, f_{i}$ is a matching of T_{1}. In particular, the ends of e_{i} are in T_{1}. It follows that $T_{1}=\left\{x_{1}=y_{5}, y_{1}=x_{3}, y_{3}=x_{5}, \hat{v}\right\}$. Hence, in G_{1}, we have

$$
f_{1}=\left(\hat{v}, y_{3}\right), \quad f_{2}=\left(\hat{v}, x_{1}\right), \quad f_{3}=\left(\hat{v}, y_{1}\right)
$$

Next, we show that f_{1}, f_{2}, f_{3} are the only edges in A.
Claim. $A=\left\{f_{1}, f_{2}, f_{3}\right\}$.
Subproof. Suppose for a contradiction that there exists $g \in A-\left\{f_{1}, f_{2}, f_{3}\right\}$. We may assume, by Proposition 2.5.7, that g has both ends in the boundary of G_{2}. Up to symmetry, there are two cases to consider: (i) $g=\left(y_{1}, z_{1}\right)$ in G_{2} and (ii) $g=\left(y_{1}, x_{6}\right)$ in G_{2}. For (i), let h be the edge of G_{2} with ends x_{2}, y_{2}. Then $\{g, h\}$ is an odd cycle of $\left(G_{2}, \Sigma_{2}\right)$ and hence by Theorem 2.3.4 a T_{1}-join of G_{1}. As $\left|T_{1}\right|=4$ both ends of h must have ends in T_{1} in G_{1}, giving a contradiction. For (ii), let h be the edge of G_{2} with ends x_{6}, y_{6}. Then $\left\{g, h, e_{1}\right\}$ is an odd cycle of $\left(G_{2}, \Sigma_{2}\right)$ and hence a T_{1}-join of G_{1}. As $\left|T_{1}\right|=4$ and e_{1}, f are independent in G_{1}, e, f_{1} need to cover 3 vertices of T_{1}, giving a contradiction.

Let H be the graph obtained from G_{1} by moving f_{1} so that it has ends $z_{6}, z_{2} ;$ moving f_{2} so that it has ends $z_{2}, z_{4} ;$ moving f_{3} so that it has ends z_{4}, z_{6}. Then $\operatorname{cut}(H)=\operatorname{ecut}\left(G_{1}, T_{1}\right)$. It follows that G_{1}, G_{2} are cographic siblings, giving a contradiction.

2.6 The pinch case

We have now shown the following.
Proposition 2.6.1. Assume (h1)-(h6). Then there exists H_{2}^{\prime} equivalent to H_{2} such that H_{1} is obtained from H_{2}^{\prime} by identifying two vertices.

Proof. It suffices to show that case (a) and (b) of Proposition 2.4.13 do not occur. By Proposition 2.5.9, case (a) does not occur, and if (b) occurs, then H_{1}, H_{2} is a proper wheel pair and it has at least 4 parts. Then one of cases (a), (b), and (c) of Proposition 2.5.12 must occur. But we showed in Proposition 2.5.13, Proposition 2.5.14, and Proposition 2.5.15 that none of these cases are possible.

In light of the previous result, we define the following:
(h8) H_{1} is obtained from H_{2}^{\prime} by identifying distinct vertices s, t, (h9) z denotes the vertex of H_{1} corresponding to $s=t$.

Proposition 2.6.2. Assume (h1)-(h6), (h8), and (h9).
(a) If X is a 2-separation of H_{2}^{\prime} then $\left|\mathcal{I}_{H_{2}^{\prime}}(X) \cap\{s, t\}\right|=1$ and $\partial_{H_{2}^{\prime}}(X) \cap\{s, t\}=\emptyset$.
(b) There exists a 2-separation X of H_{2}^{\prime}.

Proof. (a) follows from the fact that H_{1} is 3 -connected as G_{1} is 4 -connected. Suppose for a contradiction that (b) does not hold. Then, $H_{2}^{\prime}=H_{2}$. It then follows that $T_{2}=\{s, t\}$ since $\operatorname{cut}\left(H_{1}\right)=\operatorname{ecut}\left(H_{2}^{\prime},\{s, t\}\right)$, a contradiction to Proposition 2.4.3.

In light of the previous proposition we can find,
(p1) a 2-separation Y of H_{2}^{\prime} where $s \in \mathcal{I}_{H_{2}^{\prime}}(Y), t \in \mathcal{I}_{H_{2}^{\prime}}\left(E\left(H_{2}^{\prime}\right)-Y\right)$, and (p2) subject to (p1) we pick Y that is inclusion-wise minimal.

Proposition 2.6.3. Assume (h1)-(h6), (h8), and (h9), and assume Y satisfies (p1) and (p2).
For every 2-separation X of H_{2}^{\prime} we have $Y \subseteq X$ or $Y \subseteq E\left(H_{2}^{\prime}\right)-X$.

Proof. Otherwise $X \cap Y$ is a 2-separation of H_{2}^{\prime} where $X \cap Y \subset Y$, contradicting (p2).

We will require the following observation,

Proposition 2.6.4. Assume (h1)-(h6), (h8), and (h9), and assume Y satisfies (p1) and (p2). Then, $T_{2} \cap \mathcal{I}_{H_{2}^{\prime}}(Y)=\{s\}$.

Proof. Observe that $\operatorname{cut}\left(H_{1}\right)=\operatorname{ecut}\left(H_{2}^{\prime},\{s, t\}\right)$ as H_{1} is obtained from H_{2}^{\prime} by identifying s and t. By Proposition 2.4.9 (c), $\operatorname{cut}\left(H_{1}\right)=\operatorname{ecut}\left(H_{2}, T_{2}\right)$. Thus, $\operatorname{ecut}\left(H_{2}^{\prime},\{s, t\}\right)=$ $\operatorname{ecut}\left(H_{2}, T_{2}\right)$. By Remark 1.2.3, this implies that there exists a $\{s, t\}$-join J of $\left(H_{2}^{\prime},\{s, t\}\right)$ that is also a T_{2}-join of $\left(H_{2}, T_{2}\right)$. Let P denote an $s t$-path of H_{2}^{\prime}. Then, P is a $\{s, t\}$-join of $\left(H_{2}^{\prime},\{s, t\}\right)$, and $J \Delta P$ is a cycle of H_{2}^{\prime}. Thus, $J \Delta P$ is also a cycle of H_{2}, and $P=$ $(P \Delta J) \Delta J$ is a T_{2}-join of $\left(H_{2}, T_{2}\right)$. It follows from Proposition 2.6.3 that $H_{2}^{\prime}[Y]=H_{2}[Y]$. In particular, $H_{2}^{\prime}[P \cap Y]=H_{2}[P \cap Y]$, which implies $T_{2} \cap \mathcal{I}_{H_{2}^{\prime}}(Y)=\{s\}$.

Proposition 2.6.5. Assume (h1)-(h6), (h8), (h9).
Then z, \hat{v} is a blocking pair of $\left(G_{1}, \Sigma_{1}\right)$. In particular, z, \hat{v} are not adjacent in G_{1}.

Proof. By Proposition 2.6.4, $s \in T_{2}$. It follows from Theorem 2.3.4 that $B:=\delta_{G_{2}}(s)$ is a signature of $\left(G_{1}, \Sigma_{1}\right)$. Then observe that all edges of B are incident to z or \hat{v}. Finally, as G_{1}, G_{2} are a counterexample $\left(G_{1}, \Sigma_{1}\right)$ has no adjacent blocking pair.

Proposition 2.6.6. Assume (h1)-(h6), (h8), (h9).
Then $z \notin T_{1}$ and there exists $\Omega \in A$ such that $\delta_{G_{2}}(s) \cap A=\delta_{G_{2}}(t) \cap A=\{\Omega\}$.

Proof. Observe that $\{s, t\}$ is a mate of $\{z\}$. Let $S_{1}=\delta_{G_{1}}(z) \cap A$ and let $S_{2}=\delta_{G_{2}}(\{s, t\}) \cap A$. By Proposition 2.6.5, z, \hat{v} are not adjacent in G_{1}. Hence, $S_{1}=\emptyset$. Suppose for a contradiction that $z \in T_{1}$. It then follows by Proposition 2.4.12 that $A=S_{1} \Delta S_{2}=S_{2}$. Hence, every edge of A has exactly one end in $\{s, t\}$ in G_{2}. In particular, s, t is a blocking pair of $\left(G_{2}, \Sigma_{2}\right)$. Denote by A^{\prime} the edges in $A \cap \delta_{G_{2}}(s)$. Since $s \in T_{2}$, Theorem 2.3.4 implies that $A^{\prime} \cup \delta_{H_{2}}(s)$ is a signature of $\left(G_{1}, \Sigma_{1}\right)$. But now a blocking pair z, \hat{v} of $\left(G_{1}, \Sigma_{1}\right)$, a blocking pair s, t of $\left(G_{2}, \Sigma_{2}\right)$, and A^{\prime} contradict Proposition 2.4.7. Thus $z \notin T_{1}$ and it follows from Proposition 2.4.12 that $S_{2}=S_{1}=\emptyset$. Hence, edges of A have both or none of their ends in $\{s, t\}$. Let \hat{A} be the set of edges of A that have ends r and s in G_{2}. By Theorem 2.3.4 $\delta_{G_{2}}(r)$ is a signature of $\left(G_{1}, \Sigma_{1}\right)$. Then $\hat{A} \neq \emptyset$ for otherwise z is a blocking vertex of $\left(G_{1}, \Sigma_{1}\right)$, a contradiction to Proposition 2.4.3. Moreover, all edges of \hat{A} have the same parity in $\left(G_{2}, \Sigma_{2}\right)$ as A is a signature. Thus as $\left(G_{2}, \Sigma_{2}\right)$ is simple, \hat{A} contains a unique edge Ω.

Proposition 2.6.7. Assume (h1)-(h6), (h8), (h9) and Y satisfying ($p 1$), (p 2). Then $T_{1} \cap \mathcal{I}_{H_{1}}(Y)=\emptyset$.

Proof. Consider the edge Ω in Proposition 2.6.6.
Claim 1. Ω does not have an end in $\mathcal{I}_{H_{1}}(Y)$.
Subproof. Suppose for a contradiction Ω has end $u \in \mathcal{I}_{H_{1}}(Y)$. Proposition 2.4.9 imply that H_{1}, H_{2} are closed. Then Proposition 2.6.3 implies that there is an edge f with ends u, z in H_{1} and ends u, s in H_{2}. Note that Ω is then incident to f in both G_{1} and G_{2}. Since G_{1}, G_{2} are closed, there exists a triangle $\{f, g, \Omega\}$ of G_{1}, G_{2}. But then z, \hat{v} are joined by g in G_{1} contradicting Proposition 2.6.5.

Let P denote an st-path of H_{2}. It follows by Proposition 2.6.6 that $P \cup\{\Omega\}$ is an odd cycle of $\left(G_{2}, T_{2}\right)$. Hence, by Theorem 2.3.4, $P \cup\{\Omega\}$ is a T_{1}-join of G_{1}. Proposition 2.6.3 implies that $H_{1}[P]=H_{2}[P]$. Together with Claim 1, this completes the proof.

Assume now (h1)-(h6), (h8), (h9) and that we have Y as in (p1), (p2). We will now derive a contradiction, thereby completing the proof of Theorem 2.3.3. Denote by a, b the vertices in $\partial_{H_{2}}(Y)$ and let $Z:=Y \cup\{\Omega\}$. Note that $s \in \mathcal{I}_{G_{2}}(Z)$. To derive a contradiction we will show that Z is a 3 -separation of G_{2}. By possibly interchanging the role of s and t in the previous arguments, we may assume that $\mathcal{I}_{G_{2}}\left(E\left(G_{2}\right)-Z\right) \neq \emptyset$. We have $\partial_{G_{2}}(Z) \supseteq\{a, b, t\}$ and it suffices to show that equality holds. Suppose for a contradiction we have an edge $e \in A-\{\Omega\}$ that has end $u_{2} \in \partial_{G_{2}}(Z)$. By Proposition 2.6.6, $u_{2} \neq s$. We have vertex u_{1} of G_{1} and $\left\{u_{2}\right\}$ is a mate of $\left\{u_{1}\right\}$. By Proposition 2.6.7, $u_{1} \notin T_{1}$ and thus by Proposition 2.4.12, e is also incident to u_{1} in G_{1}. As H_{1}, H_{2} are closed by Proposition 2.4.9 there exists an edge an edge f with ends u_{1}, z in H_{1} and ends u_{2}, s in H_{2}. As G_{1}, G_{2} are closed, there then exists an edge g such that $\{e, f, g\}$ is a triangle of G_{1} and G_{2}. However, g has ends z and \hat{v}, contradicting Proposition 2.6.5. Hence, we have proved Theorem 2.3.3 that characterizes 4-connected closed siblings that are neither graphic nor cographic.

Chapter 3

Bounding the number of representations

The work in this chapter appears in $[20,21,31]$. Let us restate Theorem 1.1.1.
Theorem 1.1.1. Any two graph representations of a graphic matroid are equivalent.

Theorem 1.1.1 implies that every graphic matroid has a unique equivalence class of graph representations, equivalently, every cographic matroid has a unique equivalence class of graph representations. Since every graph representation of a 3-connected graphic (resp. cographic) matroid has no 2-separation, there exists at most one graph representation for a 3 -connected matroid.

Alas, as seen in Section 1.3.1 and Section 1.3.2, 3-connected even-cycle (resp. even-cut) matroids can have exponentially many pair-wise inequivalent blocking pair (resp. T_{4}) representations. Recall that a signed-graph representation is a blocking-pair representation if it has a blocking pair. A graft representation is a T_{4} representation if its terminal set contains at most 4 vertices.

Recall the three theorems from Section 1.3 that give a polynomial bounds for each of non-pinch-graphic even-cycle, non-pinch-cographic even-cut and $(4,5)$-connected pinch-graphic matroids, respectively.

Theorem 1.3.1. There exists a constant c such that every even-cycle matroid that is not pinch-graphic has fewer than c pairwise inequivalent signed-graph representations.

Theorem 1.3.2. There exists a constant c such that every even-cut matroid that is not pinch-cographic has fewer than c pairwise inequivalent graft representations.

Theorem 1.3.3. Let M be a pinch-graphic matroid that is not graphic. If M is $(4,5)$ connected then the number of blocking-pair representations of M is in $\mathcal{O}\left(|E(M)|^{4}\right)$.

To prove Theorem 1.3.1, we use the stabilizer theorem for even-cycle matroids proven by Guenin, Pivotto and Wollan [26], which will be stated in Section 3.1.1. Then, we characterize 1- and 2-separations in signed-graph representations of non-pinch-graphic even-cycle matroids in Section 3.1.3. In Section 3.1.4, we prove Theorem 1.3.1.

To prove Theorem 1.3.2, we use similar steps as above. We state the stabilizer theorem for even-cut matroids [25] in Section 3.2.1, and we characterize, in Section 3.2.3, 1- and 2-separations in graft representations of non-pinch-cographic even-cut matroids. As a result, we prove the theorem in Section 3.2.4.
A chain theorem obtained by combining existing results will be presented in Section 3.3.1. We review connectivity in even-cycle and even-cut matroids in Section 3.3.2. We will prove a strong version of Theorem 1.3.3 in Section 3.3.3 by using two key lemmas that are proved in Section 3.3.4.

3.1 Even-cycle matroids

3.1.1 The 3-connected case

The goal of this section is to prove Theorem 1.3.1. First, we will prove Theorem 1.3.1 for the special case where the even-cycle matroid is 3-connected.

A binary matroid is minimally non-pinch-graphic if it is not pinch-graphic, but every proper minor is. Minor-closed classes of binary matroids are well-quasi ordered [13]. Hence,

Theorem 3.1.1. There exists a constant c, such that every minimally non-pinch-graphic (resp. minimally non-pinch-cographic) matroid has at most c elements.

For a matroid N, a connected component of N is a maximal subset F of $E(N)$ such that, for every pair of edges in F, there exists a circuit of N containing both of them. We denote by $\lambda_{1}(N)$ the number of connected components of N. Now, N can be constructed from a collection $\Lambda_{2}(N)$ of 3-connected matroids by 1-sum and 2-sum. Cunningham and Edmonds [8] showed that $\Lambda_{2}(N)$ is unique up to isomorphism. Let $\lambda_{2}(N)$ be the number of matroids in $\Lambda_{2}(N)$.

Theorem 3.1.2 (Lemos and Oxley [34]). Let N be a non-empty matroid and M be a minor-minimal 3-connected matroid having N as a minor. Then $|E(M)|-|E(N)| \leq$ $22\left(\lambda_{1}(N)-1\right)+5\left(\lambda_{2}(N)-1\right)$.

Note that, for an even-cycle matroid M, the set of signed-graph representations for M can be partitioned into equivalence classes.

Theorem 3.1.3 (Guenin, Pivotto, and Wollan [27]). Let M be a 3-connected matroid and let N be a 3-connected minor of M that is not pinch-graphic. Then there exists a matroid
\tilde{N} isomorphic to N that is a minor of M such that for every equivalence class \mathcal{F} of \tilde{N}, the set of extensions of \mathcal{F} to M is the union of at most two equivalence classes.

Given a binary matroid M we denote by $f(M)$ the number of pairwise inequivalent signedgraph representations of M (thus M is an even-cycle matroid exactly when $f(M) \geq 1$).

Let us now restate and prove Theorem 1.3.1 assuming 3-connectivity.
Theorem 3.1.4. There exists a constant d such that for every 3 -connected even-cycle matroid M that is not pinch-graphic, $f(M) \leq d$.

Proof. Since M is not pinch-graphic, it has a minor N that is minimally non-pinch-graphic. By Theorem 3.1.1, $|E(N)| \leq c$ for some constant c. In particular, $\lambda_{1}(N), \lambda_{2}(N) \leq c$. Let N^{\prime} be a minor-minimal matroid with the following properties:
(a) N^{\prime} is 3-connected,
(b) N is a minor of N^{\prime} and
(c) N^{\prime} is a minor of M.

Since $M=N^{\prime}$ satisfies (a)-(c), N^{\prime} is well-defined. By Theorem 3.1.2,

$$
\left|E\left(N^{\prime}\right)\right| \leq c+22(c-1)+5(c-1) \leq 28 c .
$$

Thus N^{\prime} has a constant number, say c^{\prime}, of equivalence classes. It follows by Theorem 3.1.3 that there are at most $2 c^{\prime}$ equivalence classes for M, i.e. $f(M) \leq 2 c^{\prime}=: d$ as required.

3.1.2 A connectivity function and auxiliary graphs

Recall that, for a matroid M, the connectivity function takes $X \subseteq E(M)$ as input and returns $\lambda_{M}(X):=r_{M}(X)+r_{M}(E(M)-X)-r(M)$. In this section, we wish to specialize this function to the case of even-cycle and even-cut matroids. Given a graph H we denote by $\kappa(H)$ the number of components of H. A signed graph is bipartite if it has no odd cycle. Given a signed graph (G, Σ), we define

$$
p[(G, \Sigma)]:= \begin{cases}0 & \text { if }(G, \Sigma) \text { is bipartite } \\ 1 & \text { otherwise }\end{cases}
$$

Proposition 3.1.5 ([27], Lemma 26). Consider an even-cycle matroid M with a nonbipartite connected signed-graph representation (G, Σ). Let X, Y be a partition of $E(M)$ where X, Y are non-empty. Then

$$
\lambda_{M}(X)=\left|\partial_{G}(X)\right|-\kappa(G[X])-\kappa(G[Y])+p[(G, \Sigma) \backslash X]+p[(G, \Sigma) \backslash Y] .
$$

Consider a graph G and a set $X \subseteq E(G)$ where $X \neq \emptyset$ and $X \neq E(G)$. We define the auxiliary graph H for the pair G and X as follows: H is bipartite with bipartition U, W where vertices in U correspond to components of $G[X]$ and vertices in W correspond to components in $G[E(G)-X]$. For every $v \in \partial_{G}(X)$ we have an edge e_{v} of H with endpoints $u \in U$ and $w \in W$ where u corresponds to the unique component of $G[X]$ containing v and w corresponds to the unique component of $G[E(G)-X]$ containing v. We give an example in Figure 3.1. For each of (i), (ii), (iii) we have the auxiliary graph H on top and G where the non-shaded region correspond to edges in X on the bottom.

Let us restate Proposition 3.1.5 in terms of auxiliary graph,
Proposition 3.1.6. Consider an even-cycle matroid M with a non-bipartite connected signed-graph representation (G, Σ). Let X, Y be a partition of $E(M)$ where X, Y are

Figure 3.1: Examples of auxiliary graphs
non-empty. Denote by H the auxiliary graph for the pair G and X. Then

$$
|E(H)|=|V(H)|+\lambda_{M}(X)-p[(G, \Sigma) \backslash X]-p[(G, \Sigma) \backslash Y] \geq|V(H)|-1
$$

Proof. Note that $|V(H)|=\kappa(G[X])+\kappa(G[Y])$ and $|E(H)|=\left|\partial_{G}(X)\right|$. So, Proposition 3.1.5 implies that

$$
\lambda_{M}(X)=|E(H)|-|V(H)|+p[(G, \Sigma) \backslash X]+p[(G, \Sigma) \backslash Y]
$$

Finally, as G is connected, so is H. Thus $|E(H)| \geq|V(H)|-1$ and the result follows.

A graph obtained from two disjoint polygons C_{1}, C_{2} by identifying a vertex of C_{1} with a vertex of C_{2} is a double ear. Recall that a graph that consists of three internally disjoint $a b$-paths P_{1}, P_{2}, P_{3} (all vertices except a, b have degree two) is a theta. The auxiliary graph in Figure 3.1 (i) is a double ear, and the auxiliary graphs in Figure 3.1 (ii), (iii) are thetas.

Remark 3.1.7. If H is a 2-edge-connected graph where $|E(H)|=|V(H)|+1$ then H is a theta or a double ear.

3.1.3 1- and 2-separations in signed graphs

Let M_{1}, M_{2} be matroids on ground sets E_{1}, E_{2}, respectively where $\left|E_{1}\right|,\left|E_{2}\right| \geq 1$. Suppose that $E_{1} \cap E_{2}=\emptyset$. Then, we define the 1-sum M of M_{1}, M_{2}, denoted by $M_{1} \oplus_{1} M_{2}$, as follows: the ground set of M is $E:=E_{1} \cup E_{2}$ and a subset C of E is a circuit of M if and only if C is either a circuit of M_{1} or a circuit of M_{2}.

Let M_{1}, M_{2} be matroids on ground sets E_{1}, E_{2}, respectively where $\left|E_{1}\right|,\left|E_{2}\right| \geq 3$. Suppose that $E_{1} \cap E_{2}=\{\Omega\}$ and that Ω is neither a loop nor a coloop of M_{i} for $i \in[2]$. Then, we define the 2-sum M of M_{1}, M_{2}, denoted by $M_{1} \oplus_{2} M_{2}$, as follows: the ground set of M is $E:=E_{1} \Delta E_{2}$ and a subset C of E is a circuit of M if and only if either C is a circuit of $M_{1} \backslash \Omega$ or $M_{2} \backslash \Omega$, or $C=C_{1} \Delta C_{2}$ where for $i \in[2], C_{i}$ is a circuit of M_{i} containing Ω.

Let M be a connected matroid and let X be a 2-separation of M. Then $M=M_{1} \oplus_{2} M_{2}$ for some matroids M_{1}, M_{2} where $X=E\left(M_{1}\right)-E\left(M_{2}\right)$ [44], (2.6). We would like to describe how M_{1} and M_{2} arise from the separation X for the case of binary matroids.

We first require the following folklore observation,
Proposition 3.1.8. Let M be a matroid with matrix representation A and let $X \subseteq E(M)$. We denote by $\langle X\rangle$ the vector space spanned by the columns of A indexed by X. Then

$$
\lambda_{M}(X)=\operatorname{dim}[\langle X\rangle \cap\langle E(M)-X\rangle] .
$$

Let M be a binary matroid with matrix representation A, and let X be a 2 -separation of M. Then, $\lambda_{M}(X)=1$. It follows from Proposition 3.1.8 that $\operatorname{dim}[\langle X\rangle \cap\langle E(M)-X\rangle]=1$. Thus there exists a unique non-zero 0,1 vector p for which $\langle p\rangle=\langle X\rangle \cap\langle E(M)-X\rangle$. Let A^{+}be obtained from matrix A by adding column p and let N be the binary matroid represented by matrix A^{+}. Then N is the completion of M with respect to X.

Proposition 3.1.9. Let M be a binary matroid with a 2-separation X. Let N be the completion of M with respect to X. Then $M=(N \backslash X) \oplus_{2}(N \backslash E(M)-X)$.

Proof. Let $M_{1}=N \backslash X$ and $M_{2}=N \backslash E(M)-X$. Denote by Ω the unique element in $E\left(M_{1}\right) \cap E\left(M_{2}\right)$. It suffices to show that the following statements are equivalent,
(1) C is a circuit of M where $C \cap X, C-X \neq \emptyset$,
(2) $C=C_{1} \Delta C_{2}$ where for $i \in[2], C_{i}$ is a circuit of M_{i} using Ω.

Let A denote the 0,1 matrix representation of N. Suppose (1) holds. Let $p=\sum\left(A_{j}: j \in\right.$ $C \cap X)=\sum\left(A_{j}: j \in C-X\right)$. Then $\emptyset \neq p \in\langle X\rangle \cap\langle E(M)-X\rangle$ and thus $p=A_{\Omega}$. Hence, $C_{1}=(C \cap X) \cup \Omega$ is a circuit of M_{1} and $C_{2}=(C-X) \cup \Omega$ is circuit of M_{2} satisfying (2). Suppose (2) holds. Then $\sum\left(A_{j}: j \in C \cap X\right)=\sum\left(A_{j}: j \in C-X\right)=A_{\Omega}$. Thus $\sum\left(A_{j}: j \in C\right)=\mathbf{0}$, i.e. C is a cycle of M. As C_{1}, C_{2} are circuits so is C. As $A_{\Omega} \neq \mathbf{0}$ we have $C \cap X, C-X \neq \emptyset$, i.e. (1) holds.

The following straightforward observation will allow us to construct completions,
Remark 3.1.10. Let M be a binary matroid with a 2 -separation X. Let N be a binary matroid where $M=N \backslash \Omega$ for some Ω that is not a loop of N. If we have cycles C and D of N where $\Omega \in C \cap D$ and $C \subseteq X \cup \Omega, D \subseteq(E(M)-X) \cup \Omega$ then N is the completion of M with respect to X.

Here we apply Proposition 3.1.9 to even-cycle and even-cut matroids.
Proposition 3.1.11. Let $M=\operatorname{ecycle}(G, \Sigma)$ with a 2 -separation X and let $Y=E(M)-X$. Suppose that $p[(G, \Sigma) \backslash X]=p[(G, \Sigma) \backslash Y]=1$. Let $\left(G_{1}, \Sigma_{1}\right)$ be obtained from $(G, \Sigma) \backslash Y$ by adding an odd loop Ω and let $\left(G_{2}, \Sigma_{2}\right)$ be obtained from $(G, \Sigma) \backslash X$ by adding an odd loop Ω. Then $M=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right) \oplus_{2} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$.

Proof. Let (H, Γ) be the signed-graph obtained from (G, Σ) by adding an odd loop Ω. Note, Ω is not a loop of ecycle (H, Γ) as $\Omega \in \Gamma$. Since $(G, \Sigma) \backslash X$ and $(G, \Sigma) \backslash Y$ are non-bipartite there exists odd polygons $C_{1} \subseteq Y$ and $C_{2} \subseteq X$. Then $C_{1} \cup \Omega$ and $C_{2} \cup \Omega$ are even-cycles of (H, Γ). By Remark 3.1.10 ecycle (H, Γ) is the completion of M with respect to X. By Proposition 3.1.9, $M=(N \backslash Y) \oplus_{2}(N \backslash X)$. Moreover, $N \backslash Y=\operatorname{ecycle}(H, \Gamma) \backslash Y=$ $\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right)$ and similarly, $N \backslash X=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$.

In Proposition 3.1.11, we say that (G, Σ) is obtained from $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ by summing on a loop.

Proposition 3.1.12. Let $M=\operatorname{ecycle}(G, \Sigma)$ with a 2 -separation X and let $Y=E(M)-X$. Suppose that $p[(G, \Sigma) \backslash Y]=1, p[(G, \Sigma) \backslash X]=0$ that $G \backslash X, G \backslash Y$ are connected and that $\partial_{G}(X)=\{a, b\}$ where a, b are distinct vertices. Then we may assume, after possibly re-signing, that $\Sigma \subseteq X$. Let G_{1} (resp. G_{2}) be obtained from $G \backslash Y$ (resp. $G \backslash X$) by adding edge $\Omega=(a, b)$. Then $M=\operatorname{ecycle}\left(G_{1}, \Sigma\right) \oplus_{2} \operatorname{cycle}\left(G_{2}\right)$.

Proof. As $p[(G, \Sigma) \backslash X]=0$ we may assume $\Sigma \subseteq X$. Let (H, Σ) be the signed-graph obtained from (G, Σ) by adding edge $\Omega=(a, b)$. Note, Ω is not a loop of ecycle (H, Σ) as it is not a loop of H. Since $(G, \Sigma) \backslash Y$ is connected and non-bipartite, there exists an $\{a, b\}$-join J of $G \backslash Y$ where $|J \cap \Sigma|$ is even. Since $G \backslash X$ is connected there exists an $a b$-path P of $G \backslash X$. Then $J \cup \Omega$ and $P \cup \Omega$ are even cycles of (H, Σ). It follows by Remark 3.1.10 that ecycle (H, Σ) is the completion of M with respect to X. By Proposition 3.1.9, $M=(N \backslash Y) \oplus_{2}(N \backslash X)$. Moreover, $N \backslash Y=\operatorname{ecycle}(H, \Sigma) \backslash Y=\operatorname{ecycle}\left(G_{1}, \Sigma\right)$ and $N \backslash X=\operatorname{ecycle}(H, \Sigma) \backslash X=\operatorname{cycle}\left(G_{2}\right)$.

In Proposition 3.1.12, we say that (G, Σ) is obtained from $\left(G_{1}, \Sigma\right)$ and G_{2} by summing on an edge.

3.1.4 The proof of Theorem 1.3.1

Because of Theorem 3.1.4 and the fact that every matroid M can be constructed from a collection of 3 -connected matroids by 1 -sums and 2 -sums, it suffices to prove the following Proposition 3.1.14 and Proposition 3.1.15 to complete the proof of Theorem 1.3.1.

Consider an even-cycle matroid M and a set $X \subseteq E(G)$ where $X \neq \emptyset$ and $X \neq E(G)$. A connected signed-graph representation (G, Σ) of M is extremal for X if among all connected signed-graph representations of M that are equivalent to (G, Σ), the auxiliary graph for G and X has fewest number of vertices. (Note that if (G, Σ) is a signed-graph representation of M then there is an equivalent signed-graph representation that is connected.)

We leave the following as an easy exercise.
Remark 3.1.13. Let (G, Σ) be an extremal signed-graph representation of an even-cycle matroid M for some $X \subseteq E(M)$. Then the auxiliary graph H for G and X is 2-edgeconnected unless H consists of two vertices joined by a single edge.

Recall that, for a binary matroid $M, f(M)$ is the number of pairwise inequivalent signedgraph representations of M.

Proposition 3.1.14. If $M=M_{1} \oplus_{1} M_{2}$ for some binary matroids M_{1}, M_{2} where M is not graphic then

$$
f(M) \leq \max \left\{f\left(M_{1}\right), f\left(M_{2}\right)\right\} .
$$

Proof. Define $X=E\left(M_{1}\right)$ and $Y=E\left(M_{2}\right)$. Then $M_{1}=M \backslash Y, M_{2}=M \backslash X$ and $\lambda_{M}(X)=0$. Since M is not graphic at least one of M_{1} or M_{2} is not graphic. Thus, we may assume that M_{1} is not graphic. We may assume that $f(M) \geq 1$; otherwise, $f(M)=0$ and the result holds. Let (G, Σ) be a signed-graph representation of M that is extremal for X.

Then, $(G, \Sigma) \backslash Y$ is a representation of M_{1}. In particular, as M_{1} is not graphic, $(G, \Sigma) \backslash Y$ is not bipartite, i.e. $p[(G, \Sigma) \backslash Y]=1$. Let H denote the auxiliary graph for G and X. Then by Proposition 3.1.6,

$$
|E(H)|=|V(H)|-p[(G, \Sigma) \backslash X]-p[(G, \Sigma) \backslash Y] \geq|V(H)|-1
$$

Hence, (i) $|E(H)|=|V(H)|-1$ and (ii) $p[(G, \Sigma) \backslash X]=0$. By (i) and Remark 3.1.13, we have $|V(H)|=2$ and $|E(H)|=1$, i.e. $G \backslash X, G \backslash Y$ are connected and share exactly one vertex in G. By (ii), we may assume $\Sigma \subseteq X$ and $M_{2}=\operatorname{cycle}(G \backslash X)$. Let $\left(G^{\prime}, \Sigma^{\prime}\right)$ be any other signed-graph representation of M that is extremal for X. Then we may assume that $\Sigma^{\prime} \subseteq X$ and $M_{2}=\operatorname{cycle}\left(G^{\prime} \backslash X\right)$. Then $G \backslash X$ and $G^{\prime} \backslash X$ are equivalent by Theorem 1.1.1. It follows that (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ are equivalent if and only if $(G, \Sigma) \backslash Y$ and $\left(G^{\prime}, \Sigma^{\prime}\right) \backslash Y$ are equivalent. Hence, $f(M)=f\left(M_{1}\right)$.

Proposition 3.1.15. If $M=M_{1} \oplus_{2} M_{2}$ for some binary matroids M_{1}, M_{2} where M is not pinch-graphic then

$$
f(M) \leq \max \left\{f\left(M_{1}\right), f\left(M_{2}\right)\right\}
$$

Proof. Denote by Ω the unique element in $E\left(M_{1}\right) \cap E\left(M_{2}\right)$ and let $X=E\left(M_{1}\right)-\Omega$, $Y=E\left(M_{2}\right)-\Omega$. We have $\lambda_{M}(X)=1$. Let (G, Σ) be a signed-graph representation of M that is extremal for X. Let H denote the auxiliary graph for G and X. Then by Proposition 3.1.6

$$
\begin{equation*}
|E(H)|=|V(H)|+1-p[(G, \Sigma) \backslash X]-p[(G, \Sigma) \backslash Y] \geq|V(H)|-1 \tag{3.1}
\end{equation*}
$$

Claim 1. $p[(G, \Sigma) \backslash X]+p[(G, \Sigma) \backslash Y] \geq 1$.
Subproof. Otherwise, by (3.1), we have $|E(H)|=|V(H)|+1 . \quad(G, \Sigma)$ is extremal for X. Thus, by Remark 3.1.13, H is 2-edge-connected. Remark 3.1.7 implies that H is a theta or
a double ear. Consider first the case where H is a theta formed by st-paths P_{1}, P_{2}, P_{3}. As (G, Σ) is extremal for X and since H is bipartite, either (a) for $j \in[3], P_{j}$ consists of one edge, or (b) for $j \in[3], P_{j}$ consists of two edges. Case (a) is illustrated in Figure 3.1(ii) and case (b) is illustrated in Figure 3.1(iii). For both cases we may assume after re-signing that $\Sigma=\delta_{G}(r) \cap X$ where r is denoted in the figures. Hence, M is pinch-graphic, a contradiction (in fact, M is graphic). Consider the case where H is a double ear formed by polygons C_{1}, C_{2}. As (G, Σ) is extremal for X, C_{1} and C_{2} each consist of two parallel edges. This case is illustrated in Figure 3.1(a). We may assume after re-signing that $\Sigma=\left[\delta_{G}(r) \cup \delta_{G}(s)\right] \cap X$ where X is the non-shaded region and r, s are indicated in the figure. But then (G, Σ) has a blocking pair and M is pinch-graphic, a contradiction.

Claim 2. Suppose $p[(G, \Sigma) \backslash X]=0$ and $p[(G, \Sigma) \backslash Y]=1$. Then we may assume that $\Sigma \subseteq X$. Moreover, $M_{1}=\operatorname{ecycle}\left(G_{1}, \Sigma\right), M_{2}=\operatorname{cycle}\left(G_{2}\right)$ where (G, Σ) is obtained from $\left(G_{1}, \Sigma\right)$ and G_{2} by a summing on edge Ω. In particular, M_{2} is graphic.

Subproof. By (3.1), $|E(H)|=|V(H)|$, and by Remark 3.1.13, H is a 2-connected graph with exactly one polygon. Since (G, Σ) is extremal for X we have $|V(H)|=|E(H)|=2$, i.e. $G \backslash X, G \backslash Y$ are connected and share exactly two vertices, say u, v in G. Then the result holds by Proposition 3.1.12.

Claim 3. Suppose $p[(G, \Sigma) \backslash X]=p[(G, \Sigma) \backslash Y]=1$. Then $M_{1}=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right), M_{2}=$ ecycle $\left(G_{2}, \Sigma_{2}\right)$ where (G, Σ) is obtained from $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ by a summing on loop Ω.

Subproof. By (3.1), $|E(H)|=|V(H)|-1$, and by Remark 3.1.13, we have $|V(H)|=2$ and $|E(H)|=1$, i.e. $G \backslash X, G \backslash Y$ are connected and share exactly one vertex in G. Then the result holds by Proposition 3.1.11.
M_{1} and M_{2} are not both graphic for otherwise so would M, a contradiction. It follows from Claim 2 that we cannot have extremal representations (G, Σ) and ($G^{\prime}, \Sigma^{\prime}$) of M with $p[(G, \Sigma) \backslash X]=0, p[(G, \Sigma) \backslash Y]=1$ and $p\left[\left(G^{\prime}, \Sigma^{\prime}\right) \backslash X\right]=1, p\left[\left(G^{\prime}, \Sigma^{\prime}\right) \backslash Y\right]=0$. We may assume that M_{1} is not graphic. Hence, because of Claim $1(G, \Sigma)$ is of one of the following types,

Type 1. $p[(G, \Sigma) \backslash X]=0$ and $p[(G, \Sigma) \backslash Y]=1$ or
Type 2. $p[(G, \Sigma) \backslash X]=1$ and $p[(G, \Sigma) \backslash Y]=1$.
Let $h_{1}\left(\right.$ resp. $\left.h_{2}\right)$ denote the number of inequivalent representations of M_{1} with a non-loop Ω (resp. loop Ω). Let f_{1} (resp. f_{2}) denote the number of inequivalent Type 1 (resp. Type 2) representations of M. Note, $f(M)=f_{1}+f_{2}$ and $f\left(M_{1}\right)=h_{1}+h_{2}$.

Claim 4. $f_{1} \leq h_{1}$.
Subproof. Consider Type I representations (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ of M. Then (G, Σ) is obtained from $\left(G_{1}, \Sigma\right)$ and G_{2} by a summing on edge Ω and $\left(G^{\prime}, \Sigma^{\prime}\right)$ is obtained from $\left(G_{1}^{\prime}, \Sigma^{\prime}\right)$ and G_{2}^{\prime} by a summing on edge Ω. As $M_{2}=\operatorname{cycle}\left(G_{2}\right)=\operatorname{cycle}\left(G_{2}^{\prime}\right)$ it follows from Theorem 1.1.1 that G_{2} and G_{2}^{\prime} are equivalent. It follows that (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ are equivalent if and only if $\left(G_{1}, \Sigma\right)$ and $\left(G_{1}^{\prime}, \Sigma^{\prime}\right)$ are equivalent. The result follows.

Claim 5. $f_{2} \leq h_{2}$.
Subproof. Consider Type 2 representations (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ of M. Then (G, Σ) is obtained from $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ by a summing on loop Ω and ($\left.G^{\prime}, \Sigma^{\prime}\right)$ is obtained from $\left(G_{1}^{\prime}, \Sigma_{1}^{\prime}\right)$ and $\left(G_{2}^{\prime}, \Sigma_{2}^{\prime}\right)$ by a summing on loop Ω. It follows from Remark 2.4.4 that $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{1}^{\prime}, \Sigma_{1}^{\prime}\right)$ are equivalent and also that $\left(G_{2}, \Sigma_{2}\right)$ and $\left(G_{2}^{\prime}, \Sigma_{2}^{\prime}\right)$ are equivalent. Thus (G, Σ) and $\left(G^{\prime}, \Sigma^{\prime}\right)$ are equivalent. It follows that $f_{2} \leq 1$ and clearly, $f_{2}=0$ if $h_{2}=0$.

Then $f(M)=f_{1}+f_{2} \leq h_{1}+h_{2}=f\left(M_{1}\right)$ as required.

3.2 Even-cut matroids

3.2.1 The 3-connected case

The goal of this section is to prove Theorem 1.3.2. First, we will prove Theorem 1.3.2 for the special case where the even-cut matroid is 3 -connected.

A binary matroid is minimally non-pinch-cographic if it is not pinch-cographic, but every proper minor is. Note that, for an even-cut matroid M, the set of graft representations can be partitioned into equivalence classes.

Theorem 3.2.1 (Guenin, Pivotto [25], [40]). Let M be a 3-connected matroid and let N be a 3-connected minor of M that is not pinch-cographic. Then there exists a matroid \tilde{N} isomorphic to N that is a minor of M such that for every equivalence class \mathcal{F} of \tilde{N}, the set of extensions of \mathcal{F} to M is the union of at most two equivalence classes.

Given a binary matroid M we denote by $g(M)$ the number of pairwise inequivalent graft representations of M (thus, M is an even-cut matroid exactly when $g(M) \geq 1$).

Theorem 3.2.2. There exists a constant d such that for every 3-connected even-cut matroid M that is not pinch-cographic, $g(M) \leq d$.

The proof is nearly identical to that of Theorem 3.1.4. It suffices to replace in that proof, pinch-graphic by pinch-cographic, and Theorem 3.1.3 by Theorem 3.2.1.

3.2.2 A connectivity function and auxiliary graphs

A graft is eulerian if it has no odd cut. Given a graft (G, T) we define,

$$
q[(G, T)]:= \begin{cases}0 & \text { if }(G, T) \text { is eulerian } \\ 1 & \text { otherwise }\end{cases}
$$

Proposition 3.2.3 ([25]). Consider an even-cut matroid M with a non-eulerian connected graft representation (G, T). Let X, Y be a partition of $E(M)$ where X, Y are non-empty. Then

$$
\lambda_{M}(X)=\left|\partial_{G}(X)\right|-\kappa(G[X])-\kappa(G[Y])+q[(G, T) / X]+q[(G, T) / Y]
$$

Similarly, we can restate Proposition 3.2.3 in terms of the auxiliary graph.

Proposition 3.2.4. Consider an even-cut matroid M with a non-eulerian connected graft representation (G, T). Let X, Y be a partition of $E(M)$ where X, Y are non-empty. Denote by H the auxiliary graph for the pair G and X. Then

$$
|E(H)|=|V(H)|+\lambda_{M}(X)-q[(G, T) / X]-q[(G, T) / Y] \geq|V(H)|-1
$$

We omit the proof as it is similar to that of Proposition 3.1.6.

3.2.3 1- and 2-separations in grafts

In a graft (G, T) an edge e is a pin with head v if e has an endpoint $v \in T$ where v has degree 1. By adding a pin e to a graft (G, T) we mean adding a pendent edge $e=(u, v)$ to G (where v denotes the vertex of degree 1) and replacing the set of terminals by $T \Delta\{u, v\}$. Consider a graph G and let α be a subset of edges that are either incident to a fixed vertex
w or contained in loops. Let G^{\prime} be obtained from G by replacing w with vertices w^{\prime} and $w^{\prime \prime}$ such that (i) edges in $\alpha \cap \delta_{G}(w)$ are incident to w^{\prime}, (ii) edges in $\delta_{G}(w)-\alpha$ are incident to $w^{\prime \prime}$, and (iii) loops of G in α are joining w^{\prime} and $w^{\prime \prime}$. Then G^{\prime} is obtained from G by splitting w according to α. If in addition to (i)-(iii) we add an edge $\Omega=\left(w^{\prime}, w^{\prime \prime}\right)$ then the resulting graph is obtained from G by uncontracting Ω at w according to α. Next we state the analogue of propositions 3.1.11 and 3.1.12 for even-cuts.

Proposition 3.2.5. Let $M=\operatorname{ecut}(G, T)$ with a 2-separation X and let $Y=E(M)-X$. Suppose that $q[(G, T) / X]=q[(G, T) / Y]=1$. Let $\left(G_{1}, T_{1}\right)$ be obtained from $(G, T) / Y$ by adding a pin Ω and let $\left(G_{2}, T_{2}\right)$ be obtained from $(G, T) / X$ by adding a pin Ω. Then $M=\operatorname{ecut}\left(G_{1}, T_{1}\right) \oplus_{2} \operatorname{ecut}\left(G_{2}, T_{2}\right)$.

Proof. Let (H, R) be the graft obtained from (G, T) by adding a pin Ω. Note, Ω is not a loop of ecut (H, R) as Ω is a pin. There exist odd cuts C_{1} and C_{2} of $(G, T) / Y$ and $(G, T) / X$ respectively. Then $C_{1} \cup \Omega$ and $C_{2} \cup \Omega$ are even-cuts of (H, R). By Remark 3.1.10, ecut (H, R) is the completion of M with respect to X. By Proposition 3.1.9, $M=(N \backslash Y) \oplus_{2}(N \backslash X)$. Moreover, $N \backslash Y=\operatorname{ecut}(H, R) \backslash Y=\operatorname{ecut}((H, R) / Y)=\operatorname{ecut}\left(G_{1}, T_{1}\right)$. Similarly, $N \backslash X=$ $\operatorname{ecut}\left(G_{2}, T_{2}\right)$.

In Proposition 3.2.5, we say that (G, T) is obtained from $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ by summing on a pin.

Proposition 3.2.6. Let $M=\operatorname{ecut}(G, T)$ with a 2 -separation X and let $Y=E(M)-X$. Suppose that $q[(G, T) / Y]=1, q[(G, T) / X]=0$ that $G \backslash X, G \backslash Y$ are connected and that $\partial_{G}(X)=\{a, b\}$ where a, b are distinct vertices. Then, $T \subseteq V_{G}(X)$ and let G_{1} (resp. G_{2}) be obtained from $G \backslash Y$ (resp. $G \backslash X$) by adding an edge Ω with endpoints a, b. Then $M=\operatorname{ecut}\left(G_{1}, T\right) \oplus_{2} \operatorname{cut}\left(G_{2}\right)$.

Proof. As $q[(G, T) / X]=0$, we have $T \subseteq V_{G}(X)$. Let H be obtained from G by uncontracting Ω at a according to $X \cap \delta_{G}(a)$ where Ω has endpoints a, a^{\prime} in H and a is incident to $X \cap \delta_{G}(a)$ and a^{\prime} is incident to $\delta_{G}(a) \cap Y$. Since $G \backslash X$ and $G \backslash Y$ are connected Ω is not a bridge of H, in particular, Ω is not a loop of ecut (H, T). Since $(G, T) / Y$ is non-eulerian, there exists an even cut $C_{1} \subseteq X \cup \Omega$ of (H, T) where $\Omega \in C_{1}$. There exists a cut $C_{2} \subseteq Y \cup \Omega$ of H where $\Omega \in C_{2}$. Note, C_{2} is a T-even cut as $T \subseteq V_{G}(X)$. It follows by Remark 3.1.10 that ecut (H, T) is the completion of M. By Proposition 3.1.9, $M=(N \backslash Y) \oplus_{2}(N \backslash X)$. Moreover, $N \backslash Y=\operatorname{ecut}((H, T) / Y)=\operatorname{ecut}\left(G_{1}, T\right)$ and $N \backslash X=\operatorname{ecut}((H, T) / X)=\operatorname{cut}\left(G_{2}\right)$.

In Proposition 3.2.6, we say that (G, T) is obtained from $\left(G_{1}, T_{1}\right)$ and G_{2} by summing on an edge.

3.2.4 The proof of Theorem 1.3.2

Since every matroid M can be constructed from a collection of 3 -connected matroids by 1 -sums and 2 -sums, it suffices to prove propositions 3.2.7 and 3.2.8 to complete the proof of Theorem 1.3.2.

Consider an even-cut matroid M and a set $X \subseteq E(G)$ where $X \neq \emptyset$ and $X \neq E(G)$. A connected graft representation (G, T) of M is extremal for X if among all connected graft representations of M that are equivalent to (G, T), the auxiliary graph for G and X has fewest number of vertices. (Note that if (G, T) is a graft representation of M then there is an equivalent graft representation that is connected.) Recall that, for a binary matroid M, $g(M)$ is the number of pairwise inequivalent graft representations of M.

Proposition 3.2.7. If $M=M_{1} \oplus_{1} M_{2}$ for some binary matroids M_{1}, M_{2} where M is not
cographic then

$$
g(M) \leq \max \left\{g\left(M_{1}\right), g\left(M_{2}\right)\right\} .
$$

Proof. Define $X=E\left(M_{1}\right)$ and $Y=E\left(M_{2}\right)$. Then $M_{1}=M \backslash Y, M_{2}=M \backslash X$ and $\lambda_{M}(X)=0$. Since M is not cographic we may assume M_{1} is not cographic. We may assume that $g(M) \geq 1$; otherwise, $g(M)=0$ and the result holds. Let (G, T) be a graft representation of M that is extremal for X. Then $(G, T) / Y$ is a representation of M_{1}. In particular, as M_{1} is not cographic, $(G, T) / Y$ is not eulerian, i.e. $q[(G, T) / Y]=1$. Let H denote the auxiliary graph for G and X. Then by Proposition 3.2.4,

$$
|E(H)|=|V(H)|-q[(G, \Sigma) / X]-q[(G, \Sigma) / Y] \geq|V(H)|-1 .
$$

Hence, (i) $|E(H)|=|V(H)|-1$ and (ii) $q[(G, \Sigma) / X]=0$. By (i) and since (G, T) is extremal for X, we have $|V(H)|=2$ and $|E(H)|=1$, i.e. $G / X, G / Y$ are connected and share exactly one vertex in G. By (ii) we may assume $T \subseteq V_{G}(X)$ and $M_{2}=\operatorname{cut}(G / X)$. Let $\left(G^{\prime}, T^{\prime}\right)$ be any other graft representation of M that is extremal for X. Then we may assume that $T^{\prime} \subseteq V_{G}(X)$ and $M_{2}=\operatorname{cut}\left(G^{\prime} / X\right)$. Then $\operatorname{cut}(G / X)=\operatorname{cut}\left(G^{\prime} / X\right)$ or equivalently, $\operatorname{cycle}(G / X)=\operatorname{cut}\left(G^{\prime} / X\right)$. It follows by Theorem 1.1.1 that G / X and G^{\prime} / X are equivalent. Hence, (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ are equivalent if and only if $(G, T) / Y$ and $\left(G^{\prime}, T^{\prime}\right) / Y$ are equivalent. Thus, $g(M) \leq g\left(M_{1}\right)$.

Proposition 3.2.8. If $M=M_{1} \oplus_{2} M_{2}$ for some binary matroids M_{1}, M_{2} where M is not pinch-cographic then

$$
g(M) \leq \max \left\{g\left(M_{1}\right), g\left(M_{2}\right)\right\} .
$$

Proof. Denote by Ω the unique element in $E\left(M_{1}\right) \cap E\left(M_{2}\right)$ and let $X=E\left(M_{1}\right)-\Omega$, $Y=E\left(M_{2}\right)-\Omega$. We have $\lambda_{M}(X)=1$. Let (G, T) be a graft representation of M that is
extremal for X. Let H denote the auxiliary graph for G and X. Then by Proposition 3.2.4

$$
\begin{equation*}
|E(H)|=|V(H)|+1-q[(G, T) / X]-q[(G, T) / Y] \geq|V(H)|-1 \tag{3.2}
\end{equation*}
$$

Claim 1. $q[(G, T) / X]+q[(G, T) / Y] \geq 1$.
Subproof. Otherwise, by (3.2), we have, $|E(H)|=|V(H)|+1$. Because (G, T) is extremal for X, H is 2-edge-connected. Remark 3.1.7 implies that H is a theta or a double ear. Consider first the case where H is a theta formed by st-paths P_{1}, P_{2}, P_{3}. As (G, T) is extremal for X and since H is bipartite, either (a) for $j \in[3], P_{j}$ consists of one edge, or (b) for $j \in[3], P_{j}$ consists of two edges. Case (a) is illustrated in Figure 3.1(ii) and case (b) is illustrated in Figure 3.1(iii). Since $q[(G, T) / X]=q[(G, T) / Y]=0$ we have $T \subseteq \partial_{G}(X)$. As M is not pinch-cographic, $|T| \geq 6$. Thus, (a) cannot occur and if (b) occurs then $T=\partial_{G}(X)$. For (b), we may assume that X is the non-shaded region in the figure. But then $(G, T) / X$ has two terminals, contradicting the fact that $(G, T) / X$ is eulerian. Consider the case where H is a double ear formed by polygons C_{1}, C_{2}. As (G, T) is extremal for X, C_{1} and C_{2} each consist of two parallel edges. This case is illustrated in Figure 3.1(a). As in the previous case we must have $T \subseteq \partial_{G}(X)$. Hence, $|T| \leq 4$ and in particular, M is pinch-cographic, a contradiction.

Claim 2. Suppose $q[(G, T) / X]=0$ and $q[(G, T) / Y]=1$ then we may assume that $T \subseteq V_{G}(X)$. Moreover, $M_{1}=\operatorname{ecut}\left(G_{1}, T\right), M_{2}=\operatorname{cut}\left(G_{2}\right)$ where (G, T) is obtained from $\left(G_{1}, T\right)$ and G_{2} by a summing on edge Ω. In particular, M_{2} is cographic.

Subproof. By (3.2), $|E(H)|=|V(H)|$, and H is a connected graph with exactly one polygon. Since (G, T) is extremal for X we have $|V(H)|=|E(H)|=2$, i.e., $G \backslash X, G \backslash Y$ are connected and share exactly two vertices, say u, v in G. Then the result holds by Proposition 3.2.6. \diamond

Claim 3. Suppose $q[(G, T) / X]=q[(G, T) / Y]=1$. Then $M_{1}=\operatorname{ecut}\left(G_{1}, T_{1}\right), M_{2}=$ ecut $\left(G_{2}, T_{2}\right)$ where (G, T) is obtained from $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ by a summing on pin Ω.

Subproof. By (3.2), $|E(H)|=|V(H)|-1$ and since H is connected H is a tree. Since (G, T) is extremal for X we have $|V(H)|=2$ and $|E(H)|=1$, i.e. $G \backslash X, G \backslash Y$ are connected and share exactly one vertex in G. Then the result holds by Proposition 3.2.5.
M_{1} and M_{2} are not both cographic for otherwise so would M, a contradiction. It follows from Claim 2 that we cannot have extremal representations (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ of M with $q[(G, T) / X]=0, q[(G, T) / Y]=1$ and $q\left[\left(G^{\prime}, T^{\prime}\right) / X\right]=1, q\left[\left(G^{\prime}, T^{\prime}\right) / Y\right]=0$. We may assume that M_{1} is not cographic. Hence, because of Claim $1(G, T)$ is of one of the following types,

Type 1. $q[(G, T) / X]=0$ and $q[(G, T) / Y]=1$ or
Type 2. $q[(G, T) / X]=1$ and $q[(G, T) / Y]=1$.

Let h_{1} (resp. h_{2}) denote the number of inequivalent representations of M_{1} with a non-pin Ω (resp. pin Ω). Let g_{1} (resp. g_{2}) denote the number of inequivalent Type 1 (resp. Type 2) representations of M. Note, $g(M)=g_{1}+g_{2}$ and $f\left(M_{1}\right)=h_{1}+h_{2}$.

Claim 4. $g_{1} \leq h_{1}$.
Subproof. Consider Type I representations (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ of M. Then (G, T) is obtained from $\left(G_{1}, T\right)$ and G_{2} by a summing on edge Ω and $\left(G^{\prime}, T^{\prime}\right)$ is obtained from $\left(G_{1}^{\prime}, T^{\prime}\right)$ and G_{2}^{\prime} by a summing on edge Ω. As $M_{2}=\operatorname{cut}\left(G_{2}\right)=\operatorname{cut}\left(G_{2}^{\prime}\right)$, or equivalently, $\operatorname{cycle}\left(G_{2}\right)=\operatorname{cycle}\left(G_{2}^{\prime}\right)$, it follows from Theorem 1.1.1 that G_{2} and G_{2}^{\prime} are equivalent. Thus (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ are equivalent if and only if $\left(G_{1}, T\right)$ and $\left(G_{1}^{\prime}, T^{\prime}\right)$ are equivalent. The result follows.

Claim 5. $g_{2} \leq h_{2}$.
Subproof. Consider Type 2 representations (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ of M. Then (G, T) is obtained from $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ by a summing on a pin Ω and $\left(G^{\prime}, T^{\prime}\right)$ is obtained from $\left(G_{1}^{\prime}, T_{1}^{\prime}\right)$ and $\left(G_{2}^{\prime}, T_{2}^{\prime}\right)$ by a summing on pin Ω. It follows from Remark 2.4.6 that $\left(G_{1}, T_{1}\right)$ and $\left(G_{1}^{\prime}, T_{1}^{\prime}\right)$ are equivalent and also that $\left(G_{2}, T_{2}\right)$ and $\left(G_{2}^{\prime}, T_{2}^{\prime}\right)$ are equivalent. Thus (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ are equivalent. It follows that $g_{2} \leq 1$ and clearly, $g_{2}=0$ if $h_{2}=0$.

Then $g(M)=g_{1}+g_{2} \leq h_{1}+h_{2}=g\left(M_{1}\right)$ as required.

3.3 Pinch-graphic matroids

The goal of this section is to prove Theorem 1.3.3.

3.3.1 Chain theorems

Let M and N be matroids. M contains an N-minor if for some $I, J \subseteq E(M)$ where $I \cap J=\emptyset$, we have that $M / I \backslash J$ is isomorphic to N. Note, F_{7} denotes the Fano matroid, $M(G)$ is the graphic matroid of graph G, and we write M^{*} for the dual of M. Let M be a binary matroid. We say that a sequence M_{1}, \ldots, M_{k} of matroids is a good sequence for M if

1. $M_{1}=M$ and $M_{k} \in\left\{F_{7}, F_{7}^{*}, M\left(K_{5}\right)^{*}, M\left(K_{3,3}\right)^{*}\right\}$,
2. for all $i \in[k-1], M_{i+1}$ is a single element deletion or contraction of M_{i},
3. for all $i \in[k], M_{i}$ is $(4,6)$-connected.

Here is the key result of this section,

Proposition 3.3.1. Let M be a binary non-graphic matroid that is $(4,5)$-connected. Then there exists a good sequence M_{1}, \ldots, M_{k} for M. Moreover, if we are given M by its 0,1 matrix representation A, then in time polynomial in the number of entries of A we can construct that good sequence.

The proof will require the following Splitter theorems,
Theorem 3.3.2 (Seymour [44]). Let M be a matroid that is 3-connected that is not a wheel or a whirl, and let N be a 3-connected proper minor of M. If $|E(M)| \geq 4$, then there exists $e \in E(M)$ such that $M \backslash e$ or M / e is 3 -connected and contains an N-minor.

Theorem 3.3.3 (Geelen and Zhou [15]). Let M be a binary matroid that is (4,5)-connected and let N be an internally 4-connected proper minor of M. If $|E(M)| \geq 7$, then there exists either
(a) $e \in E(M)$ such that $M \backslash e$ or M / e is $(4,5)$-connected and contains an N-minor; or (b) $e, e^{\prime} \in E(M)$ such that $M / e \backslash e^{\prime}$ is $(4,5)$-connected and contains an N-minor.

To be able to find the good sequence in polynomial time we require the following results,
Proposition 3.3.4 (Cunningham [8]). Let M be a binary matroid described by an $m \times n$ 0,1 matrix A and let k, ℓ be fixed integers. In time polynomial in m and n, we can either find a k-separating set X where $|X|,|E(M)-X| \geq \ell$ or establish that none exists.

Proposition 3.3.5 (Tutte [51]). Let M be a binary matroid described by an $m \times n 0,1$ matrix A. In time polynomial in m and n we can check whether M is graphic.

Note that, for both results, we have actual algorithms, not just proof of existence.
We are ready for the main proof of this section,

Proof of Proposition 3.3.1. Since M is not graphic there exists a minor N of M which is minimally non-graphic. It follows from Tutte's characterizations of regular matroids [49] and graphic regular matroids $[50,45]$ that N is isomorphic to one of $F_{7}, F_{7}^{*}, M\left(K_{5}\right)^{*}$, or $M\left(K_{3,3}\right)^{*}$. Let $M_{1}:=M$ and let $k=\left|E\left(M_{1}\right)\right|-|E(N)|+1$. Let us show that there exists a good sequence by induction on k. If $k=1$ then $M_{1}=N$ and trivially M_{1} is the good sequence. Thus, we may assume that $k \geq 2$ and in particular that N is a proper minor of M_{1}. As $N \in\left\{F_{7}, F_{7}^{*}, M\left(K_{5}\right)^{*}, M\left(K_{3,3}\right)^{*}\right\}$, it is internally 4-connected and $\left|E\left(M_{1}\right)\right| \geq|E(N)| \geq 7$. It follows then from Theorem 3.3.3 that there exists a (4,5)-connected matroid \tilde{M} with an N-minor where

1. $\tilde{M}=M_{1} \backslash e$ or $\tilde{M}=M_{1} / e$ for some $e \in E\left(M_{1}\right)$; or
2. $\tilde{M}=M_{1} \backslash e / e^{\prime}$ for some distinct $e, e^{\prime} \in E\left(M_{1}\right)$.

If (1) occurs, then we let $M_{2}:=\tilde{M}$. By induction there exists a good sequence M_{2}, \ldots, M_{k}. But then M_{1}, \ldots, M_{k} is a good sequence for M as required. Hence, we may assume that (2) occurs.

Since \tilde{M} is binary and non-graphic, \tilde{M} is neither a wheel nor a whirl. By Theorem 3.3.2, there exists a matroid M^{\prime} where either $M^{\prime}=M_{1} \backslash f$ or $M^{\prime}=M_{1} / f$ for some $f \in E\left(M_{1}\right)$ such that M^{\prime} is 3 -connected and has a minor $M^{\prime \prime}$ isomorphic to \tilde{M}.

Claim. M^{\prime} is $(4,6)$-connected.
Subproof. Suppose for a contradiction that there exists a 3 -separation X of M^{\prime} such that $|X|,\left|E\left(M^{\prime}\right)-X\right| \geq 7$. Observe that $M^{\prime \prime}=M^{\prime} / f^{\prime}$ or $M^{\prime \prime}=M^{\prime} \backslash f^{\prime}$ for some $f^{\prime} \in E\left(M^{\prime}\right)$. After possibly replacing X by $E\left(M^{\prime}\right)-X$ we may assume that $f^{\prime} \notin X$. Corollary 8.2.6 in [36] implies that $\lambda_{M^{\prime \prime}}(X) \leq \lambda_{M^{\prime}}(X)=2$. Since $M^{\prime \prime}$ is 3-connected (as it is isomorphic to \tilde{M})
$\lambda_{M^{\prime \prime}}(X)=2$. But $|X|,\left|E\left(M^{\prime \prime}\right)-X\right| \geq 6$ contradicts the fact that $M^{\prime \prime}$ is $(4,5)$-connected. \diamond

Now, we let $M_{2}:=M^{\prime}$ and $M_{3}:=M^{\prime \prime}$. By induction there exists a good sequence M_{3}, \ldots, M_{k}. But then $M_{1}, M_{2}, M_{3}, \ldots, M_{k}$ is a good sequence for M as required. We leave it as an exercise to show how to find the sequence in polynomial-time by mean of Propositions 3.3.4 and 3.3.5.

Theorem 3.3.6. Let M_{1}, \ldots, M_{k} denote (4,6)-connected binary matroids where for each $i \in[k-1], M_{i+1}$ is a single element contraction or deletion of M_{i}. Suppose that M_{k} is non-graphic and that $\left|E\left(M_{k}\right)\right| \in \mathcal{O}(1)$. Then for each $i \in[k]$, the number of blocking-pair representations of M_{i} is in $\mathcal{O}\left(\left|E\left(M_{i}\right)\right|^{4}\right)$.

We will postpone the proof of this result until Section 3.3.3. Combining Proposition 3.3.1 and Theorem 3.3.6 proves Theorem 1.3.3.

Proof of Theorem 1.3.3. Note M is binary as it is a pinch-graphic matroid. It follows from Proposition 3.3.1 that M admits a good sequence M_{1}, \ldots, M_{k}. Then $\left|E\left(M_{k}\right)\right| \leq 10$, hence $\left|E\left(M_{k}\right)\right| \in \mathcal{O}(1)$. It follows by Theorem 3.3.6 that $|E(M)|=\left|E\left(M_{1}\right)\right| \in \mathcal{O}\left(|E(M)|^{4}\right)$, as required.

3.3.2 (4, 6)-Connectivity

In this section, we translate our condition that an even-cycle or an even-cut matroid is $(4,6)$-connected in terms of its signed-graph or graft representation. In particular, we will see that the graph must be essentially 3 -connected and that all 2 -separations have bounded size.

Even-cycles matroids

Proposition 3.3.7 ([40], Proposition 2.6). Suppose that ecycle (G, Σ) is 3-connected. Then
(a) if G has no loop then G is 2-connected;
(b) G has at most one loop, which is odd;
(c) if X is a 2-separation of G then X contains an odd polygon.

Proposition 3.3.8. Let $M=\operatorname{ecycle}(G, \Sigma)$ be $(4,6)$-connected. Then the following hold,
(a) G is 2-connected except for a unique possible odd loop;
(b) if X is a 2-separation of G then X contains an odd polygon;
(c) if X is a 2-separation of G then $\min \{|X|,|E(G)-X|\} \leq 6$;
(d) (G, Σ) has no parallel edges of the same parity.

Proof. Since M is 3 -connected, Proposition 3.3.7 implies that (a) and (b) hold. For (d), let $e, f \in E(M)$ where e and f are parallel edges of the same parities in (G, Σ). Then, e, f are parallels of M, contradicting 3 -connectivity of M. For (c), suppose X is a 2-separation of G, and then, by Proposition 3.1.5 and 3-connectivity of M, X is 3 -separating. It follows from $(4,6)$-connectivity of M that $\min \{|X|,|E(G)-X|\} \leq 6$.

Even-cut matroids

Recall that an edge of a graft (H, T) is a pin if it has an end $v \in T$ of degree 1 .

Proposition 3.3.9 ([40], Proposition 2.5). Suppose that ecut (H, T) is 3-connected. Then
(a) if H has no bridge, then H is 2-connected;
(b) if H has a bridge e, then e is a pin and (H, T) has at most one pin;
(c) if X is a 2-separation of H then $\mathcal{I}(X) \cap T \neq \emptyset$.

Proposition 3.3.10. Let $M=\operatorname{ecut}(H, T)$ that is $(4,6)$-connected. Then the following hold,
(a) H is 2-connected except for a unique possible pin;
(b) if X is a 2-separation of H then $\mathcal{I}(X) \cap T \neq \emptyset$;
(c) if X is a 2-separation of H then $\min \{|X|,|E(H)-X|\} \leq 6$;
(d) H has no parallel edges;
(e) every even cut of (H, T) has cardinality at least 3 .

Proof. Since M is 3-connected, Proposition 3.3.9 implies (a) and (b) hold. For (d), let $e, f \in E(M)$ where e and f are parallel edges of H. Then, $\{e, f\}$ is a cocycle of M, contradicting 3 -connectivity of M. For (e), let $D \subseteq G$ be an even cut of (H, T) where $|D| \leq 2$. Then, D is a cycle of M, contradicting 3-connectivity of M. For (c), suppose X is a 2-separation of H, then by Proposition 3.2.3 and 3-connectivity of M, X is 3 -separating. It follows that $\min \{|X|,|E(H)-X|\} \leq 6$, hence (c) holds.

3.3.3 The proof of Theorem 3.3.6

We require the following two results which we will prove in Section 3.3.4.

Proposition 3.3.11. Let M be a $(4,6)$-connected pinch-graphic matroid with a blocking-pair representation (G, Σ). Then the number of graphs H equivalent to G for which (H, Σ) is a blocking-pair representation of M is in $\mathcal{O}(|V(G)|)$.

Note that this result is asymptotically tight. Indeed consider the following example. Construct a graph G as follows: pick a polygon with vertices v_{1}, \ldots, v_{n} and add a new vertex c and for all $i \in[n]$ add a pair of edges f_{i}, g_{i} with ends c and v_{i} and add a loop Ω. Let $\Sigma=\left\{f_{i}: i \in[n]\right\} \cup\left\{v_{1} v_{2}, \Omega\right\}$. Then ecycle (G, Σ) is internally 4-connected. Moreover, for every $i \in[n]$ we can place the loop Ω to be incident to vertex v_{i} or to c. This yields $|V(G)|$ distinct equivalent signed-graphs each with a blocking-pair.

Proposition 3.3.12. Let M be a (4, 6)-connected non-cographic pinch-cographic matroid with a T_{4}-representation (H, T). Then the number of grafts equivalent to (H, T) is in $\mathcal{O}(1)$.

Nice and special representations

We say that a graft (H, T) is special if $|T|=4$, properties (a)-(e) of Proposition 3.3.10 hold, and there exists an odd cut of cardinality at most 3 . We say that a graft (H, T) is nice if $|T|=4$, properties (a)-(e) of Proposition 3.3.10 hold, and every odd cut has cardinality at least 4.

Proposition 3.3.13. The number of special representations of a pinch-cographic $(4,6)$ connected matroid M is in $\mathcal{O}\left(|E(M)|^{3}\right)$.

Proof. Let (H, T) be a special graft-representation of M. Then, for some set $B \subseteq E(H)$ with $|B| \leq 3, B$ is an odd cut of (H, T). By Remark 2.4.6, all special representations with a fixed odd cut B are equivalent. Hence, by Proposition 3.3.12, the number of such
representations is in $\mathcal{O}(1)$. As the number of possible choices for a set $B \subseteq E(H)$ with $|B| \leq 3$ is in $\mathcal{O}\left(|E(M)|^{3}\right)$ the result follows.

For a graph G and $v \in V(G)$ we denote the degree of v by $d_{G}(v)$.
Next we show that nice grafts are indeed nice.

Proposition 3.3.14. If (H, T) is a nice graft, then H is 3-connected.

Proof. Note that (H, T) satisfies properties (a)-(e) of Proposition 3.3.10.
Claim 1. Cuts of (H, T) have cardinality at least 3 , and odd cuts of (H, T) have cardinality at least 4 .

Subproof. The result follows from Proposition 3.3.10(e).

In particular, (H, T) has no pin. Then by (a) H is 2 -connected. Suppose for a contradiction that H is not 3 -connected. Then there exists a partition X, Y of the edges of H where $H[X]$ and $H[Y]$ are connected, $\partial(X)=\left\{u_{1}, u_{2}\right\}$ for some distinct $u_{1}, u_{2} \in V(H)$, and $\mathcal{I}(X), \mathcal{I}(Y) \neq \emptyset$. By (b), there exists $z \in \mathcal{I}(X) \cap T$ and by Claim 1, $d_{H}(z) \geq 4$. By (d), there are no parallel edges. Hence, z has at least 4 neighbours and $|\mathcal{I}(X)| \geq 3$. By Claim 1 vertices $v \in \mathcal{I}(X)$ satisfy $d_{H}(v) \geq 3$. Thus,

$$
\begin{equation*}
\sum_{v \in \mathcal{I}(X)} d_{H}(v) \geq 3|\mathcal{I}(X)|+1 \tag{1}
\end{equation*}
$$

Let L denote the edges with one end in $\mathcal{I}(X)$ and one end in $\left\{u_{1}, u_{2}\right\}$. The Claim implies that $|L| \geq 3$. Let G be the graph induced by vertices $\mathcal{I}(X)$. Then (1) implies that,

$$
\begin{equation*}
\sum_{v \in \mathcal{I}(X)} d_{G}(v) \geq 3|\mathcal{I}(X)|+1-|L| \tag{2}
\end{equation*}
$$

Then X consists of edges of G, edges in L and possibly an edge with ends u_{1}, u_{2}. By (2),

$$
|X| \geq \frac{1}{2} \sum_{v \in \mathcal{I}(X)} d_{G}(v)+|L| \geq \frac{1}{2}(3|\mathcal{I}(X)|+1-|L|)+|L| .
$$

As $|\mathcal{I}(X)|,|L| \geq 3$ we have $|X| \geq \frac{1}{2}(3 \times 3+1-3)+3>6$, a contradiction to (c).

Unstable sets of grafts

Proposition 3.3.15. Suppose ecycle (G, Σ) is $(4,6)$-connected and let a, b be a blocking pair of (G, Σ). Then the number of signatures of (G, Σ) with all edges incident to a or b is in $\mathcal{O}(1)$.

Proof. Let \mathcal{S} be the set of signatures of (G, Σ) with all edges incident to a or b. We will show $|\mathcal{S}| \in \mathcal{O}(1)$. We may assume after re-signing that $\Sigma \in \mathcal{S}$. Pick $\Gamma \in \mathcal{S}$ where $\Gamma \neq \Sigma$. Since $\Sigma \Delta \Gamma$ intersects every cycle of G with even parity, it is a cut $\delta(U)$ of G. We say that Γ is skewed if exactly one of a, b is in U. Let $\Gamma_{1}, \ldots, \Gamma_{\ell}$ denote the signatures of $\mathcal{S}-\Sigma$ that are not skewed. Observe that if $\Gamma \in \mathcal{S}$ is skewed, then $\Gamma \Delta \delta(a)$ is not skewed, thus $\Gamma \Delta \delta(a)=\Gamma_{i}$ for some $i \in[\ell]$. It follows that $|\mathcal{S}| \leq 2 \ell+1$. For all $i \in[\ell], \Sigma \Delta \Gamma_{i}=\delta\left(U_{i}\right)$ and we may assume that $a, b \notin U_{i}$. Let H_{1}, \ldots, H_{k} denote the components of the graph obtained from G by deleting vertices a, b. Let $i \in[\ell]$ and $j \in[k]$. Since $\delta\left(U_{i}\right)$ is a cut either (i) $V\left(H_{k}\right) \subseteq U_{i}$ or (ii) $V\left(H_{k}\right) \cap U_{i}=\emptyset$. Define for $i \in[\ell]$, the set $J(i)=\left\{j \in[k]: V\left(H_{k}\right) \subseteq U_{i}\right\}$, i.e. $J(i)$ indicates what components of $H \backslash\{a, b\}$ are contained in the shore U_{i} of cut $\Sigma \Delta \Gamma_{i}$. Now observe that $\delta\left(U_{i}\right)$ are exactly the edges between vertices of H_{j} and $\{a, b\}$ for all $j \in J(i)$. It follows that $J(i)$ determines Γ_{i} uniquely. Hence, ℓ is bounded by the number of choices for $J(i)$ thus $\ell \leq 2^{k}$. However, as ecycle (G, Σ) is $(4,6)$-connected, Proposition 3.3.8(c) implies that $k \in \mathcal{O}(1)$. Thus $|\mathcal{S}| \leq 2 \ell+1 \in \mathcal{O}\left(2^{k}\right)=\mathcal{O}(1)$.

Let $\mathcal{S}=\left\{\left(H_{i}, T_{i}\right): i \in[n]\right\}$ where $\left(H_{i}, T_{i}\right)$ are nice grafts. We say that the set \mathcal{S} is unstable if there exists a pinch-cographic matroid M and for all $i \in[n]$ there exists a graph H_{i}^{\prime} obtained from H_{i} by adding an edge Ω with both ends in T_{i}, so that $\left(H_{i}^{\prime}, T_{i}\right)$ is a representation of M. Observe that this implies that \mathcal{S} are all T_{4}-representations of M / Ω.

Proposition 3.3.16. Let \mathcal{S} be an unstable set of representations of a matroid M. Then $|\mathcal{S}| \in \mathcal{O}\left(|E(M)|^{3}\right)$.

Proof. Then $\mathcal{S}=\left\{\left(H_{i}, T_{i}\right): i \in[n]\right\}$. For each $i \in[n]$ denote by $x_{i}, y_{i}, w_{i}, z_{i}$ the vertices in T_{i}. We may assume that H_{i}^{\prime} is obtained from H_{i} by adding edge Ω with ends x_{i}, y_{i}. Let G_{i} be obtained from H_{i} by identifying x_{i} with y_{i} and by identifying w_{i} with z_{i}. Denote by a_{i} the vertex of G_{i} corresponding to $x_{i}=y_{i}$ and denote by b_{i} the vertex of G_{i} corresponding to $w_{i}=z_{i}$. Let $\Sigma_{i}=\delta_{H_{i}}\left(x_{i}\right) \Delta \delta_{H_{i}}\left(w_{i}\right)$. Observe that $\left(G_{i}, \Sigma_{i}\right)$ is obtained from $\left(H_{i}, T_{i}\right)$ by folding and that a_{i}, b_{i} is a blocking pair of $\left(G_{i}, \Sigma_{i}\right)$. Then let $\mathcal{R}=\left\{\left(G_{i}, \Sigma_{i}\right): i \in[n]\right\}$.

Claim 1. The signed-graphs in \mathcal{R} are all pairwise equivalent.
Subproof. Pick $i, j \in[n]$. We will show that $\left(G_{i}, \Sigma_{i}\right)$ and $\left(G_{j}, \Sigma_{j}\right)$ are equivalent. Since \mathcal{S} is unstable, ecut $\left(H_{i}^{\prime}, T_{i}\right)=\operatorname{ecut}\left(H_{j}^{\prime}, T_{j}\right)$. Hence, $\operatorname{ecut}\left(H_{i}^{\prime}, T_{i}\right) \backslash \Omega=\operatorname{ecut}\left(H_{j}^{\prime}, T_{j}\right) \backslash \Omega$. Note that

$$
\operatorname{ecut}\left(H_{i}^{\prime}, T_{i}\right) \backslash \Omega=\operatorname{ecut}\left(H_{i}^{\prime} / \Omega,\left\{w_{i}, z_{i}\right\}\right)=\operatorname{cut}\left(G_{i}\right)
$$

Similarly, $\operatorname{ecut}\left(H_{j}^{\prime}, T_{j}\right) \backslash \Omega=\operatorname{cut}\left(G_{j}\right)$. Thus $\operatorname{cut}\left(G_{i}\right)=\operatorname{cut}\left(G_{j}\right)$. It follows from Theorem 1.1.1 that G_{i} and G_{j} are equivalent. Furthermore, by Proposition 2.2.1, $\left(G_{i}, \Sigma_{i}\right)$ and $\left(G_{j}, \Sigma_{j}\right)$ are blocking-pair representations of M^{*}. In particular, $\operatorname{ecycle}\left(G_{i}, \Sigma_{i}\right)=\operatorname{ecycle}\left(G_{j}, \Sigma_{j}\right)$. Hence, $\left(G_{i}, \Sigma_{i}\right)$ and $\left(G_{j}, \Sigma_{j}\right)$ are equivalent as required.

By Proposition 2.2.1, we know that for each $i \in[n],\left(G_{i}, \Sigma_{i}\right)$ is a blocking-pair representation of the $(4,6)$-connected matroid M^{*}. By Claim 1, the signed graphs in \mathcal{R} are equivalent.

It follows from Proposition 3.3.11, that the number of distinct graphs among G_{1}, \ldots, G_{n} is in $\mathcal{O}(|E(M)|)$. Let $K \subseteq[n]$ such for all $k \in K, G_{k}=G$ for some fixed graph G. There are at most $|V(G)|^{2} \in \mathcal{O}\left(|E(M)|^{2}\right)$ distinct blocking pairs $\left\{a_{k}, b_{k}\right\}$ of $\left(G, \Sigma_{k}\right)$ among all $k \in K$. Moreover, by Proposition 3.3.15 there are at most $\mathcal{O}(1)$ different signatures Σ_{ℓ}, $\ell \in K$ for a given blocking pair $\left\{a_{k}, b_{k}\right\}$ of G. It follows that $|K| \in \mathcal{O}\left(|E(M)|^{2}\right)$ and hence that $|\mathcal{S}|=|\mathcal{R}| \in \mathcal{O}\left(|E(M)|^{3}\right)$ as required.

Proposition 3.3.17. Let M be a binary matroid, $\Omega \in E(M)$ that is not a loop of M and let $N=M / \Omega$ where N is (4,6)-connected. Consider a nice representation (H, T) of N that does not extend uniquely to M. Then (H, T) extends to exactly two representations $\left(H_{1}, T\right)$ and $\left(H_{2}, T\right)$ of M where H_{1} is obtained from H by adding edge Ω between t_{1}, t_{2} and where H_{2} is obtained from H by adding edge Ω between t_{3}, t_{4} for some labeling $t_{1}, t_{2}, t_{3}, t_{4}$ of the vertices of T.

Proof. Since Ω is not a loop of M there exists a cocircuit D of M with $\Omega \in D$. Cocircuits of even-cut matroids are polygons or inclusion-wise minimal T-joins of the graft representation [40], Remark 2.2. After possibly replacing D with $D \Delta J$ for some T-join J of H, we may assume that D is a polygon of H_{1}. If D is a cycle of H_{2} then H_{1} and H_{2} have the same set of cycles, and thus by Theorem 1.1.1 are equivalent. But then as H is 3 -connected by Proposition 3.3.14, so are H_{1}, H_{2} which implies that $H_{1}=H_{2}$, a contradiction. Thus D is a T-join of H_{2}. Let $P=D-\Omega$. Since D is a polygon of H_{1}, P is a path of H. As $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is the set of odd degree vertices in $P \cup \Omega$ of H_{2} it follows that Ω has ends say t_{3}, t_{4} in H_{2}, and that P has end t_{1}, t_{2} in H. But then Ω has ends t_{1}, t_{2} in H_{1} and H_{1}, H_{2} are as required.

This last result implies immediately the following,

Proposition 3.3.18. Let M be a binary matroid, $\Omega \in E(M)$ that is not a loop of M and let $N=M / \Omega$ where N is $(4,6)$-connected. Then the set of nice representations of N that do not extend uniquely to M form an unstable set.

Extending graft representations

Proposition 3.3.19 ([25] Lemma 9.4). Let N be an even-cut matroid and let \mathcal{F} be an equivalence class of graft-representations of N. Let M be a matroid with a non-coloop $e \in E(M)$ for which $N=M \backslash e$. Then the set of extensions of \mathcal{F} to M is a (possibly empty) equivalence class of graft-representations.

Proposition 3.3.20 ([25] Lemma 9.12). Let N be a non-cographic, even-cut matroid and let \mathcal{F} be an equivalence class of graft-representations of N. Let M be a matroid with a non-loop $e \in E(M)$ for which $N=M / e$. Then the set of extensions of \mathcal{F} to M is either a (possibly empty) equivalence class of graft-representations or the union of two equivalence classes of graft-representations.

The proof of the main result

Proof of Theorem 3.3.6. For all $i \in[k]$ let $N_{i}=M_{i}^{*}$. Then N_{1}, \ldots, N_{k} denote (4,6)connected binary matroids where for each $i \in[k-1], N_{i+1}$ is a single element contraction or deletion of N_{i} and where $\left|E\left(N_{k}\right)\right| \in \mathcal{O}(1)$.

Claim 1.

(a) for all $i \in[k]$, every representation of N_{i} has at least four terminals;
(b) for all $i \in[k]$, every T_{4}-representation of N_{i} is nice or special.

Subproof. By hypothesis, M_{k} is not graphic, hence M_{i} is not graphic, or equivalently, N_{i} is not cographic, that is, (a) holds. Since M_{i} is $(4,6)$-connected, so is N_{i}. Then (a) and Proposition 3.3.10 implies (b).

Denote by $f(i)$ the number of nice representations of N_{i}.
Claim 2. For all $i \in[k-1], f(i) \leq f(i+1)+\mathcal{O}\left(\left|E\left(N_{i}\right)\right|^{3}\right)$.
Subproof. By Claim 1, every T_{4}-representation of N_{i+1} is nice or special. Hence, every T_{4} representation of N_{i+1} extends either: (i) a nice representation of N_{i+1}, or (ii) a special representation of N_{i+1}. A nice representation of N_{i} is of Type I if it arises as in (i) and of Type II if it it arises as in (ii). Note, the definition allows N_{i} to be of both Type I and Type II.

Case 1. $N_{i+1}=N_{i} \backslash \Omega$ for some $\Omega \in E\left(N_{i}\right)$.

Let $\left(H^{\prime}, T^{\prime}\right)$ be a T_{4}-representation of N_{i} that extends some T_{4}-representation (H, T) of N_{i+1}. Then $\left(H^{\prime}, T^{\prime}\right)$ is obtained from (H, T) by uncontracting edge Ω. If (H, T) is special it has an odd cut B with $|B| \leq 3$. But then B is an odd cut of $\left(H^{\prime}, T^{\prime}\right)$ and $\left(H^{\prime}, T^{\prime}\right)$ is not nice. Hence, nice representations of N_{i} are only of Type I. Then by Proposition 3.3.14 the equivalence classes of nice representations of N_{i}, N_{i+1} have cardinality one. By Proposition 3.3.19, every equivalence class of graft-representations of N_{i+1} extends to one (possibly empty) equivalence class of graft-representations of N_{i}. It follows that every nice representation of N_{i+1} extends to at most one nice representation of N_{i}. Therefore, $f(i) \leq f(i+1)$.

Case 2. $N_{i+1}=N_{i} / \Omega$ for some $\Omega \in E\left(N_{i}\right)$.

Let (H, T) be a representation of N_{i+1} and let $\left(H^{\prime}, T^{\prime}\right)$ be a representation of N_{i} that extends (H, T). Then $\left(H^{\prime}, T^{\prime}\right)$ is obtained from (H, T) by adding edge Ω. By Proposition 3.3.20,
every equivalence class of graft-representation of N_{i+1} extends to at most two equivalence classes of graft-representations of N_{i}. By Proposition 3.3.14 the equivalence classes of nice representations of N_{i} have cardinality one. Proposition 3.3.13 implies that the number of special representations of N_{i+1} is in $\mathcal{O}\left(\left|E\left(N_{i+1}\right)\right|^{3}\right)$. Therefore, the number of nice Type II representations of N_{i} is in $\mathcal{O}\left(\left|E\left(N_{i}\right)\right|^{3}\right)$. Let \mathcal{L} be the set of all nice representations of N_{i+1} that extend non-uniquely to N_{i}. Proposition 3.3 .18 implies \mathcal{L} is an unstable set. Therefore by Proposition 3.3.16, $|\mathcal{L}| \in \mathcal{O}\left(\left|E\left(N_{i}\right)\right|^{3}\right)$. Thus the number of Type I nice representations of N_{i} is at most, $f(i+1)+|\mathcal{L}| \in f(i+1)+\mathcal{O}\left(\left|E\left(N_{i}\right)\right|^{3}\right)$. Hence, $f(i) \leq f(i+1)+\mathcal{O}\left(\left|E\left(N_{i}\right)\right|^{3}\right)$. \diamond

As $\left|E\left(N_{k}\right)\right| \in \mathcal{O}(1), f(k) \in \mathcal{O}(1)$. It then follows from Claim 1 that for all $i \in[k]$,

$$
\begin{equation*}
f(i) \in \mathcal{O}\left(\left|E\left(N_{i}\right)\right|^{4}\right) \tag{3.3}
\end{equation*}
$$

Pick $\hat{i} \in[k]$. Let \mathcal{R} denote the set of all T_{4}-representations of $N_{\hat{1}}$. By Claim 1 every graft in \mathcal{R} is special or nice. By Proposition 3.3.13, the number of special representations of $N_{\hat{1}}$ is in $\mathcal{O}\left(\left|E\left(N_{\hat{1}}\right)\right|^{3}\right)$. Together with (3.3) this implies that $|\mathcal{R}| \in \mathcal{O}\left(\left|E\left(N_{\hat{\mathrm{i}}}\right)\right|^{4}\right)$. Let \mathcal{S} denote the set of all blocking-pair representations of $M_{\hat{1}}$. Pick an arbitrary representation $(G, \Sigma) \in \mathcal{S}$ and unfold it to get a graft (H, T). By Proposition 2.2.1, (H, T) is a T_{4}-representation of $N_{\hat{1}}$, i.e. $(H, T) \in \mathcal{R}$. Moreover, there are at most 12 ways of folding (H, T) to get a blocking-pair representation in $\mathcal{R},{ }^{1}$ i.e. at most 12 blocking-pair representations of \mathcal{S} get mapped to the same T_{4}-representation of \mathcal{R}. It follows that $|\mathcal{S}| \leq 12|\mathcal{R}| \in \mathcal{O}\left(\left|E\left(N_{\hat{1}}\right)\right|^{4}\right)$ as required.

[^0]
3.3.4 Size of equivalent classes

The goal of this section is to prove Propositions 3.3.11 and 3.3.12. For the former, we consider blocking-pair representations of a (4,6)-connected pinch-graphic matroid, and for the latter, we consider T_{4}-representations of a $(4,6)$-connected pinch-cographic matroids. In both cases these representations have the property that for every 2-separation one side has cardinality at most 6 . This leads to the notion of well connected-graphs that we study next.

Well connected-graphs

A graph G is well-connected if the following conditions hold:
(w1) $|E(G)| \geq 25$;
(w2) G is loopless and 2-connected;
(w3) for every 2-separation X of G, we have $\min \{|X|,|E(G)-X|\} \leq 6$;
(w4) parallel classes have cardinality at most two.

Let X be a 2-separation of a well-connected graph G. We say that X is small if $|X| \leq 6$. A small 2-separation X is maximal if it is inclusion maximal among all small 2-separations.

The following is the motivation for considering maximal small 2 -separation,

Proposition 3.3.21. In a well-connected graph any two maximal small 2-separations are disjoint. In particular, every small 2-separation is contained in a unique maximal small 2-separation.

Before we present the proof we require some definitions. A pair of 2-separations X and Y cross if all of the following are non-empty,

$$
X \cap Y, \quad X \cap(E(G)-Y), \quad(E(G)-X) \cap Y \quad \text { and } \quad(E(G)-X) \cap(E(G)-Y)
$$

A necklace is a graph obtained from a polygon C with at least 4 edges by replacing each edge by a connected graph. The graphs replacing edges of C are the beads of the necklace.

Proof of Proposition 3.3.21. Let G be a well-connected graph G and consider an arbitrary pair of maximal small 2-separations X and Y. We need to show that $X \cap Y=\emptyset$. Let $\bar{X}=E(G)-X$ and let $\bar{Y}=E(G)-Y$. Note that since X, Y are maximal, $X \cap \bar{Y}, \bar{X} \cap Y \neq \emptyset$. Moreover, since X, Y are small and $|E(G)| \geq 25, X \cup Y \neq V(G)$, or equivalently $\bar{X} \cap \bar{Y} \neq \emptyset$. Thus it suffice to show that X and Y are not crossing. Suppose otherwise. As X, Y cross, one of the following cases occurs [40],
i. $\partial(X \cap Y)=\partial(X \cap \bar{Y})=\partial(\bar{X} \cap Y)=\partial(\bar{X} \cap \bar{Y})$; or
ii. G is a necklace with beads $X \cap Y, X \cap \bar{Y}, \bar{X} \cap Y, \bar{X} \cap \bar{Y}$.

In both cases, $\bar{X} \cap \bar{Y}$ is either a 2-separation of G, a one edge set, or a set of two parallel edges. Let $Z=X \cup Y$ and observe that $E(G)-Z=\bar{X} \cap \bar{Y}$. Since $|X|,|Y| \leq 6$ and $|E(G)| \geq 25$ we have $|E(G)-Z| \geq 7$. Clearly, Z is not an edge or a pair of parallel edges as $X, Y \subseteq Z$. Thus Z is a small 2 -separation. But this contradicts our assumption that X was a maximal small 2-separation.

We are working in this paper with edge-labeled graphs. At this juncture we need to concern ourselves with vertex labels as well. Consider a pair of graphs G, G^{\prime} with the same set of (labeled) edges. Then a bijection $f: V(G) \rightarrow V\left(G^{\prime}\right)$ is an isomorphism from G to G^{\prime} if for every labelled edge e : e has ends u, v in G if and only if e has ends $f(u), f(v)$ in G^{\prime}.

Proposition 3.3.22. Consider a well-connected graph G. Let X_{1}, \ldots, X_{k} denote the maximal small 2-separations of G and let $Y=E(G)-\left(X_{1} \cup \ldots \cup X_{k}\right)$. Suppose that G^{\prime} is equivalent from G. Then
(a) X_{1}, \ldots, X_{k} are precisely the maximal small 2-separations of G^{\prime}; and
(b) there is an isomorphism f from $G[Y]$ to $G^{\prime}[Y]$ such that for every $i \in[k]: f$ maps $\partial_{G}\left(X_{i}\right)$ to $\partial_{G^{\prime}}\left(X_{i}\right)$.

Proof. Since G is 2-connected, G and G^{\prime} are related by a sequence of 2-flips. It suffices to prove (a) and (b) when G^{\prime} is obtained from G by a single 2-flip on a set Z as we can then iterate the result. After possibly replacing Z by $E(G)-Z$ we may assume that Z is a small 2-separation of G. For some $j \in[k], X_{j}$ is the maximal small 2-separation of G containing Z. Let us prove (a). Pick $i \in[k]$. By Proposition 3.3.21 $i=j$ or $X_{i} \cap X_{j}=\emptyset$. In particular, $Z \subseteq X_{i}$ or $Z \cap X_{i}=\emptyset$ and it follows that X_{i} is also a 2-separation of G^{\prime}. Suppose for contradiction X_{i} is not maximal in G^{\prime}. Then there exists a maximal small 2-separation X_{ℓ} of G^{\prime} strictly containing X_{i}. Note that G can be obtained from G^{\prime} by a 2 -flip on Z. But then by the previous argument, X_{ℓ} is a small 2-separation of G, a contradiction as X_{i} is maximal in G. Finally, note that (b) follows from the fact that $Y \cap Z \subseteq Y \cap X_{j}=\emptyset$.

The proof of Proposition 3.3.12

Throughout this section M will denote a $(4,6)$-connected pinch-cographic matroid that is not cographic. Also throughout this section (H, T) will denote a T_{4}-representation of M. We will need to show that the number of T_{4}-representations equivalent to (H, T) is in $\mathcal{O}(1)$. Note that by Proposition 3.3.9, (H, T) has at most one pin.

Claim 1. Suppose that $e=u v$ is a pin of (H, T) where $v \in T$ has degree 1. Then
(a) $u \notin T$, and
(b) there are exactly 4 equivalent T_{4}-representations that can be obtained from (H, T) by moving e.

Proof. Let $\left(H^{\prime}, T^{\prime}\right)$ be a graft equivalent to (H, T) obtained by moving the end u of e to some new vertex w. Using the same labeling of the vertices in $H \backslash e$ and $H^{\prime} \backslash e$ we have $T^{\prime}=T \Delta\{u, w\}$. In particular, $u \notin T$ for otherwise we can pick $w \in T$ and this yields $\left|T^{\prime}\right|=2$, which implies that M is cographic, a contradiction. Moreover, if $w \notin T$ then $\left|T^{\prime}\right|=6$ and $\left(H^{\prime}, T^{\prime}\right)$ is not a T_{4}-representation. It follows that there are exactly 4 possible T_{4}-representations that can be obtained from (H, T) by moving the pin e, namely move the end u of the pin to each terminal T.

If (H, T) has no pin then we let $(G, R)=(H, T)$. If (H, T) has pin $e=u v$ then we let $G=H / e$ and $R=T-v \cup\{w\}$ where w is the vertex of G that corresponds to edge e of H.

Claim 2. We may assume the following hold for the graft (G, R),
(a) G is well-connected;
(b) for any 2-separation X of G we have $\mathcal{I}_{G}(X) \cap R \neq \emptyset$.

Proof. We may assume $|E(G)| \geq 25$ for otherwise trivially the number of grafts equivalent to (H, T) is in $\mathcal{O}(1)$. By Proposition 3.3.10(a), H is 2-connected except for a unique possible pin. It follows that G is 2-connected. By Proposition 3.3.10(c), if X is a 2-separation of H then $|X| \leq 6$. By Proposition 3.3.10(d), H and hence G have no parallel edges. This implies that (w1)-(w4) hold and G is well-connected, i.e. (a) holds. Finally, (b) follows from Proposition 3.3.10(b).

Let \mathcal{S} be the set of T_{4}-representation that are equivalent to (G, R). Note that it suffices to show that $|\mathcal{S}| \in \mathcal{O}(1)$ since by Claim $1(\mathrm{~b})$, every graft in \mathcal{S} corresponds to at most 4 grafts equivalent to (H, T). Let X_{1}, \ldots, X_{k} denote the maximal small 2-separations of G. By Proposition 3.3.21 X_{1}, \ldots, X_{k} are pairwise disjoint, in particular, for all distinct $i, j \in[k]$, $\mathcal{I}_{G}\left(X_{i}\right) \cap \mathcal{I}_{G}\left(X_{j}\right)=\emptyset$. Because of Claim 2(b), $R \cap \mathcal{I}_{G}\left(X_{j}\right) \neq \emptyset$ for all $j \in[k]$. As $|R|=4$ it follows that $k \leq 4$. Let $Y:=E(G)-\left(X_{1} \cup \ldots \cup X_{k}\right)$. Pick an arbitrary graft $\left(G^{\prime}, R^{\prime}\right)$ from \mathcal{S}. By Proposition 3.3.22 there is an isomorphism f from $G[Y]$ to $G^{\prime}[Y]$. Hence, G and G^{\prime} only differ in the subgraphs induced by X_{1}, \ldots, X_{k}. As $k \leq 4$ and $\left|X_{i}\right| \leq 6, G^{\prime}$ is obtained from G by a sequence of 2-flips that is bounded by a constant. Finally, observe that G^{\prime} determines the set of terminals R^{\prime} uniquely (as an R-join of G must be an R^{\prime}-join of G^{\prime} [40], page 11). Hence, $|\mathcal{S}| \in \mathcal{O}(1)$ as required.

The proof of Proposition 3.3.11

Throughout this section M will denote a $(4,6)$-connected pinch-graphic matroid. Also throughout this section (H, Γ) will denote a blocking-pair representation of M. We will need to show that the number of graphs H^{\prime} equivalent to H for which $\left(H^{\prime}, \Gamma\right)$ has a blocking pair is in $\mathcal{O}(|V(H)|)$. Note that by Proposition 3.3.7, (H, T) has at most one loop (that is odd). If (H, Γ) has no loop then we let $(G, \Sigma)=(H, \Gamma)$. If (H, Γ) has loop e then we let $G=H \backslash e$ and $\Sigma=\Gamma-e$.

Claim 1. We may assume the following hold for the signed $\operatorname{graph}(G, \Sigma)$,
(a) G is well-connected;
(b) if X is a 2-separation of H then X contains an odd polygon.

Proof. We may assume $|E(G)| \geq 25$ for otherwise trivially the number of graphs equivalent to H is in $\mathcal{O}(1)$. By Proposition 3.3.8(a), H is 2-connected except for a unique possible loop. It follows that G is 2-connected. By Proposition 3.3.8(c), if X is a 2-separation of H then $\min \{|X|,|E(H)-X|\} \leq 6$. By Proposition 3.3.8(d), H and hence G have no parallel edges of the same parity, in particular, every parallel class has at most two edges. This implies that (w1)-(w4) hold and G is well-connected, i.e. (a) holds. Finally, (b) follows from Proposition 3.3.8(b).

Let \mathcal{S} be the set of pairs $\left(G^{\prime}, v\right)$ where
i. G^{\prime} is equivalent to G;
ii. $\left(G^{\prime}, \Sigma\right)$ has a blocking pair v, w for some $w \in V\left(G^{\prime}\right)$.

We claim that it suffices to show that $|\mathcal{S}| \in \mathcal{O}(|V(G)|)$. Let \mathcal{S}^{\prime} denote the set of graphs H^{\prime} equivalent to H for which $\left(H^{\prime}, \Gamma\right)$ has a blocking pair. If (H, Γ) has no loop, then $\mathcal{S}^{\prime}=\{G:(G, v) \in \mathcal{S}\}$. If (H, Γ) has a loop e then \mathcal{S}^{\prime} is the set of all graphs obtained by adding loop e at vertex v for graph G for all $(G, v) \in \mathcal{S}$. In both case $\left|\mathcal{S}^{\prime}\right|=|\mathcal{S}| \in \mathcal{O}(|V(H)|)$ as required.

In the proof of Proposition 3.3.12 we could bound the number of maximal small 2separations. Alas, this is not possible in this case. Tackling this more complex situation requires additional tools.

The blocking vertex lemma

First, we observe the following claim:

Claim 2. Let G_{1}, G_{2} be equivalent graphs where P is a path of both G_{1} and G_{2}. For $i \in[2]$ let H_{i} be the graph obtained from G_{i} by adding an edge e between the ends of P. Then, H_{1}, H_{2} are equivalent.

Proof. Note that $P \cup e$ is a polygon of H_{1} and H_{2}. The cycle space of H_{i} is generated by cycles not containing e and one cycle containing e. Since $H_{i} \backslash e=G_{i}$ and G_{1}, G_{2} are equivalent, H_{1}, H_{2} have the same cycle space and the result follows from Theorem 1.1.1.

Recall that a vertex of a signed graph is a blocking vertex if it intersects every odd polygon.

Claim 3. Let G^{\prime} be equivalent to G and let X be a maximal small 2-separation of G and thus of G^{\prime}. Suppose that $G[E(G)-X]$ and $G^{\prime}[E(G)-X]$ are isomorphic and have the same vertex labelling. Let $\{v, w\}=\partial_{G}(X)=\partial_{G^{\prime}}(X)$. If v is a blocking vertex of both $(G[X], \Sigma \cap X)$ and $\left(G^{\prime}[X], \Sigma \cap X\right)$, then G and G^{\prime} are isomorphic.

Proof of Claim 3. Let $X^{\prime} \subseteq X$ be an (inclusion-wise) minimal 2-separation of G. Consider first the case where there exists two internally disjoint paths in $G\left[X^{\prime}\right]$ between $\partial_{G}\left(X^{\prime}\right)$. Then $G\left[X^{\prime}\right]$ and $G^{\prime}\left[X^{\prime}\right]$ are isomorphic and we may use the same vertex labelling for $\mathcal{I}_{G}\left(X^{\prime}\right)$ and $\mathcal{I}_{G^{\prime}}\left(X^{\prime}\right)$. Let $s \in \mathcal{I}_{G}\left(X^{\prime}\right)$. By Claim 1 there exists an odd polygon $C \subseteq X^{\prime}$. Since v is a blocking vertex of $(G[X], \Sigma \cap X)$ and $\left(G^{\prime}[X], \Sigma \cap X\right), C$ contains v in both G and G^{\prime}. It follows that there exists an $s v$-path P_{1} contained in X^{\prime} in both G and G^{\prime}. Consider now the case where there does not exists two internally disjoint paths in $G\left[X^{\prime}\right]$ between $\partial_{G}\left(X^{\prime}\right)$. Then since X^{\prime} is minimal and since v is a blocking vertex of $(G[X], \Sigma \cap X), X^{\prime}=\{f, g, h\}$ where $\{f, g\}$ is an odd polygon, both f, g are incident to v and $\{f, g, h\}$ is a cut. Since $\{f, g\}$ is an odd polygon, and since v is a blocking vertex of $\left(G^{\prime}[X], \Sigma \cap X\right), f, g$ are incident to v in G^{\prime}. Then define P_{1} as the path that consists of edge f. In both cases P_{1} is a path of G and G^{\prime} contained in X with an end in $\mathcal{I}_{G}\left(X^{\prime}\right)$ and an end v. Let t be a vertex in
$\mathcal{I}_{G}(E(G)-X)=\mathcal{I}_{G^{\prime}}(E(G)-X)$. Let P_{2} be an $v t$-path in $G[E(G)-X]$ and hence of $G^{\prime}[E(G)-X]$. Then $P_{1} \cup P_{2}$ is an st-path of both G and G^{\prime}. Let H, H^{\prime} be the graphs obtained from G, G^{\prime} by adding an edge $e_{X^{\prime}}$ joining s, t. By Claim $2, H, H^{\prime}$ are equivalent. Let J, J^{\prime} be the graphs obtained from G, G^{\prime} by adding repeatedly $e_{X^{\prime}}$ for every minimal 2 -separation $X^{\prime} \subseteq X$ of G. Then, J, J^{\prime} are equivalent and 3 -connected. Hence, J, J^{\prime} are isomorphic and thus so are G and G^{\prime}.

Denote by X_{1}, \ldots, X_{k} the maximal small 2-separations of G. By Proposition 3.3.21, X_{1}, \ldots, X_{k} are pairwise disjoint. Let $Y=E(G)-\left(X_{1} \cup \ldots \cup X_{k}\right)$. Here is our key result about blocking vertices.

Claim 4. Let G^{\prime} be equivalent to G and assume because of Proposition 3.3.22 that $G[Y]$ and $G^{\prime}[Y]$ have the same vertex labeling. Let $i \in[k]$ and denote by v, w the vertices in $\partial_{G}\left(X_{i}\right)=\partial_{G^{\prime}}\left(X_{i}\right)$. If v is a blocking vertex of both $\left(G\left[X_{i}\right], \Sigma \cap X_{i}\right)$ and $\left(G^{\prime}\left[X_{i}\right], \Sigma \cap X_{i}\right)$, then $G\left[Y \cup X_{i}\right]$ and $G^{\prime}\left[Y \cup X_{i}\right]$ are isomorphic.

Proof. G^{\prime} is obtained from G by a sequence of 2-flips. Since X_{1}, \ldots, X_{k} are disjoint we can assume that all 2-flips on sets contained in X_{i} are done first. Then apply Claim 3 after all these 2-flips to deduce that $G\left[Y \cup X_{i}\right]$ and $G^{\prime}\left[Y \cup X_{i}\right]$ are isomorphic as required.

Case analysis

Observe that for distinct $i, j \in[k],\left|\partial_{G}\left(X_{i}\right) \cap \partial_{G}\left(X_{j}\right)\right| \leq 1$ for otherwise this would contradict the maximality of the sets X_{i}, X_{j}. We say that a vertex v of G is special if there exists distinct $i, j, \ell \in[k]$ such that $v \in \partial_{G}\left(X_{i}\right) \cap \partial_{G}\left(X_{j}\right) \cap \partial\left(X_{\ell}\right)$. Similarly, we define special vertices of G^{\prime}.

Claim 5. If v is a special vertex of G then every blocking pair of (G, Σ) contains v.

Proof. As v is special, there exists distinct $i, j, \ell \in[k]$ such that $v \in \partial_{G}\left(X_{i}\right) \cap \partial_{G}\left(X_{j}\right) \cap \partial\left(X_{\ell}\right)$. By Claim 1 each of X_{i}, X_{j}, X_{ℓ} contains an odd polygon C_{i}, C_{j}, C_{ℓ}, respectively. Since $V\left(C_{i}\right)-v, V\left(C_{j}\right)-v, V\left(C_{\ell}\right)-v$ are pairwise disjoint the result follows.

It follows from the previous claim that there are at most two special vertices. We will thus consider three cases, namely, (1) there are two special vertices, (2) there is exactly one special vertex and (3) there is no special vertex.

Case 1. G has exactly two special vertices, say v and w.

We will prove that $|\mathcal{S}| \in \mathcal{O}(1)$ in this case. By Claim $5,\{v, w\}$ is the unique blocking pair of (G, Σ). Note that there are three possibility for each $i \in[k]$,
i. $\partial_{G}\left(X_{i}\right) \cap\{v, w\}=\{v\}$,
ii. $\partial_{G}\left(X_{i}\right) \cap\{v, w\}=\{w\}$, or
iii. $\partial_{G}\left(X_{i}\right) \cap\{v, w\}=\{v, w\}$.

Pick an arbitrary pair $\left(G^{\prime}, v^{\prime}\right) \in \mathcal{S}$. For cases (i) and (ii), by Claim 4, $G\left[Y \cup X_{i}\right]$ and $G^{\prime}\left[Y \cup X_{i}\right]$ are isomorphic. There is at most one $i \in[k]$ for case (iii). Thus the graph G^{\prime} is obtained by a sequence of 2 -flips on sets contained in X_{i}. Since $\left|X_{i}\right| \leq 6$, there are $\mathcal{O}(1)$ such graphs G^{\prime}. Finally, observe that v, w are also special vertices of G^{\prime}. In particular, v, w is the unique blocking pair of $\left(G^{\prime}, \Sigma\right)$. It follows that $v^{\prime}=v$ or $v^{\prime}=w$. Thus $|\mathcal{S}| \in \mathcal{O}(1)$ as claimed.

Case 2. G has exactly one special vertex, say v.

Pick an arbitrary pair $\left(G^{\prime}, v^{\prime}\right) \in \mathcal{S}$. Let us partition the set $[k]$ as follows,

$$
\begin{aligned}
& A_{1}=\left\{i \in[k]: v \notin \partial_{G}\left(X_{i}\right)\right\} \\
& A_{2}=\left\{i \in[k]: v \in \partial_{G}\left(X_{i}\right) \text { and } v \text { is a blocking vertex of }\left(G^{\prime}\left[X_{i}\right], \Sigma \cap X_{i}\right)\right\} \\
& A_{3}=\left\{i \in[k]: v \in \partial_{G}\left(X_{i}\right) \text { and } v \text { is not a blocking vertex of }\left(G^{\prime}\left[X_{i}\right], \Sigma \cap X_{i}\right)\right\}
\end{aligned}
$$

Claim 6. $\left|A_{1}\right| \leq 2$.

Proof. By Claim 5, every blocking pair of (G, Σ) contains v. Let v, w be an arbitrary blocking pair of (G, Σ). Let $i \in A_{1}$. By Claim 1(b), X_{i} contains an odd polygon. Since $v \notin \partial_{G}\left(X_{i}\right)$ either: (i) $w \in \mathcal{I}_{G}\left(X_{i}\right)$ or (ii) $w \in \partial_{G}\left(X_{i}\right)$. If we have $i \in A_{1}$ with outcome (i) then there is no $j \in A_{1}, j \neq i$ with either outcomes (i) or (ii). Since v is the unique special vertex of G, there are at most two $i \in[k]$ for which outcome (ii) holds. Hence, $\left|A_{1}\right| \leq 2$.

Claim 7. $\left|A_{3}\right| \leq 1$.

Proof. Suppose for a contradiction there exists distinct $i, j \in A_{3}$. As v is special, there exists ℓ with $\delta_{G}\left(X_{\ell}\right) \ni v$. Then there exists odd polygons $C_{i} \subseteq X_{i}$ and $C_{j} \subseteq X_{j}$ of G^{\prime} avoiding v. Moreover, there exists an odd polygon $C_{\ell} \subseteq X_{\ell}$. But then C_{i}, C_{j}, C_{ℓ} are vertex disjoint in G^{\prime} which contradicts the fact that $\left(G^{\prime}, \Sigma\right)$ has a blocking pair.

For $i \in[3]$, let $Z_{i}=\bigcup\left(X_{i}: i \in A_{i}\right)$. It follows by Claim 4 that $G\left[Y \cup Z_{2}\right]$ and $G^{\prime}\left[Y \cup Z_{2}\right]$ are isomorphic. Consider first the case where $A_{3}=\emptyset$ and let $\left(G^{\prime}, v^{\prime}\right) \in \mathcal{S}$. Then G^{\prime} is obtained from G by a sequence of 2-flips that are contained in Z_{1}. Since G is well-connected, $\left|X_{i}\right| \leq 6$ for all $i \in[k]$ and by Claim $6,\left|Z_{1}\right| \leq 12$. Hence, there are $\mathcal{O}(1)$ such graphs G^{\prime}. Trivially, there are $|V(G)|$ choices for the vertex v^{\prime}, thus $|\mathcal{S}| \in \mathcal{O}(|V(G)|)$ in this case. Consider now the case where $A_{3} \neq \emptyset$ and let $\left(G^{\prime}, v^{\prime}\right) \in \mathcal{S}$. Then by Claim 7 there is a unique element $\hat{\imath} \in A_{3}$. Then G^{\prime} is obtained from G by a sequence of 2-flips that are contained in $Z_{1} \cup Z_{3}$.

Since $\left|Z_{1} \cup Z_{3}\right| \leq 18$ and since there are at most $\left|A_{3}\right| \leq|V(G)|$ choices to pick the element î in A_{3} the number of such possible graphs G^{\prime} is in $\mathcal{O}(|V(G)|)$. Observe that every blocking pair of $\left(G^{\prime}, \Sigma\right)$ consists of v and a vertex of $G^{\prime}\left[X_{\mathrm{i}}\right]$. Thus, there are $\mathcal{O}(1)$ choices for the vertex v^{\prime} and $|\mathcal{S}| \in \mathcal{O}(|V(G)|)$ in this case as well.

Case 3. G has no special vertex.

Let v, w denote a blocking pair of (G, Σ). For every $i \in[k], X_{i}$ contains an odd polygon. It follows that for all $i \in[k]$ either (i) $\{v, w\} \cap \partial_{G}\left(X_{i}\right) \neq \emptyset$ or (ii) $\{v, w\} \cap \mathcal{I}_{G}\left(X_{i}\right) \neq \emptyset$. Since neither v nor w are special there are at most 4 elements in $[k]$ for which (i) holds. Trivially, (ii) can hold for at most 2 elements in $[k]$. Thus $k \leq 6$. Let $\left(G^{\prime}, v^{\prime}\right) \in \mathcal{S}$. Let $Z=\bigcup\left(X_{i}: i \in[k]\right)$ then $|Z| \leq 6 k=36$. Then G^{\prime} is obtained from G by a sequence of 2-flips that are contained in Z. Hence, there are $\mathcal{O}(1)$ such graphs G^{\prime}. Trivially, there are $|V(G)|$ choices for the vertex v^{\prime}, thus $|\mathcal{S}| \in \mathcal{O}(|V(G)|)$ in this case.

In all cases, we have $|\mathcal{S}| \in \mathcal{O}(|V(G)|)$ which completes the proof of Proposition 3.3.11.

Chapter 4

Separations

The work in this chapter appears in [22,31]. The goal of this chapter is to characterize 1-, 2- and 3-separations of pinch-graphic matroids. Let M, M_{1} and M_{2} be binary matroids such that $M=M_{1} \oplus_{k} M_{2}$ for some $k \in[3]$. Then, we say that the k-separation $X=$ $E\left(M_{1}\right)-E\left(M_{2}\right)$ of M is reducible if M_{1} or M_{2} are graphic. First, we restate the following propositions from Section 1.4 that characterize reducible separations.

Proposition 1.4.1. Let $M=M_{1} \oplus_{k} M_{2}$ for $k \in[3]$ where M_{1} is graphic. If $k=2$, assume that M is 2 -connected, and if $k=3$, assume that M is 3 -connected. Then, M is pinch-graphic if and only if M_{2} is pinch-graphic.

Proposition 1.4.2. Every 1- and 2-separation of a pinch-graphic matroid is reducible.
Propositions 1.4.1 and 1.4.2 will be proved in Sections 4.1 and 4.2, respectively. We will use these propositions to construct a recognition algorithm for pinch-graphic matroids in Chapter 5.

As seen in Section 1.4.3, there exist 3-separations that are not reducible. In Section 4.3, we will characterize non-reducible 3 -separations, i.e., we will prove the following proposition:

Proposition 1.4.3. Let M be a 3 -connected pinch-graphic matroid and let X^{\prime} be a proper 3-separation. Then there exists a homologous proper 3 -separation X that is reducible, compliant, or recalcitrant.

4.1 Reducible separations

4.1.1 Sums

Let us recall 1- and 2-sums from Section 3.1.3. Let M_{1}, M_{2} be matroids on ground sets E_{1}, E_{2}, respectively where $\left|E_{1}\right|,\left|E_{2}\right| \geq 1$. Suppose that $E_{1} \cap E_{2}=\emptyset$. Then, we define the 1-sum M of M_{1}, M_{2}, denoted by $M_{1} \oplus_{1} M_{2}$, as follows: the ground set of M is $E:=E_{1} \cup E_{2}$ and a subset C of E is a circuit of M if and only if C is either a circuit of M_{1} or a circuit of M_{2}. Let M_{1}, M_{2} be matroids on ground sets E_{1}, E_{2}, respectively where $\left|E_{1}\right|,\left|E_{2}\right| \geq 3$. Suppose that $E_{1} \cap E_{2}=\{\Omega\}$ and that Ω is not a loop and not a coloop of M_{i} for $i \in[2]$. Then, we define the 2-sum M of M_{1}, M_{2}, denoted by $M_{1} \oplus_{2} M_{2}$, as follows: the ground set of M is $E:=E_{1} \Delta E_{2}$ and a subset C of E is a circuit of M if and only if either C is a circuit of $M_{1} \backslash \Omega$ or $M_{2} \backslash \Omega$, or $C=C_{1} \Delta C_{2}$ where for $i \in[2], C_{i}$ is a circuit of M_{i} containing Ω.

Now, we define 3 -sums. Let M_{1}, M_{2} be binary matroids on ground sets E_{1}, E_{2}, respectively where $\left|E_{1}\right|,\left|E_{2}\right| \geq 7$. Suppose that $E_{1} \cap E_{2}=D$ where $|D|=3$ where for $i \in[2], D$ is a circuit of M_{i} and D contains no cocircuit of M_{i}. Then, we define the 3-sum M of M_{1}, M_{2}, denoted by $M_{1} \oplus_{3} M_{2}$, as follows: the ground set of M is $E:=E_{1} \Delta E_{2}$ and a subset C of E is a circuit of M if and only if either C is a circuit of $M_{1} \backslash D$ or $M_{2} \backslash D$ or $C=C_{1} \Delta C_{2}$ where for some $e \in D$ and for $i \in[2], C_{i}$ is a circuit of M_{i} with $C_{i} \cap D=\{e\}$. Note that 3 -sums are defined for binary matroids only. If we have matroids
$M=M_{1} \oplus_{1} M_{2}$ then M_{1} and M_{2} are restrictions of M and in particular are minors of M. Analogous results hold for 2 - and 3 -sums [44]:

Proposition 4.1.1. Suppose that $M=M_{1} \oplus_{2} M_{2}$ where M is 2 -connected, or that $M=$ $M_{1} \oplus_{3} M_{2}$ where M is 3 -connected and binary. Then M_{1} and M_{2} are isomorphic to minors of M.

4.1.2 Completion

Recall Propositions 3.1.8 and 3.1.9 from Section 3.1.3 and the completion with respect to a 2-separation.

Proposition 3.1.8. Let M be a matroid with matrix representation A and let $X \subseteq E(M)$. We denote by $\langle X\rangle$ the vector space spanned by the columns of A indexed by X. Then

$$
\lambda_{M}(X)=\operatorname{dim}[\langle X\rangle \cap\langle E(M)-X\rangle]
$$

Proposition 3.1.9. Let M be a binary matroid with a 2-separation X. Let N be the completion of M with respect to X. Then $M=(N \backslash X) \oplus_{2}(N \backslash E(M)-X)$.

Similarly, we define a completion with respect to 3 -separation. Let M be a binary matroid with matrix representation A and let X be a 3 -separation of M. Then $\lambda_{M}(X)=2$. By Proposition 3.1.8, $\operatorname{dim}[\langle X\rangle \cap\langle E(M)-X\rangle]=2$. Thus there exists non-zero 0,1 vectors p, q for which $\langle\{p, q\}\rangle=\langle X\rangle \cap\langle E(M)-X\rangle$. Let A^{+}be obtained from matrix A by adding columns p, q and $r=p+q$ (where the sum is taken over the two element field). Note that the set $\{p, q, r\}$ is uniquely determined by $\langle X\rangle \cap\langle E(M)-X\rangle$. Let N be the binary matroid represented by matrix A^{+}. Then N is the completion of M with respect to the 3 -separation X. Next, we explain the relevance of the notion of completion for 3-separations, which is analogous to Proposition 3.1.9.

Proposition 4.1.2. Let M be a binary matroid with a proper 3 -separation X. Let N be the completion of M with respect to X. Then $M=(N \backslash X) \oplus_{3}(N \backslash E(M)-X)$.

The proof of Proposition 4.1.2 is easy and similar to that of Proposition 3.1.9 so we shall omit it. The following straightforward observation will allow us to construct completions for 3 -separations.

Remark 4.1.3. Let M be a binary matroid with a proper 3 -separation X. Let N be a binary matroid where $M=N \backslash\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$ and where $\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$ is a circuit of N. Suppose for $i \in[2]$ we have cycles C_{i} and D_{i} of N where $\Omega_{i} \in C_{i} \cap D_{i}$ and $C_{i} \subseteq X \cup \Omega_{i}$, $D_{i} \subseteq(E(M)-X) \cup \Omega_{i}$. Then, N is the completion of M with respect to X.

4.1.3 Examples of 3-sums

For a signed graph (G, Σ) and $X \subseteq E(G)$, we denote $(G, \Sigma) \mid X=(G, \Sigma) \backslash E(G)-X$.

Proposition 4.1.4. Let $M=\operatorname{ecycle}(G, \Sigma)$ with a proper 3 -separation X and let $Y=$ $E(M)-X$. Suppose that $p[(G, \Sigma) \mid X]=p[(G, \Sigma) \mid Y]=1$, that $G[X], G[Y]$ are connected and that $\partial_{G}(X)=\{a, b\}$ where a, b are distinct vertices. Let $\left(G_{1}, \Sigma_{1}\right)$ (resp. $\left.\left(G_{2}, \Sigma_{2}\right)\right)$ be obtained from $(G, \Sigma) \mid X$ (resp. $(G, \Sigma) \mid Y)$ by adding an even edge $\Omega_{1}=(a, b)$, an odd edge $\Omega_{2}=(a, b)$ and an odd loop Ω_{3}. Then $M=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right) \oplus_{3} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$.

Proof. Let (H, Γ) be the signed-graph obtained from (G, Σ) by adding an even edge $\Omega_{1}=(a, b)$, an odd edge $\Omega_{2}=(a, b)$ and an odd loop Ω_{3}. Since $(G, \Sigma) \mid X$ is connected and non-bipartite, it has an even $\{a, b\}$-join J_{1} and an odd $\{a, b\}$-join J_{2} and since $(G, \Sigma) \mid Y$ is connected and non-bipartite, it has an even $a b$-join K_{1} and an odd $a b$-join K_{2}. For $i \in[2]$, let $C_{i}=J_{i} \cup \Omega_{i}$ and let $D_{i}=K_{i} \cup \Omega_{i}$. Then for $i \in[2], C_{i}$ and D_{i} are cycles
of $N:=\operatorname{ecycle}(H, \Gamma)$ where $\Omega_{i} \in C_{i} \cap D_{i}$ and $C_{i} \subseteq X \cup \Omega_{i}, D_{i} \subseteq Y \cup \Omega_{i}$. Moreover, $\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$ is a circuit of N. It follows from Remark 4.1.3 that N is the completion of M with respect to X. By Proposition 4.1.2, $M=(N \backslash Y) \oplus_{3}(N \backslash X)$. Moreover, $N \backslash Y=$ $\operatorname{ecycle}(H, \Gamma) \backslash Y=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right)$ and $N \backslash X=\operatorname{ecycle}(H, \Gamma) \backslash X=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$.

Proposition 4.1.5. Let $M=\operatorname{ecycle}(G, \Sigma)$ with a proper 3 -separation X and let $Y=$ $E(M)-X$. Suppose that $p[(G, \Sigma) \mid X]=1, p[(G, \Sigma) \mid Y]=0$, that $G[X], G[Y]$ are connected and that $\partial_{G}(X)=\{a, b, c\}$ where a, b, c are distinct vertices. Then we may assume, after possibly re-signing, that $\Sigma \subseteq X$. Let G_{1} (resp. G_{2}) be obtained from $G[X]$ (resp. $G[Y]$) by adding edges $\Omega_{1}=(a, b), \Omega_{2}=(b, c)$ and $\Omega_{3}=(a, c)$. Then $M=\operatorname{ecycle}\left(G_{1}, \Sigma\right) \oplus_{3} \operatorname{cycle}\left(G_{2}\right)$.

Proof. Let H be the graph obtained from G by adding edges $\Omega_{1}=(a, b), \Omega_{2}=(b, c)$ and $\Omega_{3}=(a, c)$. Since $(G, \Sigma) \mid X$ is connected and non-bipartite, it has an even $a b$-join J_{1} and an even $a b$-join J_{2} and since $G[Y]$ is connected, it has an $a b$-join K_{1} and an $a b$-join K_{2}. For $i \in[2]$, let $C_{i}=J_{i} \cup \Omega_{i}$ and let $D_{i}=K_{i} \cup \Omega_{i}$. Then for $i \in[2], C_{i}$ and D_{i} are cycles of $N:=\operatorname{ecycle}(H, \Sigma)$ where $\Omega_{i} \in C_{i} \cap D_{i}$ and $C_{i} \subseteq X \cup \Omega_{i}, D_{i} \subseteq Y \cup \Omega_{i}$. Moreover, $\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$ is a circuit of N. It follows from Remark 4.1.3 that N is the completion of M with respect to X. By Proposition 4.1.2, $M=(N \backslash Y) \oplus_{3}(N \backslash X)$. Moreover, $N \backslash Y=\operatorname{ecycle}(H, \Sigma) \backslash Y=\operatorname{ecycle}\left(G_{1}, \Sigma\right)$ and $N \backslash X=\operatorname{ecycle}(H, \Sigma) \backslash X=\operatorname{cycle}\left(G_{2}\right)$.

4.1.4 Applications

In this section we prove Proposition 1.4.1 by proving Propositions 4.1.6, 4.1.7 and 4.1.8.
Proposition 4.1.6. Let $M=M_{1} \oplus_{1} M_{2}$ where M_{1} is graphic. Then M is pinch-graphic if and only if M_{2} is pinch-graphic.

Proof. If M is pinch-graphic so is $M_{2}=M \backslash E\left(M_{1}\right)$ as pinch-graphic matroids form a minor closed class. Suppose that M_{2} is pinch-graphic, i.e. $M_{2}=\operatorname{ecycle}\left(G_{2}, \Sigma\right)$ for some signed-graph $\left(G_{2}, \Sigma\right)$ with a blocking pair, say v, w. Since M_{1} is graphic, $M_{1}=\operatorname{cycle}\left(G_{1}\right)$ for some graph G_{1}. Then $M=\operatorname{ecycle}(G, \Sigma)$ where G is the union of G_{1} and G_{2}. As v, w is a blocking pair of $(G, \Sigma), M$ is pinch-graphic.

Proposition 4.1.7. Let $M=M_{1} \oplus_{2} M_{2}$ where M_{1} is graphic and M is 2-connected. Then M is pinch-graphic if and only if M_{2} is pinch-graphic.

Proof. If M is pinch-graphic then so is M_{2} since M_{2} is isomorphic to a minor of M (Proposition 4.1.1) and pinch-graphic matroids form a minor closed class. Suppose that M_{2} is pinch-graphic, i.e. $M_{2}=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$ for some signed-graph $\left(G_{2}, \Sigma_{2}\right)$ with a blocking pair, say v, w. Since M_{1} is graphic, $M_{1}=\operatorname{cycle}\left(G_{1}\right)$ for some graph G_{1}. Denote by e the unique element in $E\left(M_{1}\right) \cap E\left(M_{2}\right)$. By definition of 2-sums, e is not a loop or a co-loop of M_{1} or M_{2}. In particular, e is not a loop of G_{1} and not a bridge of G_{1} or G_{2}.

Case 1. e is not a loop of G_{2}.

After possibly re-signing $\left(G_{2}, \Sigma_{2}\right)$ we may assume $e \notin \Sigma_{2}$. Let G be obtained from G_{1} and G_{2} by identifying edge e and then deleting e. Let $M^{\prime}=\operatorname{ecycle}\left(G, \Sigma_{2}\right)$. Proposition 3.1.5 and the fact that e is not a bridge of G_{1}, G_{2} implies that $\lambda_{M^{\prime}}(X)=1$, thus X is a 2-separation of M^{\prime}. By Proposition 3.1.12 $M^{\prime}=\operatorname{cycle}\left(G_{1}\right) \oplus_{2} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)=M_{1} \oplus_{2} M_{2}$. Thus $M=M^{\prime}$ and in particular $\left(G, \Sigma_{2}\right)$ is a representation of M. Finally, observe that v, w is a blocking pair of $\left(G, \Sigma_{2}\right)$, hence, M is pinch-graphic.

Case 2. e is a loop of G_{2}.

Since e is not a loop of $M_{2}, e \in \Sigma_{2}$, thus e is incident to v or w in G_{2}. Suppose r, s denote
the ends of e in G_{1}. Then let $\Sigma_{1}=\delta_{G_{1}}(r)$ and let G_{1}^{\prime} be the graph obtained from G_{1} by identifying r and s. Note that e is an odd loop of $\left(G_{1}^{\prime}, \Sigma_{1}\right)$ with ends $r=s$. Let G be obtained from G_{1} and G_{2} by identifying the vertex incident to e and then deleting e. Let $M^{\prime}=\operatorname{ecycle}\left(G, \Sigma_{1} \cup \Sigma_{2}-e\right)$. Proposition 3.1.5, and the fact that e is not a bridge of G_{1}, implies that $\lambda_{M^{\prime}}(X)=1$, thus X is a 2-separation of M^{\prime}. By Proposition 3.1.11, $M^{\prime}=\operatorname{ecycle}\left(G_{1}^{\prime}, \Sigma_{1}\right) \oplus_{2} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)=M_{1} \oplus_{2} M_{2}$. Thus $M=M^{\prime}$ and in particular $\left(G, \Sigma_{2}\right)$ is a representation of M. Finally, observe that v, w is a blocking pair of $\left(G, \Sigma_{2}\right)$, hence, M is pinch-graphic.

Proposition 4.1.8. Let $M=M_{1} \oplus_{3} M_{2}$ where M_{1} is graphic and M is 3-connected. Then M is pinch-graphic if and only if M_{2} is pinch-graphic.

Proof. Sufficiency follows as in Proposition 4.1.7. Suppose that M_{2} is pinch-graphic, i.e. $M_{2}=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$ for some signed-graph $\left(G_{2}, \Sigma_{2}\right)$ with a blocking pair, say v, w. Since M_{1} is graphic, $M_{1}=\operatorname{cycle}\left(G_{1}\right)$ for some graph G_{1}. Denote by $D=\{e, f, g\}=E\left(M_{1}\right) \cap E\left(M_{2}\right)$. By definition of 3 -sum, D is a circuit of M_{1} of M_{2}. In particular, D is a polygon of G_{1}. Also by definition of 3 -sum D does not contain a cocircuit of M_{1} or M_{2}. Hence, D does not contain a cut of G_{1} or G_{2}. After possibly interchanging the roles of e, f, g we may assume that one of Case 1 or Case 2 occurs.

Case 1. D is a polygon of G_{2}.

After possibly re-signing $\left(G_{2}, \Sigma_{2}\right)$ we may assume that $\Sigma_{2} \cap D=\emptyset$. Let G be obtained from G_{1}, G_{2} by identifying e, identifying f, identifying g, and deleting e, f, g. Let $M^{\prime}=$ ecycle $\left(G, \Sigma_{2}\right)$. Proposition 3.1.5 and the fact that D does not contain a cut of G_{1}, G_{2}, implies that $\lambda_{M^{\prime}}(X)=2$, thus X is a 3 -separation of M^{\prime}. By Proposition 4.1.5 $M^{\prime}=$ $\operatorname{cycle}\left(G_{1}\right) \oplus_{3} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)=M_{1} \oplus_{3} M_{2}$. Thus $M=M^{\prime}$ and in particular $\left(G, \Sigma_{2}\right)$ is a
representation of M. Finally, observe that v, w is a blocking pair of $\left(G, \Sigma_{2}\right)$, hence, M is pinch-graphic.

Case 2. e, f are parallel and g is a loop in G_{2}. Moreover, $\{e, f, g\} \cap \Sigma_{2}=\{f, g\}$.

Let r be the vertex of G_{1} incident to g, f and let s be the vertex of G_{1} incident to g, e. Then let $\Sigma_{1}=\delta_{G_{1}}(r)$ and let G_{1}^{\prime} be the graph obtained from G_{1} by identifying r and s. Note that g is an odd loop of $\left(G_{1}^{\prime}, \Sigma_{1}\right)$ with ends $r=s$. Since $\{e, f\}$ is an odd polygon of $\left(G_{2}, \Sigma_{2}\right)$ we may assume that one of the end of e, f is vertex v of the blocking pair v, w and that g is incident to v in G_{2}. Let G be obtained from G_{1} and G_{2} by identifying vertex $r=s$ of G_{1} with vertex v of G_{2}, by identifying the other end of e, f, and then deleting e, f, g. Let $\Gamma=\left(\Sigma_{1} \cup \Sigma_{2}\right)-\{e, f, g\}$. Let $M^{\prime}=\operatorname{ecycle}(G, \Gamma)$. Proposition 3.1.5 and the fact that D does not contain a cut of G_{1}, G_{2} implies that $\lambda_{M^{\prime}}(X)=2$, thus X is a 3-separation of M^{\prime}. By Proposition 4.1.4 $M^{\prime}=\operatorname{ecycle}\left(G_{1}^{\prime}, \Sigma_{1}\right) \oplus_{3} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)=M_{1} \oplus_{3} M_{2}$. Thus $M=M^{\prime}$ and in particular (G, Γ) is a representation of M. Note that v, w is a blocking pair of (G, Γ), hence, M is pinch-graphic.

4.2 1- and 2-separations

4.2.1 1-separations

Recall that if a bipartite signed-graph is a representation of an even-cycle matroid, then that matroid is graphic.

Proposition 4.2.1. If X is a 1-separation of an even-cycle matroid M, then X is reducible.

Proof. Let $M=M_{1} \oplus_{1} M_{2}$ for some M_{1}, M_{2} where $X=E\left(M_{1}\right)$, and let $Y=E\left(M_{2}\right)$.

We may assume that M is not graphic for otherwise so is M_{1} and X is reducible. Thus M has a non-bipartite representation (G, Σ). After possible 1-flips, we may assume that G is connected. Let H be the auxiliary graph for X and (G, Σ). Since $\lambda_{M}(X)=0$, Proposition 3.1.6 (b) implies $|V(H)|+0-p[(G, \Sigma) \mid X]-p[(G, \Sigma) \mid Y] \geq|V(H)|-1$, or equivalently, $p[(G, \Sigma) \mid X]+p[(G, \Sigma) \mid Y] \leq 1$. Thus $(G, \Sigma) \mid X$ or $(G, \Sigma) \mid Y$ is bipartite. As $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are representations of M_{1} and M_{2} respectively, at least one of M_{1}, M_{2} is graphic, i.e. X is reducible.

4.2.2 Preliminaries

It remains to prove the following analogous result for 2-separations.
Proposition 4.2.2. If X is a 2 -separation of a 2 -connected pinch-graphic matroid M, then X is reducible.

Before we can proceed with the proof we require some preliminaries. Recall that a theta is a graph H with two distinct vertices $r, s \in V(H)$ that consists of three internally disjoint $r s$-paths P_{1}, P_{2}, P_{3} (all vertices of H except r, s have degree two). If $\left|P_{1}\right|=\left|P_{2}\right|=\left|P_{3}\right|=k$ for some integer k (where P_{i} are viewed as subsets of edges), then the theta graph is k-uniform. Consider now a graph H that is obtained from two disjoint polygons C_{1}, C_{2} by identifying a vertex of C_{1} with a vertex of C_{2}. Recall that H is called a double ear. If $\left|C_{1}\right|=\left|C_{2}\right|=k$ for some integer k (where C_{i} are viewed as subsets of edges) then the double ear is k-uniform. In Figure 3.1(i)(p. 72) top graph, we have a 2 -uniform double ear, in Figure 3.1(ii) top graph, we have a 1-uniform theta graph, and in Figure 3.1(iii) top graph, we have a 2-uniform theta graph. Recall the following remark from Section 3.1.2.

Remark 3.1.7. If H is a 2-edge-connected graph where $|E(H)|=|V(H)|+1$ then H is a theta or a double ear.

Consider a signed-graph (G, Σ) and vertices $v_{1}, v_{2} \in V(G)$ where every edge of Σ is incident to either v_{1} or v_{2}. So v_{1}, v_{2} is a blocking pair of (G, Σ). Consider first the case where there is no odd edge between v_{1} and v_{2} and there is no odd loop. Let H be obtained from G by, for $i \in[2]$, splitting v_{i} into $v_{i}^{\prime}, v_{i}^{\prime \prime}$ such that $\delta_{H}\left(v_{i}^{\prime}\right)=\delta_{G}\left(v_{i}\right) \cap \Sigma$. Then let G^{\prime} be obtained from H by identifying v_{1}^{\prime} and $v_{2}^{\prime \prime}$ to a new vertex w_{1} and by identifying v_{2}^{\prime} and $v_{1}^{\prime \prime}$ to a new vertex w_{2}. If (G, Σ) has an odd loop f, then f will have ends w_{1}, w_{2} in G^{\prime} and if (G, Σ) has an odd edge g with ends v_{1}, v_{2} then g will be an odd loop of $\left(G^{\prime}, \Sigma\right)$. We then say that $\left(G^{\prime}, \Sigma\right)$ is obtained from (G, Σ) by a Lovász-flip on v_{1}, v_{2} and that w_{1}, w_{2} is the resulting blocking pair. Informally, G^{\prime} is obtained from G by exchanging the odd edges incident to v_{1} with the odd edges incident to v_{2} where odd loops and odd edges between v_{1} and v_{2} behave like odd walks of length two. It is not difficult to see that Lovász-flips preserve even cycles [40, 11]. In Figure 4.1 we illustrate a pair of signed-graphs related by a Lovász-flip. Vertices v_{1} and v_{2} are indicated in white. Odd edges correspond to dashed lines. Even edges are unchanged.

Figure 4.1: Lovász-flip.

4.2.3 2-separations

Since X is a 2-separation of $M, M=M_{1} \oplus_{2} M_{2}$ for some matroids M_{1}, M_{2} where $X=$ $E\left(M_{1}\right)-E\left(M_{2}\right)$. Let $Y=E\left(M_{2}\right)-E\left(M_{1}\right)$. We may assume that M_{1}, M_{2} are not graphic; otherwise, X is reducible. Let e denote the unique element in $E\left(M_{1}\right) \cap E\left(M_{2}\right)$. Since M is an even-cycle matroid it has a representation (G, Σ). Note that (G, Σ) is not bipartite for otherwise M is graphic and then by Proposition 4.1.1 so is M_{1}, a contradiction. Among all possible connected representation (G, Σ) of M pick one according to the following priorities,
(m1) (G, Σ) has a blocking pair and $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are both non-bipartite,
$(\mathrm{m} 2)(G, \Sigma) \mid X$ is bipartite and $(G, \Sigma) \mid Y$ is non-bipartite and we minimize $\kappa(G[X])+$ $\kappa(G[Y])$.
(m3) $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are both non-bipartite and we minimize $\kappa(G[X])+\kappa(G[Y])$.

Note for (m2) and (m3) we do not require that (G, Σ) have a blocking pair. Let H denote the auxiliary graph for X and (G, Σ). Since G is connected, so is H.

Claim 1. (G, Σ) is not picked according to (m1).
Subproof. Suppose otherwise. Proposition 3.1.6 implies, $|E(H)|=|V(H)|+1-1-1=$ $|V(H)|-1$. Since H is connected, H is a tree. Denote by X_{1}, \ldots, X_{p} the connected components of $G[X]$ and by Y_{1}, \ldots, Y_{q} the connected components of $G[Y]$. For all $j \in[p]$, $(G, \Sigma) \mid X_{j}$ is non-bipartite, for otherwise X_{j} is a 1-separation of M by Proposition 3.1.5, a contradiction. Similarly, $(G, \Sigma) \mid Y_{j}$ is non-bipartite for all $j \in[q]$. If for all $j \in[p],(G, \Sigma) \mid X_{j}$ has a blocking vertex and for all $j \in[q],(G, \Sigma) \mid Y_{j}$ has a blocking vertex then after a sequence of 1-flips there exists a blocking vertex of (G, Σ), a contradiction as Remark 2.4.2 then implies that M is graphic. Thus we may assume that $(G, \Sigma) \mid X_{1}$ has no blocking vertex
and that $(G, \Sigma) \mid X_{1}$ has a blocking pair v, w of (G, Σ). Note that $p=1$ since otherwise $(G, \Sigma) \mid X_{2}$ contains an odd polygon that avoids v, w, a contradiction. After possible 1-flips we may assume that v is vertex of $G\left[Y_{j}\right]$ for all $j \in[q]$, in particular, $q=1$. Thus $G[X]$ and $G[Y]$ are both connected and $v \in \partial_{G}(X)$. Let G_{1} be obtained from $G[X]$ by adding a loop e_{1} incident to vertex v and let G_{2} be obtained from $G[Y]$ by adding a loop e_{2} incident to vertex v. Let $\Sigma_{1}=(\Sigma \cap X) \cup e_{1}$ and $\Sigma_{2}=(\Sigma \cap Y) \cup e_{2}$. It follows by Proposition 3.1.11 that $M=\operatorname{ecycle}(G, \Sigma)=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right) \oplus_{2} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$. Thus $M_{2}=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$. Finally, note that $\left(G_{2}, \Sigma_{2}\right)$ has a blocking vertex v. It follows from Remark 2.4.2 that M_{2} is graphic, a contradiction.

Claim 2. (G, Σ) is not picked according to (m2).
Subproof. Suppose otherwise. Since $(G, \Sigma) \mid X$ is bipartite, we may assume after possibly re-signing that $\Sigma \subseteq Y$. Proposition 3.1.6 implies $|E(H)|=|V(H)|+1-0-1=|V(H)|$. We picked (G, Σ) that minimizes $\kappa(G[X])+\kappa(G[Y])$. Since we can rearrange G by 1-flips, H is bridgeless, hence H is a polygon. Since we can rearrange G by 2-flips, $|V(H)|=2$, i.e. $G[X]$ and $G[Y]$ are connected and $\partial_{G}(X)=\{a, b\}$ for some distinct vertices a, b. Let G_{1} be obtained from $G[X]$ by adding an edge e_{1} between a, b and let G_{2} be obtained from $G[Y]$ by adding an edge e_{2} between a, b. It follows by Proposition 3.1.12 that $M=\operatorname{ecycle}(G, \Sigma)=\operatorname{cycle}\left(G_{1}\right) \oplus_{2} \operatorname{ecycle}\left(G_{2}, \Sigma\right)$. Hence, $M_{1}=\operatorname{cycle}\left(G_{1}\right)$ is graphic, a contradiction.

It follows from Claim 1 and Claim 2 that $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are both bipartite. Proposition 3.1.6 implies that $|E(H)|=|V(H)|+1-0-0=|V(H)|+1$. Hence, by Remark 3.1.7 H is either a theta or a double ear. By the choice (m3) and since we can rearrange G by 1-flips, H is bridgeless. (Note, that here we are free to perform 1-flips and 2-flips as we are not trying to preserve blocking pairs).

Case 1. H is a theta.
H consists of three internally disjoint path P_{1}, P_{2}, P_{3}. By (m3) and since we can rearrange G by 2-flips, for $j \in[3],\left|P_{j}\right| \in[2]$. As H is bipartite, $\left|P_{1}\right|,\left|P_{2}\right|,\left|P_{3}\right|$ have the same parity. Hence, the theta H is 1 or 2-uniform. Consider first the case where H is 1 -uniform. Then $G[X]$ and $G[Y]$ are connected and $\left|\partial_{G}(X)\right|=3$. Since $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are bipartite some vertex of $\partial_{G}(X)$ is a blocking vertex. This implies by Remark 2.4.2 that M is graphic, a contradiction. Consider now the case where H is 2-uniform. After possibly interchanging the role of X and $Y,(G, \Sigma)$ is of the form given in Figure 4.2 where X corresponds to the shaded region. Since $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are bipartite, some vertex of $\partial_{G}(X)$ is a blocking vertex. Again, this implies by Remark 2.4.2 that M is graphic, a contradiction.

Figure 4.2: A theta.

Case 2. H is a double ear.
H consists of two polygons C_{1}, C_{2} sharing a single vertex. Since H is bipartite $\left|C_{1}\right|,\left|C_{2}\right| \geq 2$. By (m3) and since we can rearrange G by 2-flips, $\left|C_{1}\right|=\left|C_{2}\right|=2$, i.e. the double ear H is 2-uniform. Thus $V(H)=\{r, s, t\}, E(H)=\{a=r s, b=r s, c=s t, d=s t\}$. After possibly interchanging the role of X and Y, we may assume $X=R \cup T$ where R and T are the components of $G[X]$ corresponding to $r, t \in V(H)$, and that $Y=S$ where S is the component of $G \mid Y$ corresponding to $s \in V(H)$. Then $a, b, c, d \in E(H)$ correspond to
vertices in $\partial_{G}(X)$ where, $\partial_{G}(R)=\{a, b\}$ and $\partial_{G}(T)=\{c, d\}$. We illustrate (G, Σ) in

Figure 4.3: A double ear.
Figure 4.3 where X correspond to the shaded region, Since $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are bipartite after possibly re-signing we have $\Sigma=\left[\delta_{G}(a) \cap R\right] \cup\left[\delta_{G}(c) \cap S\right]$. Let $\left(G^{\prime}, \Sigma\right)$ be obtained from a Lovász-flip on the blocking pair a, c. Then observe that $\partial_{G^{\prime}}(X)=\{b, d\}$, that $\left(G^{\prime}, \Sigma\right) \mid X$ is bipartite and that $\left(G^{\prime}, \Sigma\right) \mid Y$ is non-bipartite. But then $\left(G^{\prime}, \Sigma\right)$ is a representation as in (m2) contradicting our choice of representation.

4.3 Structure theorem for 3-separations

4.3.1 Representation of 3-connected even-cycle matroid

We will use the following multiple times,
Proposition 4.3.1. Let M be a 3-connected even cycle matroid with representation (G, Σ). Then (G, Σ) has at most one loop, which is odd. Moreover, if we let G^{\prime} be obtained from G by deleting that loop (if it exists) then G^{\prime} is 2-connected and every cut of G contains at least three edges.

Proof. Since M is 3 -connected, M has no loops and parallel elements. Suppose e is a loop of G. Then $e \in \Sigma$, for otherwise e is a loop of M. Moreover, if G has distinct loops e, f then $\{e, f\}$ is a circuit of M, i.e. e, f are parallel, a contradiction. We may assume that
G^{\prime} is connected by identifying components as we will show that G^{\prime} is in fact 2-connected. Suppose that G^{\prime} has a cut vertex v. Then there exists $X \subseteq E\left(G^{\prime}\right)$ such that $\partial_{G^{\prime}}(X)=\{v\}$ and $G^{\prime}[X]$ and $G^{\prime}\left[E\left(G^{\prime}\right)-X\right]$ are both connected. By moving the loop e of G (if it exists) we may assume that $G[X]$ and $G[E(G)-X]$ are also connected. Then, by Proposition 3.1.5, $\lambda_{M}(X)=\left|\partial_{G}(X)\right|-\kappa(G[X])-\kappa(G[E(M)-X])+p[(G, \Sigma) \mid X]+p[(G, \Sigma) \mid E(G)-X] \leq$ $1-1-1+1+1=1$, thus X is 2 -separating. If $|X|=1$, then the unique element in X is a bridge of G, i.e. a coloop of M, a contradiction. Thus $|X| \geq 2$ and similarly, $|E(G)-X| \geq 2$ and it follows that X is a 2 -separation, a contradiction. Finally, if D is a cut of G then D is cocycle of M ([40], Remark 2.1). It follows that $|D| \geq 3$.

4.3.2 The statement

First, we recall a few definitions from Section 1.4.3. Given a matroid M and $X \subseteq E(M)$, denote by $\operatorname{cl}_{M}(X)$ the closure of X for matroid M. Let M be a matroid and let $X \subseteq E(M)$ be a proper 3 -separation. Suppose $|X| \geq 5$ and suppose that there exists $e \in X$ with $e \in \mathrm{cl}_{M^{*}}(E(M)-X)$ and $e \in \mathrm{cl}_{M^{*}}(X-e)$. Then, $X-e$ is also a proper 3 -separation of M. We say that $X-e$ is homologous to X and so is any set that is obtained by repeat application of the aforementioned procedure. Let (G, Σ) be a connected signed graph and consider $X \subseteq E(G)$. The triple (G, Σ, X) is a Type I or Type II configuration if $|X|,|E(G)-X| \geq 4$, $G[X], G[E(G)-X]$ are both connected, and $\left|\partial_{G}(X)\right|=2$. Recall that X is compliant if there exists a representation (G, Σ) for which (G, Σ, X) is a Type I configuration. We say that X is recalcitrant if there exists a representation (G, Σ) for which (G, Σ, X) is a Type II configuration. Now, let us restate Proposition 1.4.3.

Proposition 1.4.3. Let M be a 3 -connected pinch-graphic matroid and let X^{\prime} be a proper 3-separation. Then there exists a homologous proper 3 -separation X that is reducible,
compliant, or recalcitrant.

The proof of this result will share some commonality with that of Proposition 4.2.2, namely we will analyze the auxiliary graph H for a representation (G, Σ) and separation X homologous to X^{\prime}. However, when $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid E(M)-X$ are both bipartite, then $|E(H)|=|V(H)|+3$ and a simple-minded analysis of all possible graphs H becomes very complicated. Instead we will prove a key property in Section 4.3 .6 that will bypass most of the case analysis. The proof of Proposition 1.4 .3 will be organized as follows: Section 4.3.3 presents basic results about closure, Section 4.3.4 indicates how to pick a suitable representation (G, Σ) and a separation X of M. A key property of the auxiliary graph is derived in Sections 4.3.5 and 4.3.6. Finally in Section 4.3.7, we analyze the auxiliary graph, completing the proof.

4.3.3 Closure and small separations

For 3-connected matroids we have the following characterization of homologous separations.

Proposition 4.3.2 (Lemma 3.1 [37]). Let M be a 3-connected matroid where $|E(M)| \geq 9$ and let $X \subseteq E(M)$ be a proper 3 -separation. Suppose $|X| \geq 5$ and that there exists $e \in X$ with $e \in \operatorname{cl}_{M^{*}}(E(M)-X)$. Then $X-e$ is homologous to X.

Observe that we dropped one of the condition from the definition of homologous separations.
Next we describe what it means for an element to be in the co-closure of a set, for the case of even-cycle matroids.

Remark 4.3.3. Let $M=\operatorname{ecycle}(G, \Sigma)$ and let $X \subseteq E(M), e \in E(M)-X$. Then the following are equivalent,
(a) $e \in \operatorname{cl}_{M^{*}}(X)$,
(b) there exists a signature D of (G, Σ) or a cut D of G where $D-X=\{e\}$.

Proof. Clearly, $e \in \operatorname{cl}_{M^{*}}(X)$ if and only if there exists a cocircuit D of M with $D-X=\{e\}$. Moreover, cocircuits of M are signatures of (G, Σ) and cuts of G ([40] Remark 2.1).

In the proof of Proposition 1.4.3, we will consider a proper 3-separations X. We will want to check if $X-e$ is an homologous proper 3-separation for some $e \notin X$. A trivial reason for this not to be the case is if $|X|=4$. Let us study such 3 -separations,

Proposition 4.3.4. Let M be a 3-connected binary matroid with a 3-separation X where $|X|=4$. Then
(a) $r_{M}(X)=r_{M^{*}}(X)=3$, and
(b) X contain both a circuit and a cocircuit where each have at least three elements.

Proof. Recall, that $r_{M^{*}}(X)=|X|-\left[r(M)-r_{M}(E(M)-X)\right]$.
$r_{M}(X)+r_{M^{*}}(X)=r_{M}(X)+|X|-r(M)+r_{M}(E(M)-X)=|X|+\lambda_{M}(X)=4+2=6$.
Observe that $r_{M}(X) \geq 3$, for otherwise as $|X|=4, M$ would have a loop or a pair of parallel elements contradicting the fact that M is 3-connected. Similarly $r_{M^{*}}(X) \geq 3$ and thus (a) holds. Finally (a) and $|X|>3$ implies (b).

4.3.4 Choice of representation and separation

Throughout the proof of Proposition 1.4.3, M denotes a 3-connected pinch-graphic matroid and X^{\prime} is a proper 3 -separation. Since M is pinch-graphic, there exists a signed-graph (G, Σ) such that
i. (G, Σ) is a representation of M,
ii. (G, Σ) has a blocking pair, and
iii. G is connected.

We make the following minimality assumption. Among all choices of (G, Σ) that satisfy (i)-(iii) and among all choices of homologous separations X of X^{\prime} with $Y=E(G)-X$ we pick one that minimizes,

$$
\begin{equation*}
\kappa(G[X])+\kappa(G[Y]) . \tag{4.1}
\end{equation*}
$$

Throughout the remainder of the proof of Proposition 1.4.3, (G, Σ) will denote the representation of M and X, Y the partition selected according to (4.1). Next we give some easy properties,

Proposition 4.3.5. We may assume that (G, Σ) is non-bipartite and has no blocking vertex.

Proof. Otherwise by Remark 2.4.2, M is graphic. Express M as a 3 -sum, i.e. $M=M_{1} \oplus_{3} M_{2}$ for some matroids M_{1}, M_{2} where $X=E\left(M_{1}\right)-E\left(M_{2}\right)$. Proposition 4.1.1 implies that M_{1} is isomorphic to a minor of M. Since M is graphic then so is M_{1}. Thus X is reducible and Proposition 1.4.3 holds.

4.3.5 Edge condition

The following describes necessary conditions for which a signed-graph stops having a blocking pair after a 2-flip.

Proposition 4.3.6. Let (H, Γ) be a signed-graph with a blocking pair v, w where H is 2-connected. Let Z be a 2-separation of H and let $\partial_{H}(Z)=\left\{u_{1}, u_{2}\right\}$. Let H^{\prime} be obtained from H by a 2-flip on Z and assume that $\left(H^{\prime}, \Gamma\right)$ does not have a blocking pair. Then, exactly one of u_{1}, u_{2} is in $\{v, w\}$ (say $u_{1}=v$), and there exist odd circuits C_{1}, C_{2}, C_{3} of (H, Γ) where $C_{1} \subseteq Z$ contains u_{1}, and avoids $w, u_{2} ; C_{2} \subseteq E(H)-Z$ contains u_{1}, and avoids w, u_{2}; and C_{3} contains w, and avoids u_{1}, u_{2}.

Proof. Label the vertices of H^{\prime} so that vertices distinct from $\partial_{H^{\prime}}(Z)$ have the same label as H and vertices in $H[Z]$ and $H^{\prime}[Z]$ have the same label. Then $\{v, w\} \cap \partial_{H}(Z) \neq \emptyset$ for otherwise v, w would be a blocking pair of H^{\prime} and $\{v, w\} \neq\left\{u_{1}, u_{2}\right\}$ for otherwise u_{1}, u_{2} would be a blocking pair of H^{\prime}. We may assume, $u_{1}=v$. Then C_{1}, C_{2}, C_{3} exist because u_{1}, w is a blocking pair of (H, Γ) and for C_{1} we have that u_{2}, w is not a blocking pair of $\left(H^{\prime}, \Gamma\right)$, for C_{2} we have that u_{1}, w is not a blocking pair of $\left(H^{\prime}, \Gamma\right)$, and for C_{3} we have that u_{1}, u_{2} is not a blocking pair of $\left(H^{\prime}, \Gamma\right)$.

We shall also require the following observation about Lovász-flip,
Remark 4.3.7. Let (H, Γ) be a signed-graph with a blocking pair v_{1}, v_{2} and $\Gamma \subseteq \delta_{H}\left(v_{1}\right) \cup$ $\delta_{H}\left(v_{2}\right)$. Consider $Z \subseteq E(H)$ such that $H[Z]$ is connected. Suppose for $i \in[2]$,

$$
\delta_{H}\left(v_{i}\right) \cap Z \in\left\{\emptyset, \delta_{H}\left(v_{i}\right) \cap \Sigma, \delta_{H}\left(v_{i}\right)-\Sigma\right\} .
$$

Let $\left(H^{\prime}, \Gamma\right)$ be obtained from (H, Γ) by a Lovász-flip on v_{1}, v_{2}. Then $H^{\prime}[Z]$ is also connected.

Note, it suffices to observe that if two edges of Z are incident in H then they will be incident in H^{\prime}.

The next result will be key,
Proposition 4.3.8. No component of $G[X]$ or $G[Y]$ consists of a single edge.

Proof. Suppose otherwise, i.e. there exists a component of $G[X]$ or $G[Y]$ that consists of a single edge e. Without loss of generality, we may assume that $e \in X$. Denote by u, v a blocking pair of (G, Σ).

Claim 1. $e \in \operatorname{cl}^{*}(Y)$.
Subproof. First consider the case where e not a loop. Since G is connected there exists an end, say x, of e that is a vertex of $G[Y]$. Then $D=\delta_{G}(x)$ is a cut of G where $D-Y=\{e\}$. Hence, by Remark 4.3.3, $e \in \operatorname{cl}^{*}(Y)$ as required. Now consider the case where e is a loop. By Proposition 4.3.1, $e \in \Sigma$. Suppose that $(G, \Sigma) \mid X-e$ is non-bipartite. Then $G[X-e]$ contains one of the two vertices of the blocking pair, say u. Let G^{\prime} be obtained from G by moving e to u. Then $\left(G^{\prime}, \Sigma\right)$ and X contradict the minimality assumption (4.1). Thus $(G, \Sigma) \mid X-e$ is bipartite and it follows that there exists a signature Γ of (G, Σ) where $\Gamma-Y=\{e\}$. Thus by Remark 4.3.3, $e \in \operatorname{cl}^{*}(Y)$ as required.

Claim 2. $|X|=4$
Subproof. Suppose for a contradiction that $|X| \geq 5$. Then by Claim 1 and Proposition 4.3.2, $X-e$ is homologous to X. But then (G, Σ) and $X-e$ violate the minimality assumption (4.1).

Claim 3. Circuits of M contained in X avoid e.

Subproof. Since M is binary, circuits and cocircuits have an even number of common elements. By Claim 1 there is a cocircuit D of M with $D-Y=\{e\}$. Let C be a circuit of M where $C \subseteq X$. Then, $C \cap D \subseteq\{e\}$. It follows that $C \cap D=\emptyset$, i.e. $e \notin C$.

Denote the elements of X by e, f, g, h. By Proposition 4.3.4 there exists a circuit $C \subseteq X$ of M with $|C| \geq 3$. By Claim 3, e $\notin C$, thus $C=\{f, g, h\}$. By Proposition 4.3.4 there
exists a cocircuit $D \subseteq X$ of M with $|D| \geq 3$. Since $|C \cap D|$ is even we may assume that $D=\{e, f, g\}$.

Claim 4. e is not a loop of G.
Subproof. Suppose for a contradiction that e is a loop. Then D is not a cut of G. It follows that $D=\{e, f, g\}$ is a signature of (G, Σ). By Proposition 4.3.1 e is the only loop of G. Thus $C=\{f, g, h\}$ is a polygon of G. Let w denote the common end of f and g. Let G^{\prime} be obtained from G by moving e to w. Then $\left(G^{\prime}, \Sigma\right)$ has a blocking vertex, contradicting Proposition 4.3.5.

There are two cases for D, namely, D is a cut of G or a signature of (G, Σ). There are two cases for C, namely, C is a polygon of G or C consists of two parallel edges (exactly one of which is odd) and an odd loop. We will consider all four possible combinations. Let x, y denote the ends of edge e.

Case 1. D is a cut and C is a polygon.

Let p, q, r denote the vertices of the polygon C in G where p is incident to f, g. As C is a cycle of M, C is even in (G, Σ). By exchanging the roles of x, y if needed, there exists a non-trivial partition Y_{1}, Y_{2} of Y such that $\partial\left(Y_{1}\right)=\{x, p\}$ and $\partial\left(Y_{2}\right)=\{y, q, r\}$. Let $Z=Y_{1} \cup e$, then $\partial(Z)=\{p, y\}$. Let G^{\prime} be obtained from G by a 2-flip on Z. Suppose for a contradiction that $\left(G^{\prime}, \Sigma\right)$ has no blocking pair. Recall, that u, v denotes the blocking pair of (G, Σ). Then by Proposition 4.3 .6 we may assume (i) $u=p$ or (ii) $u=y$. Moreover, if (i) occurs then we have an odd circuit $C_{2} \subseteq E(G)-Z$ that uses p and avoids v. It follows that C_{2} uses edges f, g. But then $C_{2}-\{f, g\} \cup h$ is an odd circuit of (G, Σ) that avoids both u, v, a contradiction. If (ii) occurs we must have a circuit $C_{1} \subseteq Z$ that uses y, a
contradiction as e is the only edge of Z incident to y. Hence, $\left(G^{\prime}, \Sigma\right)$ has a blocking pair and together with X it contradicts the minimality assumption (4.1).

Case 2. D is a cut and C is not a polygon.

Then as $D=\{e, f, g\}, C$ consists of parallel edges f, g and loop h. Denote by p and q the ends of f, g. By exchanging the roles of x, y if needed, there exists a non-trivial partition Y_{1}, Y_{2} of Y such that $\partial\left(Y_{1}\right)=\{x, p\}$ and $\partial\left(Y_{2}\right)=\{y, q\}$. For $i \in[2]$ let $Z_{i}=Y_{i} \cup e$ and let G^{i} be obtained from G by a 2-flip on Z_{i}. Suppose for a contradiction that neither (G^{1}, Σ) nor $\left(G^{2}, \Sigma\right)$ have a blocking pair. Since $\left(G^{1}, \Sigma\right)$ does not have a blocking pair it follows from Proposition 4.3.6 that (i) $u=p$ or (ii) $u=y$. However, (ii) does not occur for otherwise we must have an odd circuit $C_{1} \subseteq Z_{1}$ that uses y, a contradiction as e is the only edge of Z_{1} incident to y. Hence, (i) holds, i.e. $u=p$. Applying the same $\operatorname{argument}$ to $\left(G^{2}, \Sigma\right)$ we deduce that $v=q$, i.e. p, q is a blocking pair of (G, Σ). Since $\left(G^{1}, \Sigma\right)$ has no blocking pair, Proposition 4.3.6 implies that there exists an odd circuit of (G, Σ) contained in $E(G)-Z$ that uses p but avoids q, a contradiction as no such circuit exists. Hence, at least one of $\left(G^{1}, \Sigma\right),\left(G^{2}, \Sigma\right)$ has a blocking pair and with X contradicts the minimality assumption (4.1).

Case 3. D is a signature and C is a polygon.
Let p be the vertex common to f, g in G. Then x and p is a blocking pair. Let $\Gamma=D \Delta \delta(x)$. Let $\left(G^{\prime}, \Gamma\right)$ be obtained from (G, Γ) by a Lovász-flip on x and p. Clearly $\left(G^{\prime}, \Gamma\right)$ has a blocking pair. Moreover, $\kappa\left(G^{\prime}[X]\right)=1$ and by applying Remark 4.3.7 to each component of $G[Y]$ we deduce $\kappa\left(G^{\prime}[Y]\right) \leq \kappa(G[Y])$. Hence, $\left(G^{\prime}, \Sigma\right)$ together with X, contradicts the minimality assumption (4.1).

Case 4. D is a signature and C is not a polygon.

Since $C=\{f, g, h\}$ is a circuit of M but not a polygon, it is the union of two odd polygons of (G, Σ). As $D=\{e, f, g\}$, one of f or g is a loop. Without loss of generality we may assume that f is a loop and thus h, g are parallel. Note that f is not a component of $G[X]$, for otherwise moving it to an end of g, h preserves blocking pairs and contradicts the minimality assumption (4.1). Thus, f, g, h are incident to a common vertex, say p. Then end x of e and p is a blocking pair. Let $\Gamma=D \Delta \delta(x)$. Let $\left(G^{\prime}, \Gamma\right)$ be obtained from (G, Γ) by a Lovász-flip on x and p. Clearly $\left(G^{\prime}, \Gamma\right)$ has a blocking pair. Moreover, $\kappa\left(G^{\prime}[X]\right)=1$ and by Remark 4.3.7 $\kappa\left(G^{\prime}[Y]\right) \leq \kappa(G[Y])$. Hence, $\left(G^{\prime}, \Sigma\right)$ together with X, contradicts the minimality assumption (4.1).

4.3.6 Degree condition

Throughout the remainder of the proof of Proposition 1.4.3, we let H denote the auxiliary graph for G and X which are selected according the minimality assumption (4.1). Next are the key properties of the auxiliary graph H.

Proposition 4.3.9. H is bridgeless, in particular every vertex has degree at least two. Moreover, if a vertex has degree exactly two then the corresponding component of $(G, \Sigma) \mid X$ or $(G, \Sigma) \mid Y$ is non-bipartite.

Proof. Note that H is connected since G is connected. Suppose for a contradiction that H has a bridge e. Since H is connected, $H \backslash e$ has two components H_{1} and H_{2}. Let Z be the set of edges of G in components of $G[X]$ and $G[Y]$ corresponding to the vertices of H_{1}. Then $\partial_{G}(Z)=\{v\}$ for some $v \in V(G)$. By Proposition 3.1.5, $\lambda_{M}(Z)=\left|\partial_{G}(Z)\right|-$ $\kappa(G[Z])-\kappa(G[E(M)-Z])+p[(G, \Sigma) \mid Z]+p[(G, \Sigma) \mid E(M)-Z] \leq 1-1-1+1+1=1$, thus Z is 2-separating. Moreover, by Proposition 4.3.8, $|Z|,|E(M)-Z| \geq 2$, a contradiction
as M is 3 -connected. Let p be a degree two vertex of H and let Z denote the edges in the component of $G[X]$ or $G[Y]$ corresponding to p. Then $\left|\partial_{G}(Z)\right|=2$. Proposition 4.3.8 implies that $|Z|,|E(M)-Z| \geq 2$. Since M is 3-connected, Z is not 2-separating, i.e. $2 \leq \lambda_{M}(Z) \leq 2-1-1+p[(G, \Sigma) \mid Z]+p[(G, \Sigma) \mid E(M)-Z]$. Thus $p[(G, \Sigma) \mid Z]=1$, i.e. $(G, \Sigma) \mid Z$ is non-bipartite.

4.3.7 Proof of Proposition 1.4.3

There are three cases to consider depending on whether each of $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are bipartite (as we can interchange the role of X and Y). We consider each of these in Propositions 4.3.10, 4.3.11 and 4.3.13.

Proposition 4.3.10. If $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are non-bipartite then X is reducible, compliant, or recalcitrant.

Proof. Proposition 3.1.6 implies that $|E(H)|=|V(H)|+\lambda_{M}(X)-p[(G, \Sigma) \mid X]-p[(G, \Sigma) \mid Y]=$ $|V(H)|+2-1-1=|V(H)|$. Moreover, H is connected and by Proposition 4.3.9 it is bridgeless. It follows that H is a polygon. Since every vertex of H has degree two, Proposition 4.3.9 implies that each component of $G[X]$ and $G[Y]$ is non-bipartite. It follows that each component of $G[X]$ and $G[Y]$ contains one of u, v where u, v is the blocking pair of (G, Σ). This implies that $|V(H)| \in\{2,4\}$. Consider first the case where $|V(H)|=4$. Then, we have proper partitions X_{1}, X_{2} of X and Y_{1}, Y_{2} or Y where $u \in \partial\left(X_{1}\right) \cap \partial\left(Y_{1}\right)$ and $v \in \partial\left(X_{2}\right) \cap \partial\left(Y_{2}\right)$. Let G^{\prime} be obtained from G by a 2-flip of X_{1}, Y_{2}. Then $\left(G^{\prime}, \Sigma\right)$ has a blocking pair and $\left(G^{\prime}, \Sigma\right)$ and X contradict our minimality assumption (4.1). Hence $|V(H)|=2$, i.e. $G[X]$ and $G[Y]$ are connected and $\partial(X)=\{a, b\}$ for some vertices a, b of G.

Let us now analyze the possible location of the blocking pair u, v. If $u \in \mathcal{I}(X)$ and $v \in \mathcal{I}(Y)$ or vice-versa then (G, Σ, X) is a Type I configuration and X is compliant. If $\{u, v\}=\{a, b\}$ then (G, Σ, X) is a Type II configuration and X is recalcitrant. Since $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are non-bipartite, we may thus assume, after possibly interchanging the role of X, Y and u, v and a, b that $u=a$ and $v \in \mathcal{I}(Y)$. After possibly re-signing, edges of Σ are incident to u or v. Let G_{1} (resp. G_{2}) be obtained from $G[X]$ (resp. $G[Y]$) by adding parallel edges f, g between a and b and adding a loop h incident to a. Let $\Sigma_{1}=\Sigma \cap X \cup\{f, h\}$ and let $\Sigma_{2}=\Sigma \cap Y \cup\{f, h\}$. Then a is a blocking vertex of $\left(G_{1}, \Sigma_{1}\right)$ which implies by Remark 2.4.2 that ecycle $\left(G_{1}, \Sigma_{1}\right)$ is graphic. Finally, Proposition 4.1.5 implies that $M=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right) \oplus_{3} \operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$. Hence, X is reducible.

Proposition 4.3.11. If $(G, \Sigma) \mid X$ is bipartite and $(G, \Sigma) \mid Y$ is non-bipartite then X is reducible.

Proof. Proposition 3.1.6 implies that $|E(H)|=|V(H)|+\lambda_{M}(X)-p[(G, \Sigma) \mid X]-p[(G, \Sigma) \mid Y]=$ $|V(H)|+2-0-1=|V(H)|+1$. Recall that H is connected and Proposition 4.3.9 implies that H is bridgeless. It follows from Remark 3.1.7 that H is a theta or a double ear.

Case 1. H is a theta.

The theta graph H consists of three internally disjoint paths P_{1}, P_{2}, P_{3}. Consider first the case where H is 1-uniform, i.e. $\left|P_{1}\right|=\left|P_{2}\right|=\left|P_{3}\right|=1$. Then $G[X]$ and $G[Y]$ are connected. Proposition 4.1.5 implies that $M=\operatorname{cycle}\left(G^{\prime}\right) \oplus_{3} M_{2}$ for some graph G^{\prime} and for some matroid M_{2} where $E\left(G^{\prime}\right)=X$. But then X is reducible. Thus we may assume H is not 1-uniform, i.e. $\left|P_{i}\right| \geq 2$ for some $i \in[3]$. Since $(G, \Sigma) \mid X$ is bipartite, Proposition 4.3.9 implies that every internal vertex of P_{i} corresponds to a component of $G[Y]$. Thus $\left|P_{i}\right|=2$ and as H is bipartite and is not 1-uniform, $\left|P_{i}\right|=2$ for all $i \in[3]$. By Proposition 4.3.9 it follows that
the degree two vertex v_{i} of P_{i} correspond to a component $G\left[Y_{i}\right]$ of $G[Y]$ where $(G, \Sigma) \mid Y_{i}$ is non-bipartite. Hence, (G, Σ) has three pairwise vertex disjoint odd circuits, a contradiction as there exists a blocking pair.

Case 2. H is a double ear.

The double ear graph H consists of two polygons C_{1} and C_{2} that share exactly one vertex. Proposition 4.3.9 implies that H is 2-uniform and that for $i \in[2]$ the degree two vertex v_{i} of C_{i} corresponds to a component $G\left[Y_{i}\right]$ of $G[Y]$ where $(G, \Sigma) \mid Y_{i}$ is non-bipartite. Thus we may assume for the blocking pair u, v of (G, Σ) that u and v are vertices of $G\left[Y_{1}\right]$ and $G\left[Y_{2}\right]$ respectively. Since $(G, \Sigma) \mid X$ is bipartite, we may assume $\Sigma \subseteq Y$ and that all edges of Σ are incident to u or v. Let $\left(G^{\prime}, \Sigma\right)$ be obtained from (G, Σ) by a Lovász-flip on u, v. Then $G^{\prime}[X]$ and $G^{\prime}[Y]$ are connected as $G\left[Y_{i}\right]$ contains an odd polygon for each $i \in[2]$. Thus $\left(G^{\prime}, \Sigma\right)$ and X contradict our minimality assumption (4.1).

Consider a graph F. A ear of F is a walk P where the two endpoints of P may coincide, but every other vertex of P has degree two. An ear decomposition of F is a partition of its edges into a sequence of ears, such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the internal vertices of each ear do not belong to any earlier ear. Additionally, the first ear in the sequence must be a polygon.

Theorem 4.3.12 ([42]). A graph is connected and bridgeless if and only if it has an ear decomposition.

Proposition 4.3.13. If $(G, \Sigma) \mid X$ and $(G, \Sigma) \mid Y$ are bipartite then X is reducible, compliant, or recalcitrant.

Proof. Proposition 3.1.6 implies that $|E(H)|=|V(H)|+\lambda_{M}(X)-p[(G, \Sigma) \mid X]-p[(G, \Sigma) \mid Y]=$ $|V(H)|+2-0-0=|V(H)|+2$. Proposition 4.3.9 implies that the minimum degree
$\delta(H)$ of H is at least $3 . \delta(H) \geq 3$ and $|E(H)|=|V(H)|+2$ implies by Theorem 4.3.12 that H is obtained from a polygon C by adding a sequence of two ears, say Q_{1}, Q_{2}. Let H^{\prime} be the graph obtained from C by adding ear Q_{1}. Then H^{\prime} is either a double ear or a theta (Remark 3.1.7). Moreover, $\delta(H) \geq 3$ implies that Q_{2} consists of a single edge, say f. Consider first the case where H^{\prime} is a double ear that consists of polygons C and C^{\prime} joined at a vertex w. Then f has ends in C and C^{\prime} (distinct from w). Since $\delta(H) \geq 3, C$ and C^{\prime} have each exactly one vertex distinct from w that is incident to f. But then H has a triangle, a contradiction as H is bipartite. Consider now the case where F is a theta that is formed by internally disjoint paths P_{1}, P_{2}, P_{3}. We may assume f is not incident to an internal vertex of P_{1}. As $\delta(H) \geq 3, P_{1}$ consist of a single edge. It follows that P_{2} and P_{3} each have an odd number of edges. As $\delta(H) \geq 3$ we can assume that P_{2} has a single edge and that $\left|P_{3}\right| \in\{1,3\}$.

Case 1. $\left|P_{3}\right|=1$.

The ends of f correspond to the degree 3 vertices of H, i.e. H consists of four parallel edges. Then, $G[X]$ and $G[Y]$ are connected. Denote by a, b, c, d the vertices of $\partial_{G}(X)$. By Remark 2.4.2, there is no blocking vertex of (G, Σ). Thus we may assume, after possibly re-signing and exchanging the roles of a, b, c, d if needed, that $\Sigma=\left(\delta_{G}(a) \cap X\right) \cup\left(\delta_{G}(b) \cap Y\right)$. Let $\left(G^{\prime}, \Sigma^{\prime}\right)$ be obtained from (G, Σ) by a Lovász-flip on a and b. Observe that $G^{\prime}[X]$ and $G^{\prime}[Y]$ remain connected, but $\left(G^{\prime}, \Sigma\right) \mid X$ and $\left(G^{\prime}, \Sigma\right) \mid Y$ are non-bipartite. Thus $\left(G^{\prime}, \Sigma\right)$ and X satisfy the minimality assumption and thus by Proposition 4.3.10, X is reducible, compliant, or recalcitrant.

Case 2. $\left|P_{3}\right|=3$.

Since $\delta(H) \geq 3$, the ends of f must correspond to internal vertices of P_{3}. It follows that
H is the graph obtained from a polygon with four edges by replacing edges in a matching by two parallel edges. We illustrate the auxiliary graph H in Figure 4.4 (left) with the corresponding graph G (right). Let G^{\prime} be obtained from G by a 2-flip on $X_{1} \cup Y_{2}$. Then,

Figure 4.4: Case (2) in Proposition 4.3.13.
by Proposition 4.3.6, $\left(G^{\prime}, \Sigma\right)$ has a blocking pair. Then $\left(G^{\prime}, \Sigma\right)$ and X contradict our minimality assumption (4.1).

Chapter 5

Recognition Algorithms

The work in this chapter appears in [20, 22, 21, 31]. Tutte [51] proved that one can recognize whether a binary matroid is graphic in polynomial time. Seymour [46] extended this result and showed that there exists a polynomial-time algorithm to check whether a matroid specified by an independence oracle is graphic. Thus, given a binary matroid described by its 0,1 matrix representation, we can check in polynomial time if the matroid is graphic and we can check in polynomial time if the matroid is cographic. We prove the analogous result for even-cycle matroids, even-cut matroids, and pinch-graphic matroids. Recall from Section 1.5 that we are interested in constructing the following algorithms:

- Algorithm (1): Given a binary matroid M described by its 0,1 matrix representation A, check whether M is an even-cycle matroid, in polynomial time.
- Algorithm (2): Given a binary matroid M described by its 0,1 matrix representation A, check whether M is an even-cut matroid, in polynomial time.
- Algorithm (3): Given a binary matroid M described by its 0,1 matrix representation A, check whether M is a pinch-graphic matroid, in polynomial time.

For each of Algorithms (1), (2), and (3), by polynomial time, we mean polynomial in the number of entries of A. We believe that these algorithms ought to be fast in practice but have not conducted numerical experiments. For Algorithms (1) and (2), the bound on the running time depends on a constant c that arises from the Matroid Minors Project and that has no explicit bound [13]. However, these algorithms do not use the value c for their computation.

Algorithms (1) and (2) rely on Algorithm (3) as a subroutine. In Section 5.1, we sketch a simple polynomial time algorithm to check whether a binary matroid is graphic. In Sections 5.3 and 5.4, we describes Algorithm (1) and (2) for even-cycle and even-cut matroids, respectively. For Algorithm (3), we construct the following algorithms:

- Algorithm (4): Given an internally 4-connected binary matroid M, check whether M is a pinch-graphic matroid in polynomial time.
- Algorithm (5): Given a binary matroid M, check whether M is a pinch-graphic matroid or return an internally 4-connected matroid N that is isomorphic to a minor of M such that M is pinch-graphic if and only if N is pinch-graphic, in polynomial time.

By combining Algorithms (4) and (5), we get a polynomial algorithm to check whether a binary matroid M is pinch-graphic, i.e., Algorithm (3) (thereby completing the description of the algorithm for recognizing even-cycle and even-cut matroids). Namely, we first apply Algorithm (5) and either establish whether M is pinch-graphic, or we return the matroid N. In the latter case, Algorithm (4) to determine whether N is pinch-graphic.

For all the aforementioned algorithms, we assume that the matroid M is given in terms of its 0,1 matrix representation A. In Sections 5.5 and 5.6, we describes Algorithm (4) and (5), respectively.

5.1 Graphic matroids

5.1.1 Reduction to the 3-connected case

Recall that a matroid M has a 1-separation if and only if M can be expressed as a 1-sum, $M_{1} \oplus_{1} M_{2}$. A connected matroid has a 2-separation if and only if M can be expressed as a 2 -sum, $M_{1} \oplus_{2} M_{2}[1,8,44]$. Moreover, for $k \in[2], M=M_{1} \oplus_{k} M_{2}$ is graphic if and only if both M_{1} and M_{2} are graphic ([36], Corollary 7.1.26). Assume that we know how to check whether a 3-connected binary matroid is graphic and suppose that we want to check whether an arbitrary binary matroid M is graphic. If M is 3 -connected, then use the algorithm for 3 -connected matroids. Otherwise find a k-separation for $k \in[2]$, express M as $M_{1} \oplus_{k} M_{2}$ and recursively check whether M_{1} and M_{2} are both graphic. If so, then M is graphic; otherwise, M is not. We need to be able to check for the presence of 1and 2-separations in a binary matroid in polynomial time. Cunningham and Edmonds [8] showed that the more general problem of checking whether a matroid has a k-separating set with both separators of size at least $\ell \geq k$ can be reduced to the matroid intersection problem $[10,33]$ and be solved in polynomial time for fixed values k and ℓ.

5.1.2 Graph representations

We say that the representation H of N extends to the representation G of M. Theorem 1.1.1 implies the following result:

Remark 5.1.1. Suppose N is a 3-connected graphic matroid with a graph representation H. If N is a minor of a 3-connected matroid M, then M is graphic if and only if the representation H of N extends to a representation of M.

5.1.3 The algorithm

A wheel is the graph obtained by starting with a polygon with at least three edges, adding a new vertex (the hub) and connecting every vertex of the polygon to the hub. Consider a 3-connected binary matroid M and suppose that we wish to check whether M is graphic. First, we check whether M is the graphic matroid of a wheel. Otherwise, by Tutte's Wheels-and-Whirls Theorem [53], there exists an element e such that either $N=M / e$ or $N=M \backslash e$ is 3-connected. Recursively, we check whether N is graphic. If it is not, then neither is M. Otherwise, we check whether the (unique) representation of N extends to M. If it does then M is graphic, otherwise it is not.

5.2 Decision problems on grafts and signed graphs

In this section, we describe two polynomially solvable decision problems that will be used in in the recognition algorithm for even-cycle and even-cut matroids. For a binary matroid M and $C \subseteq E(M)$, we say that C is a cycle (resp. cocycle) of M if C is a disjoint union of circuits (resp. cocircuits) of M. We will make repeated use of the following observation.

Remark 5.2.1. Let M, N be binary matroids with the same ground set E and let $e \in E$.
(a) If $M \backslash e=N \backslash e$ and there exists a cycle C of both M, N where $e \in C$, then $M=N$.
(b) If $M / e=N / e$ and there exists a cocycle D of both M, N where $e \in D$, then $M=N$.

Proof. (a) Let $X \subseteq E$ such that $e \in X$. Then, X is a cycle of M (resp. N) using e if and only if $X \Delta C$ is a cycle of M (resp. N) not using e. Since M and N have the same set of cycles not using e, M and N have the same set of cycles using e. Hence, M and N have the same cycles and $M=N$. (b) follows by applying (a) to the dual of M and N.

5.2.1 A decision problem on grafts

Consider the following decision problem:
Problem 5.2.2. Given a graft, is there an equivalent graft with at most two terminals?

We are given a graft (G, T) and want to know if there exists an equivalent graft $\left(G^{\prime}, T^{\prime}\right)$ where $\left|T^{\prime}\right| \leq 2$. Note that the set of terminals of (G, T) is empty if and only if the T-joins of (G, T) are the cycles of G. In particular, because of Remark 1.2.3, if a graft has an empty set of terminals then so does every equivalent graft. Hence, we may assume that $T \neq \emptyset$ in Problem 5.2.2. Denote by A the matrix obtained from the vertex-edge incidence matrix of G by adding a column t that is the characteristic vector of the terminals T. Let M denote the binary matroid represented by matrix A. The matroid M is known as the graft matroid of (G, T). Its cycles are the cycles of G and the sets of the form $J \cup t$ where J is a T-join of G. The following result is essentially in [45].

Proposition 5.2.3. Let (G, T) be a graft with $T \neq \emptyset$ and let M be the graft matroid of (G, T).
(a) If M is not graphic then no graft equivalent to (G, T) has two terminals,
(b) If $M=\operatorname{cycle}(H)$ for some H, define $G^{\prime}=H \backslash t$ and denote by x, y the endpoints of edge t in H. Then $\left(G^{\prime},\{x, y\}\right)$ is equivalent to (G, T).

Proof. (a) Suppose there exists a graft $\left(G^{\prime}, T^{\prime}\right)$ equivalent to (G, T) where $T^{\prime}=\{x, y\}$. Let H be the graph obtained from G^{\prime} by adding edge $t=(x, y)$. Since (G, T) and $\left(G^{\prime}, T^{\prime}\right)$ are equivalent, $\operatorname{cycle}(H) \backslash t=\operatorname{cycle}\left(G^{\prime}\right)=\operatorname{cycle}(G)=M \backslash t$. As $\left(G^{\prime}, T^{\prime}\right)$ is a graft, there is a $\{x, y\}$-path P of G^{\prime}. Thus, $P \cup t$ is a cycle of H, which is a circuit of M. Then, by Remark 5.2.1 (a), $M=\operatorname{cycle}(H)$ and in particular M is graphic. (b) We have $M \backslash t=\operatorname{cycle}(H) \backslash t=\operatorname{cycle}(H \backslash t)=\operatorname{cycle}\left(G^{\prime}\right)$. Moreover, the matrix representation of $M \backslash t$ is the vertex-edge incidence matrix of G, hence $M \backslash t=\operatorname{cycle}(G)$. Thus, $\operatorname{cycle}(G)=\operatorname{cycle}\left(G^{\prime}\right)$, and by Theorem 1.1.1, G and G^{\prime} are equivalent. Since $M=\operatorname{cycle}(H)$ the cycles of M using t are of the form $J \cup t$ where J is an $\{x, y\}$-join of G^{\prime}. Since M is the graft matroid of (G, T) the cycles of M using t are of the form $J \cup t$ where J is a T-join of G. Hence, T-joins in G are $\{x, y\}$-joins in G^{\prime} and in particular, (G, T) and $\left(G^{\prime},\{x, y\}\right)$ are equivalent.

Thus, we can use the algorithm to check if a binary matroid is graphic to solve Problem 5.2.2. We are requiring here that such an algorithm returns a graph representation in case the matroid is graphic, but this is indeed the case for [51], for instance.

5.2.2 A decision problem on signed graphs

Consider the following decision problem:

Problem 5.2.4. Given a signed graph, is there an equivalent signed graph with a blocking vertex?

We are given a signed graph (G, Σ) and we want to know if there exists an equivalent signed graph $\left(G^{\prime}, \Sigma\right)$ with a blocking vertex v. We may assume that G has no loop as removing loops does not affect the answer to Problem 5.2.4. The following result is essentially in [18].

Proposition 5.2.5. Let (G, Σ) be a loopless signed-graph, let G^{+}be obtained from G by adding a loop Ω and let $M=\operatorname{ecycle}\left(G^{+}, \Sigma \cup \Omega\right)$.
a. If M is not graphic then no signed graph equivalent to (G, Σ) has a blocking vertex.
b. If $M=\operatorname{cycle}(H)$ for some H define $G^{\prime}=G / \Omega$ and denote by v the vertex of G^{\prime} corresponding to Ω. Then G^{\prime} is equivalent to G and v is a blocking vertex of $\left(G^{\prime}, \Sigma\right)$.

Proof. (a) Suppose some signed-graph $\left(G^{\prime}, \Sigma\right)$ equivalent to (G, Σ) has a blocking vertex v. Then for some signature Γ of $\left(G^{\prime}, \Sigma\right)$ we have $\Gamma \subseteq \delta_{G^{\prime}}(v)$. Let H be obtained from G^{\prime} by uncontracting v according to Γ where Ω is the new edge. Then by Remark 5.2.1 (b), $M=\operatorname{cycle}(H)$ and in particular, M is graphic. (b) We have $M / \Omega=\operatorname{ecycle}\left[\left(G^{+}, \Sigma \cup \Omega\right) / \Omega\right]=$ $\operatorname{cycle}\left(G^{+} / \Omega\right)=\operatorname{cycle}(G)$. We also have $M / \Omega=\operatorname{cycle}(H / \Omega)=\operatorname{cycle}\left(G^{\prime}\right)$. It follows by Theorem 1.1.1 that G and G^{\prime} are equivalent. Let C be an odd polygon of (G, Σ). Then $C \cup \Omega$ is an even-cycle of $\left(G^{+}, \Sigma \cup \Omega\right)$. Thus $C \cup \Omega$ is a polygon of H and in particular, C uses vertex v of G^{\prime}. Hence, v is a blocking vertex as required.

Thus we can use the algorithm to check if a binary matroid is graphic to solve Problem 5.2.4.

5.3 Even-cycle matroids

5.3.1 Keeping track of representations

Consider an even-cycle matroid M with a representation (G, Σ). Recall that $(H, \Gamma)=$ $(G, \Sigma) / I \backslash J$ is a representation of the minor $N=M / I \backslash J$. We say that the representation (H, Γ) of N extends to the representation (G, Σ) of M. Hence, every signed-graph representation of M extends some signed-graph representations of the minor N. Here we characterize when a signed-graph representation of an even-cycle matroid extends to a single element undeletion or uncontraction.

Proposition 5.3.1. Let M be a binary matroid, let $e \in E(M)$ and let $N=M \backslash e$. Let C be a cycle of M using e and let (G, Σ) be a signed-graph representation of N. Then (G, Σ) extends to a representation (H, Γ) of M if and only if for some signature Σ^{\prime} of (G, Σ) we have $\Gamma=\Sigma^{\prime}$ when $\left|C \cap \Sigma^{\prime}\right|$ is even and $\Gamma=\Sigma^{\prime} \cup e$ otherwise, and in addition either, (i) $G[C-e]$ has no odd degree vertex in which case H is obtained from G by adding a loop e; or (ii) $G[C-e]$ has exactly two odd degree vertices v, w in which case H is obtained from G by adding an edge $e=(v, w)$.

Proof. (\Rightarrow) Suppose (H, Γ) extends the representation (G, Σ) to M. Then $|C \cap \Gamma|$ is even which implies that Γ is as described. Moreover, $G=H \backslash e$ and (i) occurs if e is a loop of H and (ii) occurs if e is a not a loop of $H .(\Leftarrow)$ By the choice of Γ we have $|C \cap \Gamma|$ is even. Moreover, by the construction (i) or (ii) we obtain H where C is a cycle of H. Hence, C is an even cycle of (H, Γ) and Remark 5.2.1 (a) implies that $M=\operatorname{ecycle}(H, \Gamma)$.

Proposition 5.3.2. Let M be a binary matroid, let $e \in E(M)$ and let $N=M / e$ where N is non-graphic. Let D be a cocycle of M using e and let (G, Σ) be a signed-graph representation of N. Then (G, Σ) extends to a representation (H, Σ) of M if and only if either,
(i) there exists a signature Γ of $(G, D-e)$, or
(ii) there exists a signature Γ of $(G,[D-e] \Delta \Sigma)$,
where for (i), (ii) all edges of Γ are incident to some vertex v or contained in loops and for both cases H is obtained from G by uncontracting e at v according to Γ.

Proof. (\Rightarrow) Suppose (G, Σ) extends to a representation (H, Σ) of M. Since N is non-graphic, e is not an odd loop of (H, Σ) and since e is contained in the cocycle D, e is not a loop of M, that is, e is not an even loop of (H, Σ). Denote by w one of the ends of e in H and let $\Gamma=\delta_{H}(w)-e$.

Claim. Γ is a signature of $(G, D-e)$ or of $(G,[D-e] \Delta \Sigma)$.
Subproof. Since D is a cocycle of M, D is a cut of H or a signature of (H, Σ) [40]. Thus there exists $D^{\prime} \in\{D, D \Delta \Sigma\}$ that is a cut of H with $e \in D^{\prime}$. Then, Γ is a signature of $\left(G, D^{\prime}-e\right)$ as $\Gamma \Delta\left(D^{\prime}-e\right)=\delta_{H}(w) \Delta D^{\prime}$ is a cut of H avoiding e so is a cut of G.

Let v be the vertex of G obtained by contracting e from H. The edges of Γ are incident to v. Finally observe that H is obtained from G by uncontracting e at v according to Γ. (\Leftarrow) Suppose H is obtained from G by uncontracting e at v according to Γ. Then $\Gamma \cup e=\delta_{H}(w)$ where w denotes one of the endpoints of e in H. If Γ is a signature of $(G, D-e)$ then D is a cut of H. If Γ is a signature of $(G,[D-e] \Delta \Sigma)$ then D is a signature of (H, Σ). In both cases D is a cocycle of ecycle $(H, \Sigma)[40]$ and by Remark 5.2.1 (b), $M=\operatorname{ecycle}(H, \Sigma)$, i.e. (H, Σ) extends the representation (G, Σ) to M.

5.3.2 Equivalence classes

In our algorithm, we will keep track of signed-graph representations up to equivalence only. As a result, we shall require the following two results.

Proposition 5.3.3 ([27] Lemma 12). Let N be an even-cycle matroid and let \mathcal{F} be an equivalence class of signed-graph representations of N. Let M be a binary matroid with a non-coloop $e \in E(M)$ for which $N=M \backslash e$. Then the set extensions of \mathcal{F} to M is a (possibly empty) equivalence class.

Proposition 5.3.4 ([27] Lemma 24). Let N be a non-graphic, even-cycle matroid and let \mathcal{F} be an equivalence class of signed-graph representations of N. Let M be a binary matroid with a non-loop $e \in E(M)$ for which $N=M / e$. Then the set extensions of \mathcal{F} to M is either a (possibly empty) equivalence class of representations or the union of two equivalence classes \mathcal{F}_{1} and \mathcal{F}_{2}. Moreover, in the latter case \mathcal{F}_{1} and \mathcal{F}_{2} arise from respectively case (i) and (ii) in Proposition 5.3.2.

The statements of Proposition 5.3.3 and 5.3.4 are slightly different from [27], but in the proofs, the weaker conditions are used as stated. In the previous result the "Moreover" part of the statement is not given explicitly in [27]. However, a careful reading of the proof reveals that this is what is shown.

5.3.3 Algorithm (1)

Suppose that we are given a binary matroid M by its 0,1 matrix representation A. We assume that we have an oracle to determine if a binary matroid given by its matrix representation is pinch-graphic. We now describe an algorithm that in oracle polynomial time in the size of A will determine whether M is an even-cycle matroid.

First we check if M is pinch-graphic. If it is, then M is an even-cycle matroid and we stop. Thus, we may assume M is not pinch-graphic. Set $N=M$. If for any $e \in E(N)$, $N / e(\operatorname{resp} . N \backslash e)$ is not pinch-graphic then replace N with $N / e(\operatorname{resp} . N \backslash e)$. When we stop we have found a minor N of M that is minimally non pinch-graphic. It follows by Theorem 3.1.1 that N has constant size and we can find all representations of N, up to equivalence, in constant time. (A finite algorithm for finding all representations of an even-cycle matroid is given in [40], page 132.) Then we construct a sequence of matroids $M=M_{1}, M_{2}, \ldots, M_{k}=N$ where for every $i \in[k-1]$ either (i) $M_{i+1}=M_{i} \backslash e_{i}$ for some $e_{i} \in E\left(M_{i}\right)$ that is not a coloop, or (ii) $M_{i+1}=M_{i} / e_{i}$ for some $e_{i} \in E\left(M_{i}\right)$ that is not a loop. In particular, for (i) there exists a cycle of M_{i} using e and for (ii) a cocycle of M_{i} using e. For each $i \in[k]$, the set of signed-graph representations of M_{i} can be partitioned into equivalence classes and we denote by \mathcal{E}_{i} a set of signed-graph representations that consist of one representative from each equivalence class. We constructed \mathcal{E}_{k} (the set of all representations of N up to equivalence). Clearly, M is an even-cycle matroid if and only if $\mathcal{E}_{1} \neq \emptyset$. Thus it suffices to show for all $i \in[k-1]$ how to construct \mathcal{E}_{i} from \mathcal{E}_{i+1}. Consider an arbitrary signed graph $(G, \Sigma) \in \mathcal{E}_{i+1}$ and let \mathcal{F} be the equivalence class that contains (G, Σ). Let \mathcal{F}^{\prime} be the set of extensions of \mathcal{F} to M_{i}. By propositions 5.3.3 and 5.3.4, \mathcal{F}^{\prime} is either empty, a single equivalence class, or the union of two equivalence classes. We will show how to find representatives for each equivalence class in \mathcal{F}^{\prime} in polynomial time. Since, by Theorem 1.3.1 there exists a constant c such that $\left|\mathcal{E}_{i}\right| \leq c$ this will prove that the algorithm is polynomial.

Consider first the case where $M_{i+1}=M_{i} \backslash e$. By Proposition 5.3.3, \mathcal{F}^{\prime} consists of a single (possibly empty) equivalence class. Find a cycle C of M_{i} containing e. By Proposition 5.3.1, some $\left(G^{\prime}, \Sigma^{\prime}\right) \in \mathcal{F}$ extends to a representation of M_{i} if $G^{\prime}[C-e]$ has at most two vertices of odd degree. Thus, to check for the existence of such a signed-graph $\left(G^{\prime}, \Sigma^{\prime}\right)$ we define T
to be the odd degree vertices of $G[C-e]$, and then use the decision algorithm described in Section 5.2.1 to check if there exists a graft $\left(G^{\prime}, T^{\prime}\right)$ equivalent to (G, T) where $\left|T^{\prime}\right| \leq 2$. If the answer is yes, then we can extend some representation $\left(G^{\prime}, \Sigma^{\prime}\right) \in \mathcal{F}$ to M_{i} as described in Proposition 5.3.1. If the answer is no, then no representation $\left(G^{\prime}, \Sigma^{\prime}\right) \in \mathcal{F}$ of M_{i+1} extends to M_{i} and $\mathcal{F}^{\prime}=\emptyset$. Consider now the case where $M_{i+1}=M_{i} / e$. By Proposition 5.3.4, \mathcal{F}^{\prime} consists of the union of at most two equivalence classes. Find a cocycle D of M_{i} containing e. By Proposition 5.3.2, some $\left(G^{\prime}, \Sigma^{\prime}\right) \in \mathcal{F}$ extends to a representation of M_{i} if either $\left(G^{\prime}, D-e\right)$ or $\left(G^{\prime},[D-e] \Delta \Sigma\right)$ has a blocking vertex v. Then, we use the decision algorithm described in Section 5.2 .2 to first (i) check if there exists G^{\prime} equivalent to G such that $\left(G^{\prime}, D-e\right)$ has a blocking vertex v, or (ii) check if there exists G^{\prime} equivalent to G such that $(G,[D-e] \Delta \Sigma)$ has a blocking vertex v. For each of (i) and (ii) if the answer is yes then we can extend some representation $\left(G^{\prime}, \Sigma\right) \in \mathcal{F}$ to M_{i} as described in Proposition 5.3.2. Moreover, by Proposition 5.3.4 if the answer is yes for both (i) and (ii) \mathcal{F}^{\prime} consists of the union of two equivalence classes if the answer is yes for exactly one of (i) and (ii) \mathcal{F}^{\prime} consists of a single equivalence class, and otherwise $\mathcal{F}^{\prime}=\emptyset$.

5.4 Even-cut matroids

5.4.1 Keeping track of representations

Consider an even-cut matroid M with a graft representation (G, T). Recall that $(H, R)=$ $(G, T) / I \backslash J$ is a representation of the minor $N=M \backslash I / J$. We say that the representation (H, R) of N extends to the representation (G, T) of M. Hence, every graft representation of M extends some graft representations of the minor N. Here we characterize when a graft representation of an even-cut matroid extends to a single element undeletion or uncontraction.

We present the analogue of propositions 5.3.1 and 5.3.2, namely propositions 5.4.1 and 5.4.2. We omit the proofs as they are routine and similar to those in Section 5.3.1. To clarify the statement of the next proposition, observe that cocycles of ecut (G, T) are cycles of G and T-joins of (G, T) [40].

Proposition 5.4.1. Let M be a binary matroid, let $e \in E(M)$ and let $N=M / e$ where N is not cographic. Let D be a cocycle of M using e and let (G, T) be a graft representation of N. Pick J an arbitrary T-join of G. Then (G, T) extends to a representation (H, T) of M if and only if either,
(i) $G[D-e]$ has at most two vertices of odd degree, or
(ii) $G[J \Delta(D-e)]$ has at most two vertices of odd degree
and for both cases, if there are no vertices of odd degree, then H is obtained from G by adding loop e and if there are vertices of odd degree u, v, then H is obtained from G by adding edge $e=(u, v)$.

Proposition 5.4.2. Let M be a binary matroid, let $e \in E(M)$ and let $N=M \backslash e$. Let C be a cycle of M using e, let (G, T) be a graft representation of N. Then (G, T) extends to a representation (H, R) of M if and only if there exists a signature Γ of $(G, C-e)$ where all edges of Γ are incident to some vertex v, and H is obtained from G by uncontracting e at v according to Γ where $e=\left(v^{\prime}, v^{\prime \prime}\right)$ in H, and $R=(T-v) \cup X$ where $X \subseteq\left\{v^{\prime}, v^{\prime \prime}\right\}$ and $v^{\prime} \in X\left(\right.$ resp. $\left.v^{\prime \prime} \in X\right)$ if and only if $\delta_{H}\left(v^{\prime}\right)\left(\right.$ resp. $\left.\delta_{H}\left(v^{\prime \prime}\right)\right)$ is not a cycle of M.

5.4.2 Equivalence classes

In our algorithm we will keep track of graft representations up to equivalence only. As a result we shall require the following two results.

Proposition 5.4.3 ([25] Lemma 9.4). Let N be an even-cut matroid and let \mathcal{F} be an equivalence class of graft representations of N. Let M be a binary matroid with a non-coloop $e \in E(M)$ for which $N=M \backslash e$. Then the set extensions of \mathcal{F} to M is a (possibly empty) equivalence class.

Proposition 5.4.4 ([25] Lemma 9.12). Let N be a non-cographic, even-cut matroid and let \mathcal{F} be an equivalence class of graft representations of N. Let M be a binary matroid with a non-loop $e \in E(M)$ for which $N=M / e$. Then the set extensions of \mathcal{F} to M is either a (possibly empty) equivalence class of representations or the union of two equivalence classes \mathcal{F}_{1} and \mathcal{F}_{2}. Moreover, in the latter case \mathcal{F}_{1} and \mathcal{F}_{2} arise from respectively case (i) and (ii) in Proposition 5.4.1.

The statements of Proposition 5.4.3 and 5.4.4 are slightly different from [25], but in the proofs, the weaker conditions are used as stated.

5.4.3 Algorithm (2)

Suppose that we are given a binary matroid M by its 0,1 matrix representation A. We assume that we have an oracle to determine if a binary matroid given by its matrix representation is pinch-graphic (or equivalently pinch-cographic). We now describe an algorithm that, in oracle polynomial time in the size of A, will determine whether M is an even-cut matroid.

First we check if M is pinch-cographic. If it is, then M is an even-cut matroid and we stop. Thus we may assume M is not pinch-cographic and proceeding as in the previous algorithm we find a minimally non-pinch-cographic minor N of M. N has constant size and we can find all representations of N, up to equivalence, in constant time. Then we construct
a sequence of matroids $M=M_{1}, M_{2}, \ldots, M_{k}=N$ where for every $i \in[k-1]$ either (i) $M_{i+1}=M_{i} \backslash e_{i}$ for some $e_{i} \in E\left(M_{i}\right)$ that is not a coloop, or (ii) $M_{i+1}=M_{i} / e_{i}$ for some $e_{i} \in E\left(M_{i}\right)$ that is not a loop. For each $i \in[k]$, the set of graft representations of M_{i} can be partitioned into equivalence classes and we denote by \mathcal{E}_{i} a set of graft representations that consist of one representative from each equivalence class. We have \mathcal{E}_{k} and clearly M is an even-cut matroid if and only if $\mathcal{E}_{1} \neq \emptyset$. Thus it suffices to show for all $i \in[k-1]$ how to construct \mathcal{E}_{i} from \mathcal{E}_{i+1}. Consider an arbitrary graft $(G, T) \in \mathcal{E}_{i+1}$ and let \mathcal{F} be the equivalence class that contains (G, T). Let \mathcal{F}^{\prime} be the set of extensions of \mathcal{F} to M_{i}. By propositions 5.4.3 and 5.4.4, \mathcal{F}^{\prime} is either empty, a single equivalence class, or the union of two equivalence classes. We will show how to find representatives for each equivalence class in \mathcal{F}^{\prime} in polynomial time. Since, by Theorem 1.3.2 there exists a constant c such that $\left|\mathcal{E}_{i}\right| \leq c$ this will prove that the algorithm is polynomial.

Consider first the case where $M_{i+1}=M_{i} \backslash e$. By Proposition 5.4.3, \mathcal{F}^{\prime} consists of a single (possibly empty) equivalence class. Find a cycle C of M_{i} containing e. By Proposition 5.4.2, a graft $\left(G^{\prime}, T^{\prime}\right)$ equivalent to (G, T) extends to a representation of M_{i} if there exists a signature Γ of $\left(G^{\prime}, C-e\right)$ where all edges of Γ are incident to some vertex v. We use the decision algorithm described in Section 5.2.2 to check if there exists a signed-graph equivalent to ($G, C-e$) with a blocking vertex v. If the answer is yes then some representation $\left(G^{\prime}, T^{\prime}\right) \in \mathcal{F}$ extends to M_{i} as described in Proposition 5.4.2. If the answer is no then $\mathcal{F}^{\prime}=\emptyset$. Consider now the case where $M_{i+1}=M_{i} / e$. By Proposition 5.4.4, \mathcal{F}^{\prime} consists of the union of at most two equivalence classes. Find a cocycle D of M_{i} containing e, and let J be a T-join of G. By Proposition 5.4.1, some $\left(G^{\prime}, T^{\prime}\right) \in \mathcal{F}$ extends to a representation of M_{i} if either, (i) $G^{\prime}[D-e]$ has at most two odd degree vertices, or (ii) $G^{\prime}[J \Delta(D-e)]$ has at most two odd degree vertices. We denote by R_{1} (resp. R_{2}) the vertices of odd degree of $G[D-e]$ (resp. of $G[J \Delta(D-e)]$). For $\ell \in[2]$, we use the decision
algorithm described in Section 5.2.1 to check if there exists a graft $\left(G^{\prime}, R^{\prime}\right)$ equivalent to $\left(G, R_{\ell}\right)$ where $\left|R^{\prime}\right| \leq 2$. For each $\ell \in[2]$ for which the answer is yes, some representation $\left(G^{\prime}, T^{\prime}\right) \in \mathcal{F}$ extends to M_{i} as described in Proposition 5.4.1. If the answer is no for $\ell \in[2]$ then $\mathcal{F}^{\prime}=\emptyset$.

5.5 Internally 4-connected pinch-graphic matroids

5.5.1 Keeping track of representations

Consider an even-cycle matroid M with a representation (G, Σ). Let N be a minor of M, and let (H, Γ) be a representation of N. Observe that if (G, Σ) has a blocking pair, then so does (H, Γ). It follows in that case that (G, Σ) is a blocking-pair representation of M and that (H, Γ) is a blocking-pair representation of N. Hence, the class of pinch-graphic matroid is also minor-closed. Moreover, every blocking-pair representation of M extends some blocking-pair representation of the minor N.

Suppose that we have binary matroids M and N where $N=M / e$ or $N=M \backslash e$. We will use Propositions 5.3.1 and 5.3.2 to construct all blocking-pair representations of M from the blocking-pair representations of N. We will also require the following observation,

Remark 5.5.1. We can check in polynomial time if a signed graph has a blocking pair.

Proof. First observe that we can check if a signed-graph is bipartite by picking a spanning tree and checking if every fundamental polygon is even. Then we check for every pair of distinct vertices u, v if the signed graph obtained by deleting u and v is bipartite.

5.5.2 Algorithm (4)

Recall Proposition 3.3.1 from Section 3.3.1.

Proposition 3.3.1. Let M be a binary non-graphic matroid that is $(4,5)$-connected. Then there exists a good sequence M_{1}, \ldots, M_{k} for M. Moreover, if we are given M by its 0,1 matrix representation A, then in time polynomial in the number of entries of A we can construct that good sequence.

The algorithm will take as input a binary matroid M that is $(4,5)$-connected, described by its 0,1 representation A and it decides in time polynomial in the size of A if M is pinch-graphic. (As internally 4-connected matroids are (4,5)-connected, this yields an algorithm for checking if an internally 4 -connected matroid is pinch-graphic).

First we check if M is graphic (see Proposition 3.3.5). If it is, then we can stop and M is pinch-graphic. Otherwise there exists a good sequence M_{1}, \ldots, M_{k} for M by Proposition 3.3.1. Iteratively, we will construct the set \mathcal{S}_{i} of all blocking-pair representations of M_{i}. Since $M_{k} \in\left\{F_{7}, F_{7}^{*}, M\left(K_{5}\right)^{*}, M\left(K_{3,3}\right)^{*}\right\}$, we have $\left|E\left(M_{k}\right)\right| \leq 10$ and we can find the set of blocking-pair representations \mathcal{S}_{k} by brute force. Suppose now that for some $i \in[k]$ where $i \neq 1$ we have constructed the set \mathcal{S}_{i}. If $\mathcal{S}_{i}=\emptyset$ then we stop as M is not pinch-graphic since every blocking-pair representation of M should extend some representation from \mathcal{S}_{i}. Otherwise either (i) $M_{i-1}=M_{i} \backslash e$ or (ii) $M_{i-1}=M_{i} / e$ for some e. For case (i) we extend the blocking-pair representations of \mathcal{S}_{i} to \mathcal{S}_{i-1} as in Proposition 5.3.1, and for case (ii) we extend the blocking-pair representations of \mathcal{S}_{i} to \mathcal{S}_{i-1} as in Proposition 5.3.2. In both cases we use Remark 5.5 .1 to only keep the blocking-pair representations. If $\mathcal{S}_{1}=\emptyset$ then M is not pinch-graphic otherwise M is pinch-graphic.

Correctness is clear. Note that the algorithm runs in polynomial time in the size of A
as we can construct the good sequence in polynomial time and since by Theorem 3.3.6 each of the sets \mathcal{S}_{i} have cardinality $\mathcal{O}\left(\left|E\left(M_{i}\right)\right|\right)^{4}$.

5.6 Pinch-graphic matroids with small separations

Recall Propositions 1.4.1 and 1.4.2 from Section 1.4.2 and Proposition 1.4.3 from Section 1.4.3.
Proposition 1.4.1. Let $M=M_{1} \oplus_{k} M_{2}$ for $k \in[3]$ where M_{1} is graphic. If $k=2$, assume that M is 2-connected, and if $k=3$, assume that M is 3-connected. Then, M is pinch-graphic if and only if M_{2} is pinch-graphic.

Proposition 1.4.2. Every 1- and 2-separation of a pinch-graphic matroid is reducible.
Proposition 1.4.3. Let M be a 3 -connected pinch-graphic matroid and let X^{\prime} be a proper 3-separation. Then there exists a homologous proper 3-separation X that is reducible, compliant, or recalcitrant.

Let M be a matroid, and let X be either a 1 -separation, 2 -separation or proper 3separation of M. Then, M can be expressed by k-sum of two matroids M_{1} and M_{2} where $k \in[3]$. We can check if X is reducible by applying a recognition algorithm for graphic matroids to M_{1} and M_{2}. Thus, we are interested in algorithms checking if X is compliant or recalcitrant.

5.6.1 Compliant separations

Let us motivate the term "compliant". Given a 3-connected binary matroid M described by its 0,1 matrix representation and given $X \subseteq E(M)$, we will show that we can check in polynomial time whether X is compliant. The key to that result is the next proposition.

Proposition 5.6.1. Let $M=M_{1} \oplus_{3} M_{2}$ be a 3-connected binary matroid. Let $X=$ $E\left(M_{1}\right)-E\left(M_{2}\right)$ and assume that X is not reducible. Then, the following are equivalent:
(a) X is compliant.
(b) There exists $e \in E\left(M_{1}\right) \cap E\left(M_{2}\right)$ for which both $M_{1} \backslash e$ and $M_{2} \backslash e$ are graphic.

The algorithmic details on how to use this result are in Section 5.6.3.
Consider a binary matroid M with an element e and a cycle C using e. Observe that every cycle of M is either a cycle avoiding e or the symmetric difference of C and a cycle avoiding e. Thus, Remark 5.6.2 follows.

Remark 5.6.2. Let M, N be binary matroids with the same ground set containing an element e. Then $M=N$ if and only if all the cycles avoiding e are the same in M and N and at least one cycle using e is the same in M and N.

Proof of Proposition 5.6.1. Suppose (a) holds. Then (G, Σ, X) is a Type I configuration for some representation (G, Σ) with blocking pair u, v where $u \in \mathcal{I}_{G}(X)$ and v is not a vertex of $G[X]$. Let G_{1} be obtained from $G[X]$ by adding a pair of parallel edges e, f between $a, b \in \partial_{G}(X)$ and by adding a loop g to be incident to u. Let $\Sigma_{1}=\Sigma \cap X \cup\{e, g\}$. By Proposition 4.1.5, $M_{1}=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right)$. Moreover, $M_{1} \backslash e=\operatorname{ecycle}\left(G_{1} \backslash e, \Sigma_{1}-e\right)$. Then $\left(G_{1} \backslash e, \Sigma_{1}-e\right)$ has blocking vertex u. Thus, Remark 2.4.2 implies that $M_{1} \backslash e$ is graphic. By interchanging the role of X and $E(M)-X$ we similarly prove that $M_{2} \backslash e$ is graphic.

Now, suppose (b) holds. Then $M_{1} \backslash e=\operatorname{cycle}(H)$ for some graph H. Let f, g be edges of $E\left(M_{1}\right) \cap E\left(M_{2}\right)$ other than e. Since M has no loop, neither does $M_{1} \backslash e$. Hence, H has no loop. Let r, s denote the ends of g in H. Since f, g are not parallel, we may assume that r is not incident to f. Let G_{1} be obtained from H by identifying r and s into t_{1} and adding an
edge e parallel to f. Let $\Sigma_{1}=\delta_{H}(r) \cup\{e\}$. Observe that $\{e, f, g\}$ is an even cycle of $\left(G_{1}, \Sigma_{1}\right)$ and a cycle of M_{1}. It follows from Remark 5.6.2 that $M_{1}=\operatorname{ecycle}\left(G_{1}, \Sigma_{1}\right)$. Similarly, construct $\left(G_{2}, \Sigma_{2}\right)$ by identifying r and s into t_{2} where $M_{2}=\operatorname{ecycle}\left(G_{2}, \Sigma_{2}\right)$ where e, f are parallel edges of G_{2} and g is a loop G_{2}. Let G be obtained from G_{1} and G_{2} by identifying e, f and deleting e, f, g. Let $\Sigma=\left[\Sigma_{1} \cup \Sigma_{2}\right]-\{e, g\}$. Then Proposition 4.1.4 implies that $M=\operatorname{ecycle}(G, \Sigma)$. Since X is not reducible, $t_{1} \in \mathcal{I}_{G}(X)$ and $t_{2} \in \mathcal{I}_{G}(E(G)-X)$. Finally, observe that (G, Σ, X) is a Type I configuration, i,.e. (a) holds.

5.6.2 Recalcitrant separations

Consider a 3 -connected binary matroid M described by its 0,1 matrix representation. A natural approach for algorithm (5) is to design a subroutine to check if a proper 3-separation is recalcitrant in polynomial time. However, this seems to be harder than checking if X is compliant, so instead we will either establish that X is recalcitrant or find another proper 3 -separation that is reducible. We develop the necessary tools in this section, the algorithmic details will appear in Section 5.6.3. Throughout this section, M denotes a 3 -connected matroid with a proper 3 -separation X and $Y=E(M)-X$.

Working with the completion

Next, we relate representations of M and its completion N with respect to a recalcitrant separation.

Remark 5.6.3. Suppose that (G, Σ, X) is a Type II configuration and that (G, Σ) is a representation of M. Let a, b denote the vertices of $\partial_{G}(X)$. Let (H, Γ) be the signed graph obtained from (G, Σ) by adding an odd loop e_{1}, an even edge e_{2} with ends a, b and an odd edge e_{3} with ends a, b. Then,
(a) $N=\operatorname{ecycle}(H, \Gamma)$ is the completion of M with respect to X,
(b) if $N=\operatorname{ecycle}\left(H^{\prime}, \Gamma^{\prime}\right)$ and $\left(H^{\prime}, \Gamma^{\prime}\right) \mid E(M)=(G, \Sigma)$ then (H, Γ) and $\left(H^{\prime}, \Gamma^{\prime}\right)$ are isomorphic up to moving e_{1}.

Proof. (a) is shown in the proof of Proposition 4.1.4. (b) Let $e \in E(N)-E(M)$. Then by definition of completion there exists cycles C and D of N where $C \subseteq X \cup e, D \subseteq$ $(E(M)-X) \cup e$ and $e \in C \cap D$. Thus $C \Delta D=(C-e) \cup(D-e)$ is a cycle of M and in particular an even-cycle of (G, Σ). It follows that $C-e$ and $D-e$ are either both odd cycles of (G, Σ) or both $a b$-joins of G. Hence, e is either an odd loop of $\left(H^{\prime}, \Gamma^{\prime}\right)$ or has ends a, b in H^{\prime}. As elements in $E(N)-E(M)$ form a circuit of N they form an even cycle of $\left(H^{\prime}, \Gamma^{\prime}\right)$ and the result follows.

Throughout this section N shall denote the completion of M with respect to X. Moreover, e_{1}, e_{2}, e_{3} denote the elements of $E(N)-E(M)$.

The next result shows that it suffices to check whether X is recalcitrant for N.
Remark 5.6.4. X is a recalcitrant separation of M if and only if X is a recalcitrant separation of N.

Proof. Suppose that X is a recalcitrant separation of M. Then, there exists a representation (G, Σ) of M for which (G, Σ, X) is a Type II configuration with $\{a, b\}=\partial_{G}(X)$. Then, the signed graph (H, Γ) obtained from (G, Σ) as in Remark 5.6.3 is a representation of N. Since a, b is a blocking pair of (G, Σ) it is a blocking pair of (H, Γ). Thus, (H, Γ, X) is a Type II configuration and X is a recalcitrant separation of N. Suppose that X is a recalcitrant separation of N. Then there exists a representation (H, Γ) of N for which (H, Γ, X) is a Type II configuration with $\{a, b\}=\partial_{H}(X)$. Let $(G, \Sigma)=(H, \Gamma) \backslash E(N)-E(M)$. Then
(G, Σ) is a representation of M. As X is a proper 3-separation, $|X|,|E(G)-X| \geq 4$, moreover, as M is 3-connected, $G[X], G[E(G)-X]$ are both connected and $\partial_{G}(X)=\{a, b\}$. Finally, as a, b is a blocking pair of (H, Γ) it is also a blocking pair of (G, Σ). Thus (G, Σ, X) is a Type II configuration and X is a recalcitrant separation of M.

Bilateral representations

A representation (H, Γ) of N is bilateral if, for some $\{i, j, k\}=[3]$,
i. $H[X]$ and $H[Y]$ are both connected,
ii. $\partial_{H}(X)=\{a, b\}$,
iii. e_{i} is a loop and the ends of e_{j}, e_{k} are a, b,
iv. $e_{i}, e_{j} \in \Gamma, e_{k} \notin \Gamma$.

Remark 5.6.5. If (H, Γ, X) is a Type II configuration where $N=\operatorname{ecycle}(H, \Gamma)$ then (H, Γ) is a bilateral representation of N. Moreover, if (H, Γ) is a bilateral representation of N with blocking pair a, b then (H, Γ, X) is a Type II configuration.

Next we show that if X is recalcitrant, then we can construct a bilateral representation. Moreover, it suffices to find an equivalent representation for which $\partial(X)$ is a blocking pair to certify that the representation is recalcitrant.

Proposition 5.6.6. Suppose X is a recalcitrant separation of N and pick $\{i, j, k\}=[3]$. Then,
(a) $N / e_{i}=\operatorname{cycle}(G)$ for some graph G.

Pick an arbitrary graph G^{\prime} equivalent to G and let H be obtained from G^{\prime} by adding loop e_{i}. Let Γ be a cocircuit of N using e_{i}. Then, the following also hold:
(b) (H, Γ) is a representation of N.
(c) There exists $\left(H^{\prime}, \Gamma^{\prime}\right)$ equivalent to (H, Γ) for which $\left(H^{\prime}, \Gamma^{\prime}, X\right)$ is a Type II configuration.
(d) (H, Γ) is a bilateral representation of N.

Before we can proceed with the proof we require a number of preliminaries.

Proposition 5.6.7. If X is a recalcitrant separation of N then for every $i \in[3]$ there exists a Type II configuration (H, Γ, X) where (H, Γ) is a representation of N and where e_{i} is an odd loop.

Proof. Since X is a recalcitrant separation of N there exists a Type II configuration $\left(H^{\prime}, \Gamma, X\right)$ where $\left(H^{\prime}, \Gamma\right)$ is a representation of N. Denote by a, b the vertices in $\partial_{H}(X)$. By Remark 5.6.3, we have that e_{1}, e_{2}, e_{3} are are either loops or have ends a, b. We may assume that e_{i} has ends a, b. After possibly re-signing, we have Γ with $e_{i} \in \Gamma$ and $\Gamma \subseteq \delta_{H^{\prime}}(a) \cup \delta_{H^{\prime}}(b)$. Let (H, Γ) be obtained from $\left(H^{\prime}, \Gamma\right)$ by a Lovász-flip on the blocking pair a, b. Observe that e_{i} is an odd loop of H. Then (H, Γ, X) is the required Type II configuration.

We will also require the following immediate consequence of Proposition 2.4.10 (see [27], Lemma 17).

Remark 5.6.8. Two signed-graphs with the same even cycles and a common odd cycle are equivalent.

We are now ready for the main proof of this section.

Proof of Proposition 5.6.6. For (a), since X is a recalcitrant separation of N, it follows by Proposition 5.6 .7 that there exists a Type II configuration $\left(H^{\prime}, \Gamma^{\prime}, X\right)$ where $N=$ ecycle $\left(H^{\prime}, \Gamma^{\prime}\right)$ and where e_{i} is an odd loop of H^{\prime}. Since e_{i} is an odd loop, $N / e_{i}=$ $\operatorname{ecycle}\left(H^{\prime}, \Gamma^{\prime}\right) / e_{i}=\operatorname{cycle}\left(H^{\prime} / e_{i}\right)$. Then let $G=H^{\prime} / e_{i}=H^{\prime} \backslash e_{i}$. For (b), let $N^{\prime}=$ ecycle (H, Γ). Recall that by Proposition 2.4.10, $\operatorname{cycle}\left(G^{\prime}\right)=\operatorname{cycle}(G)$. Then

$$
N^{\prime *} \backslash e_{i}=\left(N^{\prime} / e_{i}\right)^{*}=\left(\operatorname{ecycle}(H, \Gamma) / e_{i}\right)^{*}=\operatorname{cycle}\left(G^{\prime}\right)^{*}=\left(N / e_{i}\right)^{*}=N^{*} \backslash e_{i} .
$$

By hypothesis Γ is a cocircuit of N. Moreover, Γ is a cocircuit of N^{\prime} as Γ is a signature of (H, Γ) and signatures correspond to cocircuits. It follows from Remark 5.6.2 that $N^{* *}=N^{*}$ i.e. that $N=N^{\prime}=\operatorname{ecycle}(H, \Gamma)$. For (c), note that (b) implies that (H, Γ) and $\left(H^{\prime}, \Gamma^{\prime}\right)$ have the same set of odd cycles. Moreover, e_{i} is an odd loop of both signed graphs. It follows from Remark 5.6.8 that (H, Γ) and $\left(H^{\prime}, \Gamma^{\prime}\right)$ are equivalent, proving (c). For (d), note that Remark 5.6.5 implies that $\left(H^{\prime}, \Gamma^{\prime}\right)$ is a bilateral representation of N. Remark 5.6.3 implies that e_{j}, e_{k} are joining the ends of $\delta_{H^{\prime}}(X)$. Moreover, H is 2 -connected by Proposition 4.3.1. We proved in (c) that H and H^{\prime} are equivalent. Hence, H is obtained from H^{\prime} by a sequence of 2-flips on sets $U \subseteq X$ or $U \cap X=\emptyset$. Thus (H, Γ) is also a bilateral representation of N.

Solid separations

Proposition 5.6.6 suggests the following procedure for recognizing if X is a recalcitrant separation of N, pick $i \in[3]$ and check if N / e_{i} is graphic. If it is not, then X is not recalcitrant. Otherwise, $N / e_{i}=\operatorname{cycle}\left(G^{\prime}\right)$ for some graph G^{\prime}, so construct a representation (H, Γ) of N as described in Proposition 5.6.6. If H is 3 -connected, then $H=H^{\prime}$ and it follows from Remark 5.6.5 that X is recalcitrant if and only if the ends of e_{j} (resp. e_{k}) form a blocking pair of (H, Γ). Alas H need not be 3-connected. Moving forward, our
strategy will be to analyze the 2-separations of H. In this section we analyze one such type of separations.

Let (H, Γ) be a bilateral representation of N. Then $Z \subseteq E(H)$ is a solid separation of H if the following hold,
i. $Z \cap\left\{e_{1}, e_{2}, e_{3}\right\}=\emptyset$,
ii. $H[Z]$ and $H[E(H)-Z]$ are connected,
iii. $\left|\partial_{H}(Z)\right|=2$ and $\partial_{H}(X) \neq \partial_{H}(Z)$,
iv. there exists internally disjoint path P_{1}, P_{2} in $H[Z]$ with ends $\partial_{H}(Z)$ and $\left|P_{1}\right|,\left|P_{2}\right| \geq 2$.

Next we present the key result of this section.

Proposition 5.6.9. Suppose X is a recalcitrant separation of N and (H, Γ) is a bilateral representation of N. If Z is a solid separation, then Z is a reducible separation of M.

First we require the following observation used in [11].
Remark 5.6.10. Let H be a graph that contains a theta subgraph consisting of internally disjoint path P_{1}, P_{2}, P_{3}. Let H^{\prime} be a graph equivalent to H. Then P_{1}, P_{2}, P_{3} are paths of H^{\prime} that form a theta subgraph. Note that the order of the edges in P_{i} need not be the same in H and H^{\prime}.

Proof of Proposition 5.6.9. Let u, v denote the vertices in $\partial_{H}(Z)$. Because edge e_{j} (resp. e_{k}) has ends $u, v, Z \subset X$ or $Z \subset Y$ and we may assume the former. Since Z is solid there exists internally disjoint $u v$-paths P_{1}, P_{2} in $H[Z]$. Since $H[E(H)-Z]$ is connected there exists a uv-path P_{3} in $H[E(H)-Z]$. Observe that P_{1}, P_{2}, P_{3} form a theta graph of H.

By Proposition 5.6.6 there exists H^{\prime} equivalent to H such that $\left(H^{\prime}, \Gamma, X\right)$ is a Type II configuration. By Remark 5.6.10 P_{1}, P_{2}, P_{3} form a theta graph of H^{\prime}. Denote by u^{\prime}, v^{\prime} the ends of P_{1}, P_{2}, P_{3} in H^{\prime}. By Proposition 4.3.1 H, H^{\prime} are 2-connected (up to a single loop). It follows that $\partial_{H^{\prime}}(Z)=\left\{u^{\prime}, v^{\prime}\right\}$ and that $H^{\prime}[Z]$ connected.

Claim 1. If u^{\prime} or v^{\prime} is a blocking vertex of $\left(H^{\prime}, \Gamma\right) \mid Z$ then Z is reducible for M.
Subproof. Suppose for a contradiction that u^{\prime} is blocking vertex of $\left(H^{\prime}, \Gamma^{\prime}\right)$. Let (G, Σ) be obtained from $\left(H^{\prime}, \Gamma\right) \mid Z$ by adding an odd loop f_{1}, an even edge f_{2} with ends $\partial_{H^{\prime}}(Z)$ and an odd edge f_{3} with ends $\partial_{H^{\prime}}(Z)$. It follows from Proposition 3.1.5 that Z is 3 -separating in M. As $\left|P_{1}\right|,\left|P_{2}\right| \geq 2,|Z| \geq 4$. Note, $Z \subseteq X$ hence $|E(M)-Z| \geq 4$. Since M is 3 -connected, Z must be exactly 3 -separating and Z is a proper 3 -separation of M. It follows that $M=M_{1} \oplus_{3} M_{2}$ for some matroids M_{1}, M_{2} where $E\left(M_{1}\right)-E\left(M_{2}\right)=Z$. By Proposition 4.1.4, M_{1} is isomorphic to ecycle (G, Σ). Note, u^{\prime} is a blocking vertex of (G, Σ). It follows from Remark 2.4.2 that M_{1} is graphic, hence by definition Z is reducible.

Because $\left(H^{\prime}, \Gamma, X\right)$ is a Type II configuration, the ends of e_{j} (resp. e_{k}) is a blocking pair of $\left(H^{\prime}, \Gamma\right)$. Suppose for a contradiction, Z is not reducible for M. Then by Claim 1 neither u^{\prime} nor v^{\prime} is a blocking vertex of $\left(H^{\prime}, \Gamma\right) \mid Z$. It follows that u^{\prime}, v^{\prime} must be the ends of e_{j}. Observe that P_{1}, P_{2}, e_{2} is theta graph. Hence, by Remark 5.6.10, P_{1}, P_{2}, e_{j} is a theta graph of H. It follows that u, v are the ends of e_{j} in H. But the ends of e_{j} are $\partial_{H}(X)$, hence $\partial_{H}(X)=\partial_{H}(Z)$, contradicting the definition of solid separation.

Kernels

We still need to consider bilateral representations (H, Γ) of N that are not 3-connected but do not have a solid separation. Consider a signed-graph (H, Γ) and let $Z=\left\{f_{1}, f_{2}\right.$,
$\left.f_{3}\right\} \subseteq E(H)$ where $H[Z]$ is connected and $\partial_{H}(Z)=\{u, v\}$ for some $u, v \in V(H)$. Suppose that f_{1}, f_{2} form a u, v-path, that f_{3} is parallel to f_{2}, and that $\left\{f_{2}, f_{3}\right\}$ is an odd polygon. Then Z is a degenerate separation of H. We say that $\left(H^{\prime}, \Gamma\right) / f_{1}$ is obtained from (H, Γ) by reducing the degenerate separation Z. The graph obtained from (H, Γ) by reducing all degenerate separations is the kernel of (H, Γ). We leave the following as an easy exercise,

Remark 5.6.11. Consider a signed-graph (H, Γ) with kernel $\left(H^{\prime}, \Gamma^{\prime}\right)$ and $g \in E(G) \cap E\left(G^{\prime}\right)$. Then the ends of g form a blocking pair of (H, Γ) if and only if the ends of g form a blocking pair of $\left(H^{\prime}, \Gamma^{\prime}\right)$.

In a signed-graph a double path is obtained from an internally disjoint path by replacing every edge by an odd polygon of size two. The next proposition will be the key for recognizing recalcitrant separations,

Proposition 5.6.12. Let (H, Γ) be a bilateral representation of N with loop e_{i}. Suppose that H has no solid separation. Then X is a recalcitrant separation of N if and only the ends of e_{j} (resp. e_{k}) form a blocking pair of the kernel of (H, Γ).

Proof. Suppose first that the ends of e_{2} form a blocking pair of the kernel of (H, Γ). It then follows that the ends of e_{2} also form a blocking pair of (H, Γ) by Remark 5.6.11. Hence, (H, Γ, X) is a Type II configuration and by definition X is a recalcitrant separation of N. Suppose now that X is a recalcitrant separation of N. By Proposition 5.6.6 there exists a Type II configuration $\left(H^{\prime}, \Gamma, X\right)$ where H and H^{\prime} are equivalent. After possibly re-signing we have kernel (\hat{H}, Γ) of (H, Γ) and kernel $\left(\hat{H}^{\prime}, \Gamma\right)$ of $\left(H^{\prime}, \Gamma\right)$ where \hat{H} and \hat{H}^{\prime} are equivalent. Suppose that Z is a (not necessarily proper) 2-separation of \hat{H} with $\{u, v\}=\partial_{\hat{H}}(Z)$.

Claim 1. Z consists of a single edge or a double path with ends u, v.

Subproof. Let us proceed by induction on $|Z|$. Clearly, the result holds if $\mathcal{I}_{\hat{H}}(Z)=\emptyset$. Since there is no solid separation we may assume that there exists $w \in \mathcal{I}_{\hat{H}}(Z)$ and a partition Z_{1}, Z_{2} of Z such that Z_{1}, Z_{2} are 2-separations with $\partial_{\hat{H}}\left(Z_{1}\right)=\{u, w\}$ and $\partial_{\hat{H}}\left(Z_{2}\right)=\{v, w\}$. But then apply induction on Z_{1}, Z_{2}. For $i \in[2], Z_{i}$ is either a single edge or a double path. If Z_{1} and Z_{2} are single edges, then we have a degree two vertex contradicting Proposition 4.3.1. If Z_{i} is an edge and Z_{3-i} is a double path for some $i \in[2]$ then we have a trivial separation, a contradiction. If Z_{1} and Z_{2} are both double paths, then so is Z as required.

Claim 2. Z is a double path of length two.
Subproof. Otherwise one of the odd polygon will not be incident to the ends of e_{2} in \hat{H}^{\prime} contradicting the fact that the ends of e_{2} form a blocking pair of $\left(\hat{H}^{\prime}, \Gamma\right)$.

The ends of e_{2} form a blocking pair of $\left(H^{\prime}, \Gamma\right)$. It follows by Remark 5.6.11 that the ends of e_{2} form a blocking pair of $\left(\hat{H}^{\prime}, \Gamma\right)$. Since \hat{H} and \hat{H}^{\prime} are equivalent and because of Claim 1, the ends of e_{2} form a blocking pair of (\hat{H}, Γ) as required.

5.6.3 Algorithm (5)

In this section, we will show that, when trying to recognize whether a matroid is pinchgraphic, we can restrict ourselves to internally 4-connected matroids. We will describe a number of procedures that take a (binary) matroid M as input. In each case, the matroid will be described by its $m \times n, 0,1$ matrix representation A. A procedure runs in polynomial time if its running time is bounded by a polynomial in m and n. The algorithm rely on Propositions 3.3.4 and 3.3.5 from Section 3.3.1.

Next we describe algorithms that will analyze reducible, compliant, and recalcitrant separations.

Algorithm A: reducible separations

The procedure takes as input a pair M and $X \subseteq E(M)$ where either (1) X is a 1-separation of M; (2) M is 2-connected and X is a 2-separation of M; or (3) M is 3 -connected and X is a proper 3-separation of M. In polynomial time, the procedure will either indicate that either (a) X is not reducible, or (b) return a matroid N where $|E(N)|<|E(M)|$ and where N is pinch-graphic if and only if M is pinch-graphic. We proceed as follows: X is a k-separation for some $k \in[3]$. If $k=1$, then we let $M_{1}=M \backslash X$ and $M_{2}=M \backslash(E(M)-X)$. If $k \in\{2,3\}$, then we construct the completion N of M with respect to X and we let $M_{1}=N \backslash X$ and $M_{2}=N \backslash(E(M)-X)$. Then, $M=M_{1} \oplus_{k} M_{2}$ (see Propositions 3.1.9 and 4.1.2). Then, we check whether there exists $i \in[2]$ such M_{i} is graphic (see Proposition 3.3.5). If not, we stop and indicate that X is not reducible. Otherwise, we stop and return $N:=M_{3-i}$ that is pinch-graphic if and only if M is pinch-graphic (see Propositions 4.1.6, 4.1.7 and 4.1.8).

Algorithm B: compliant separations

The procedure takes as input a pair M and $X \subseteq E(M)$ where X is a proper 3-separation of M and M is 3 -connected. In polynomial time, the procedure will indicate whether X is compliant. We proceed as follows: first we construct the completion N of M with respect to X and we let $M_{1}=N \backslash X$ and $M_{2}=M \backslash(E(M)-X)$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}=E\left(M_{1}\right) \cap E\left(M_{2}\right)$. If $M_{1} \backslash e$ and $M_{2} \backslash e$ are both graphic for some $i \in[3]$, then we stop and indicate that X is compliant. Otherwise, we stop and indicate that X is not compliant. Correctness follows from Proposition 5.6.1.

Algorithm C: recalcitrant separations

The procedure takes as input a pair M and $X \subseteq E(M)$ where X is a proper 3 -separation of M and M is 3 -connected. In polynomial time, the procedure will do one of the following: (a) establish that X is recalcitrant, (b) establish that X is not recalcitrant, or (c) return a matroid N where $|E(N)|<|E(M)|$ and where N is pinch-graphic if and only if M is pinchgraphic. We proceed as follows: first, we construct the completion N of M with respect to X and we let $M_{1}=N \backslash X$ and $M_{2}=N \backslash(E(M)-X)$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}=E\left(M_{1}\right) \cap E\left(M_{2}\right)$. If M / e_{1} is not graphic, then we stop and indicate that X is not recalcitrant. Correctness follows from Proposition 5.6.6 (a). Otherwise, we find a graph G^{\prime} for which $M / e=\operatorname{cycle}\left(G^{\prime}\right)$. Construct H by adding loop e_{1}, and let Γ be any cocircuit of M using e_{1}. If (H, Γ) is not bilateral, then we stop and indicate that X is not recalcitrant. Correctness follows from Proposition 5.6.6 (c). We then check whether H has a solid separation Z. If it does, we run procedure A with input M and Z. If procedure A says that Z is not reducible, then we stop and indicate that X is not recalcitrant. Correctness follows from Proposition 5.6.9. Otherwise, we stop and return the matroid N given by procedure A. Next, we construct the kernel of (H, Γ). If the ends of e_{2} (resp. e_{3}) of the kernel form a blocking pair, then we indicate that X is recalcitrant; otherwise, we indicate that X not recalcitrant. Correctness follows from Proposition 5.6.12.

Putting it together

The procedure takes as input a matroid M. In polynomial time it will either (a) establish that M is pinch-graphic, (b) establish that M is not pinch-graphic, or (c) construct a matroid N that is internally 4 -connected where N is isomorphic to a proper minor of M and where N is pinch-graphic if and only M is pinch-graphic. Note we can check if M has a

1-, 2-, or proper 3-separation in polynomial time (see Proposition 3.3.4). Also observe that if we establish that M has a compliant or a recalcitrant separation then definition M is pinch-graphic. Finally note that a proper 3 -separation of a 3 -connected binary matroid has at most 8 homologous 3 -separations.

We repeat the following steps until we stop,
(1) Try to find a 1-separation or a 2 -separation. If there exists such a k-separation, pick one minimizing k. Use Algorithm A to check whether such a separation X is reducible. If X is not reducible, then stop and return that M is not pinch-graphic (see Propositions 4.1.7 and 4.1.8). If X is reducible, then set $M:=N$ where N is the matroid returned by Algorithm A and start again at the beginning of (1).

At this stage of the algorithm, the matroid M is 3 -connected.
(2) Try to find a proper 3 -separation Y. If no such separation exists, we stop and return M.
(3) For each separation X that is homologous to Y do the following:
(3.1) Use Algorithm A to check whether X is reducible. If it is, then set $M:=N$ where N is the matroid returned by Algorithm A and start again at the beginning of (1).
(3.2) Use Algorithm B to check whether X is compliant. If it is, then stop and return that M is pinch-graphic.
(3.3) Use Algorithm C. If the algorithm indicates that X is recalcitrant, then stop and return that M is pinch-graphic. If the algorithm returns a matroid N, then set $M:=N$ and start again at the beginning of (1).

At this stage, none of the separations homologous to Y is either reducible, compliant or recalcitrant. Hence, by Proposition 1.4.3, M is not pinch-graphic.
(4) Stop and return that M is not pinch-graphic.

Chapter 6

Future works

6.1 Isomorphism problem

Consider graphs H and H^{\prime} where $E(H) \cap E\left(H^{\prime}\right)=\{e, f, g\}$ where $\{e, f, g\}$ is a triangle of both H and H^{\prime}. The graph obtained by identifying e, f, g in H and H^{\prime}; and deleting $\{e, f, g\}$ is a 3 -sum of H and H^{\prime} on e, f, g. 3-sums preserve the sibling property.

Proposition 6.1.1. Let $\left(G_{1}, G_{2}\right)$ be siblings with triangle $\{e, f, g\}$ and let H be a graph with a triangle $\{e, f, g\}$. For $i \in[2]$, let G_{i}^{\prime} be obtained from G_{i} by a 3 -sum of G_{i} and H on e, f, g. Then, $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ are siblings.

Proof. Let Σ_{1}, Σ_{2} be a matching-signature pair for G_{1}, G_{2}. Since $\{e, f, g\}$ is a circuit of both G_{1} and G_{2}, it must be even, for otherwise would have cycle $\left(G_{1}\right)=\operatorname{cycle}\left(G_{2}\right)$, contradicting the fact that G_{1}, G_{2} are siblings. Hence, we may assume by re-signing that for $i \in[2]$, $\Sigma_{i} \cap\{e, f, g\}=\emptyset$. Let C be an even cycle of $\left(G_{i}, \Sigma_{i}\right)$ for some $i \in[2]$. We claim that C is an even cycle of $\left(G_{3-i}, \Sigma_{3-i}\right)$. This is obvious if $C \subseteq E\left(G_{i}\right)$ or if $C \subseteq E(H)$. Thus, we
may assume that $C=P \cup Q$ where P is a path of H and where Q is a path of G_{i} and $(P \cup Q) \cap\{e, f, g\}=\emptyset$. After possibly interchanging the role of e, f, g, we may assume that P and Q have have the same ends as e. But then $P \cup\{e\}$ and $Q \cup\{e\}$ are both even cycles of $\left(G_{2}, \Sigma_{2}\right)$. But then so is $P \cup Q$ and it follows that ecycle $\left(G_{1}^{\prime}, \Sigma_{1}\right)=\operatorname{ecycle}\left(G_{2}^{\prime}, \Sigma_{2}\right)$ and in particular that $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ are siblings.

Consider siblings G_{1} and G_{2} with matching-terminal pair T_{1}, T_{2} where for $i \in[2], G_{i}$ is isomorphic to K_{6} and $\left|T_{i}\right|=6$. An example is given in Figure 1.6. Then repeatedly, pick a triangle $\{e, f, g\}$ of G_{1} that is also a triangle in G_{2} and for $i \in[2]$ replace G_{i} by a 3 -sum of G_{i} and some graph H on e, f, g. The resulting pair of graphs are K_{6}-siblings. Note that they are indeed siblings by Proposition 6.1.1.

We conjecture that Theorem 2.3.1 has an analogue result for the case where the siblings are 3 -connected, namely, we predict the following:

Conjecture 6.1.2. Let $\left(G_{1}, G_{2}\right)$ be 3-connected, closed siblings that are neither graphic nor cographic. Denote by $\left(\Sigma_{1}, \Sigma_{2}\right)$ the matching-signature pair and denote by $\left(T_{1}, T_{2}\right)$ the matching-terminal pair. Then, one of the following holds:
(a) $\left(G_{1}, G_{2}\right)$ are K_{6} siblings;
(b) $\left(G_{1}, G_{2}\right)$ are blocking-pair siblings;
(c) $\left(G_{1}, G_{2}\right)$ are T_{4} siblings;
(d) there exist $i \in[2]$ (say $i=1$) and a graph G_{1}^{\prime} such that $\left(G_{1}, G_{1}^{\prime}\right)$ are blocking-pair siblings, and $\left(G_{1}^{\prime}, G_{2}\right)$ are cographic siblings; or
(e) there exists $i \in[2]$ (say $i=1)$ and a graph G_{1}^{\prime} such that $\left(G_{1}, G_{1}^{\prime}\right)$ are T_{4} siblings, and $\left(G_{1}^{\prime}, G_{2}\right)$ are graphic siblings.

Note that we added outcome (e). This is necessary because of the following siblings given in Figure 6.1. Denote by G_{1} and G_{2} the graphs on the left and right. The white vertices represent terminals. Then, $\left(G_{1}, G_{2}\right)$ are siblings, but none of outcomes (a)-(d)

Figure 6.1: A bad example.
arise. However, there exists a graph G_{1}^{\prime}, as illustrated in Figure 6.2, where $\left(G_{1}, G_{1}^{\prime}\right)$ are T_{4} siblings and (G_{1}^{\prime}, G_{2}) are graphic siblings, which is outcome (e) in Conjecture 6.1.2. More examples appear in [23].

Figure 6.2: Graphic siblings after a T_{4}-move.

6.2 Excluded minors

6.2.1 Well-known classes

For a minor-closed class of matroids, it is often described as a list of excluded minors. An excluded minor is a minor-minimal matroid that is not in the class. The sets of the excluded minors of the following classes are well-known:
(a) $\left\{U_{2,4}\right\}$ for binary matroids [49],
(b) $\left\{U_{2,5}, U_{3,5}, F_{7}, F_{7}^{*}\right\}$ for ternary matroids [48],
(c) $\left\{U_{2,4}, F_{7}, F_{7}^{*}\right\}$ for regular matroids [49, 17],
(d) $\left\{U_{2,4}, F_{7}, F_{7}^{*}, \operatorname{cut}\left(K_{5}\right), \operatorname{cut}\left(K_{3,3}\right)\right\}$ for graphic matroids [50] and
(e) $\left\{U_{2,4}, F_{7}, F_{7}^{*}, \operatorname{cycle}\left(K_{5}\right), \operatorname{cycle}\left(K_{3,3}\right)\right\}$ for cographic matroids [50]

6.2.2 Even-cycle and even-cut matroids

We are interested in analogous problems for classes of even-cycle, even-cut, pinch-graphic and pinch-cographic matroids, namely, we are interested in the following problems:

Problem 6.2.1.

(a) Describe excluded minors for even-cycle matroids,
(b) describe excluded minors for even-cut matroids,
(c) describe excluded minors for pinch-graphic matroids that are even-cycle matroids, and
(d) describe excluded minors for pinch-cographic matroids that are even-cut matroids.

Let us recall Theorem 3.1.1 from Section 3.1.1, which implies that there is a finite number of excluded minors for even-cycle matroids.

Theorem 3.1.1. There exists a constant c, such that every minimally non-pinch-graphic (resp. minimally non-pinch-cographic) matroid has at most c elements.

However, Pivotto and Royle [41] found more than 400 excluded minors for the class of even-cycle matroids. In [19], it is proved that, for a "highly" connected matroid M, M is an even-cycle matroid if and only if it does not have a minor isomorphic to $P G(3,2) \backslash e, L_{19}$ or L_{11}. The definitions of these matroids and similar results for even-cut, pinch-graphic and pinch-cographic matroids can be found in [19].

As shown in [40] (Lemma 7.1 and Lemma 7.2), the following hold:
Lemma 6.2.2. Let $M=M_{1} \oplus_{1} M_{2}$ be a 1-sum of M_{1} and M_{2}. Then, M is an excluded minor for even-cycle matroids if and only if both M_{1} and M_{2} are minimally non-graphic matroids.

Lemma 6.2.3. Let $M=M_{1} \oplus_{1} M_{2}$ be a 1-sum of M_{1} and M_{2}. Then, M is an excluded minor for even-cut matroids if and only if both M_{1} and M_{2} are minimally non-cographic matroids.

As a corollary of Propositions 1.4.1 and 4.2.1, the following can be proved.

Corollary 6.2.4. Let $M=M_{1} \oplus_{1} M_{2}$ be a 1 -sum of M_{1} and M_{2}. Then, M is an excluded minor for pinch-graphic matroids if and only if both M_{1} and M_{2} are minimally non-graphic matroids.

Corollary 6.2.5. Let $M=M_{1} \oplus_{1} M_{2}$ be a 1 -sum of M_{1} and M_{2}. Then, M is an excluded minor for pinch-cographic matroids if and only if both M_{1} and M_{2} are minimally noncographic matroids.

As a consequence of the characterization of 1-, 2- and 3-separations of even-cycle matroids, the following problems can be considered.

Problem 6.2.6.

(a) Describe excluded minors for even-cycle matroids that contain a 2- or 3-separation,
(b) describe excluded minors for even-cut matroids that contain a 2- or 3-separation,
(c) describe excluded minors for pinch-graphic matroids that are even-cycle matroids and contain a 2- or 3-separation, and
(d) describe excluded minors for pinch-cographic matroids that are even-cut matroids and contain a 2- or 3-separation.

References

[1] R. E. Bixby. Composition and decomposition of matroids and related topics. PhD thesis, Cornell University, 1972.
[2] V. Chandru, C. R. Coullard, and D. K. Wagner. On the complexity of recognizing a class of generalized networks. Operations Research Letters, 4(2):75-78, 1985.
[3] R. Chen, M. Devos, D. Funk, and I. Pivotto. Graphical representations of graphic frame matroids. Graphs and Combinatorics, 31(6):2075-2086, November 2015.
[4] R. Chen and Z. Gao. Representations of bicircular lift matroids. Electron. J. Comb., 23:P3.42, 2016.
[5] R. Chen and J. Geelen. Infinitely many excluded minors for frame matroids and for lifted-graphic matroids. Journal of Combinatorial Theory, Series B, 133:46-53, 2018.
[6] R. Chen and G. Whittle. On recognizing frame and lifted-graphic matroids. Journal of Graph Theory, 87(1):72-76, 2018.
[7] C. Chun, D. Mayhew, and J. Oxley. A chain theorem for internally 4-connected binary matroids. Journal of Combinatorial Theory, Series B, 101(3):141-189, 2011.
[8] W. H. Cunningham. A combinatorial decomposition theory. PhD thesis, University of Waterloo, 1973.
[9] W. H. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian Journal of Mathematics, 32(3):734-765, 1980.
[10] J. Edmonds. Matroid intersection. In P. L. Hammer, E. L. Johnson, and B.H. Korte, editors, Discrete Optimization I, volume 4 of Annals of Discrete Mathematics, pages 39-49. Elsevier, 1979.
[11] Z. Ferchiou and B. Guenin. A short proof of Shih's isomorphism theorem on graphic subspaces. Combinatorica, 40:805-837, 2020.
[12] J. Geelen, A. M. H. Gerards, and A. Kapoor. The excluded minors for GF(4)representable matroids. Journal of Combinatorial Theory, Series B, 79(2):247-299, 2000.
[13] J. Geelen, B. Gerards, and G. Whittle. Towards a structure theory for matrices and matroids. Proceedings oh the International Congress of Mathematicians, 3:827-842, 01 2006.
[14] J. Geelen, P. Hlinený, and G. Whittle. Bridging separations in matroids. SIAM Journal on Discrete Mathematics, 18(3):638-646, 2004.
[15] J. Geelen and X. Zhou. A splitter theorem for internally 4-connected binary matroids. SIAM J. Discrete Math., 20:578-587, 082006.
[16] J. Geelen and X. Zhou. Generating weakly 4-connected matroids. Journal of Combinatorial Theory, Series B, 98(3):538-557, 2008.
[17] A. M. H. Gerards. A short proof of Tutte's characterization of totally unimodular matrices. Linear Algebra and its Applications, 114-115:207-212, 1989. Special Issue Dedicated to Alan J. Hoffman.
[18] A. M. H. Gerards. On Tutte's characterization of graphic matroids-a graphic proof. Journal of Graph Theory, 20(3):351-359, 1995.
[19] K. Grace and S. H. M. van Zwam. The highly connected even-cycle and even-cut matroids. SIAM Journal on Discrete Mathematics, 33(1):26-67, 2019.
[20] B. Guenin and C. Heo. Recognizing even-cycle and even-cut matroids. Submitted.
[21] B. Guenin and C. Heo. Recognizing pinch-graphic matroids. Submitted.
[22] B. Guenin and C. Heo. Small separations in pinch-graphic matroids. Submitted.
[23] B. Guenin, C. Heo, and I. Pivotto. Signed graphs with the same even cycles. In preparation.
[24] B. Guenin and I. Pivotto. Signed graphs with the same even cycles. Unpublished.
[25] B. Guenin and I. Pivotto. Stabilizer theorems for even cut matroids. Submitted.
[26] B. Guenin, I. Pivotto, and P. Wollan. Relationships between pairs of representations of signed binary matroids. SIAM Journal on Discrete Mathematics, 27, 022013.
[27] B. Guenin, I. Pivotto, and P. Wollan. Stabilizer theorems for even cycle matroids. Journal of Combinatorial Theory, Series B, 118:44-75, 2016.
[28] R. Hall. A chain theorem for 4-connected matroids. Journal of Combinatorial Theory, Series B, 93(1):45-66, 2005.
[29] F. Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal, 2:143-146, 1953.
[30] C. Heo. Recognizing even cycle and even cut matroids. Master's thesis, University of Waterloo, 2016.
[31] C. Heo and B. Guenin. Recognizing even-cycle and even-cut matroids. In Daniel Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimization, pages 182-195, Cham, 2020. Springer International Publishing.
[32] A. J. Hoffman. Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In Proc. Sympos. Appl. Math., Vol. 10, pages 113-127. American Mathematical Society, Providence, R.I., 1960.
[33] E. Lawler. Combinatorial optimization - networks and matroids. Holt, Rinehart and Winston, New York, 1976.
[34] M. Lemos and J. Oxley. On the minor-minimal 3-connected matroids having a fixed minor. European Journal of Combinatorics, 24(8):1097-1123, 2003.
[35] L. R. Matthews. Bicircular matroids. The Quarterly Journal of Mathematics, 28(2):213227, 061977.
[36] J. Oxley. Matroid Theory. Oxford graduate texts in mathematics. Oxford University Press, 2006.
[37] J. Oxley, C. Semple, and G. Whittle. The structure of the 3-separations of 3-connected matroids. Journal of Combinatorial Theory, Series B, 92(2):257-293, 2004. Special Issue Dedicated to Professor W.T. Tutte.
[38] J. Oxley, C. Semple, and G. Whittle. The structure of the 3-separations of 3-connected matroids II. European Journal of Combinatorics, 28(4):1239-1261, 2007.
[39] K. Papalamprou and L. Pitsoulis. Recognition algorithms for binary signed-graphic matroids. In A. Ridha Mahjoub, Vangelis Markakis, Ioannis Milis, and Vangelis Th. Paschos, editors, Combinatorial Optimization, pages 463-474, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
[40] I. Pivotto. Even Cycle and Even Cut Matroids. PhD thesis, University of Waterloo, 2011.
[41] I. Pivotto and G. Royle. Personal communication, 2016.
[42] H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control. The American Mathematical Monthly, 46(5):281-283, 1939.
[43] P. D. Seymour. A note on the production of matroid minors. Journal of Combinatorial Theory, Series B, 22(3):289-295, 1977.
[44] P. D. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory, Series B, 28(3):305-359, 1980.
[45] P. D. Seymour. On Tutte's characterization of graphic matroids. In M. Deza and I. G. Rosenberg, editors, Combinatorics 79 Part I, volume 8 of Annals of Discrete Mathematics, pages 83-90. Elsevier, 1980.
[46] P. D. Seymour. Recognizing graphic matroids. Combinatorica, 1(1):75-78, March 1981.
[47] C. Shih. On graphic subspaces of graphic spaces. PhD thesis, Ohio State University, 1982.
[48] K. Truemper. Matroid decomposition. Academic Press, Boston, 1992.
[49] W. T. Tutte. A homotopy theorem for matroids, ii. Transactions of the American Mathematical Society, 88(1):161-174, 1958.
[50] W. T. Tutte. Matroids and graphs. Transactions of the American Mathematical Society, 90(3):527-552, 1959.
[51] W. T. Tutte. An algorithm for determining whether a given binary matroid is graphic. Proceedings of the American Mathematical Society, 11(6):905-917, 1960.
[52] W. T. Tutte. Lectures on matroids. Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, pages 1-47, 1965.
[53] W. T. Tutte. Connectivity in matroids. Canadian Journal of Mathematics, 18:1301-1324, 1966.
[54] D. J. A. Welsh. Matroid Theory. Dover books on mathematics. Dover Publications, 2010.
[55] H. Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245-254, 1933.
[56] T. Zaslavsky. Biased graphs. I. Bias, balance, and gains. Journal of Combinatorial Theory, Series B, 47(1):32-52, 1989.
[57] T. Zaslavsky. Biased graphs. II. The three matroids. Journal of Combinatorial Theory, Series B, 51(1):46-72, 1991.

List of Notations

(V, E) the graph with vertex set V and edge set $E 1$
$V(G)$ the vertex set of graph $G 1$
$E(G)$ the edge set of graph $G 1$
$G[U]$ the induced subgraph of G by vertex subset U of $G 1$
$G[F]$ the induced subgraph of G by edge subset F of $G 1$
$E(M)$ the ground set of matroid $M 1$
cycle (G) the cycle matroid which arises from graph $G 2$
$G / I \backslash J$ the minor of graph G obtained by contracting I and deleting $J 2$
$M / I \backslash J$ the minor of matroid M obtained by contracting I and deleting $J 2$
$\delta_{G}(W)$ the cut of G generated by vertex set $W 2$
$\delta_{G}(v)$ the cut of G generated by vertex $v 2$
$\operatorname{cut}(G)$ the cut matroid which arises from graph $G 2$
$\partial_{G}(X)$ the intersection of $V_{G}(X)$ and $V_{G}(E(G)-X) 3$
$[k]$ set $\{1,2, \ldots, k\} 3$
r_{M} the rank function of matroid $M 4$
$\mathrm{r}(M)$ the rank of matroid $M 4$
λ_{M} the connectivity function of matroid $M 4$
(G, Σ) the signed graph with graph G and $\operatorname{sign} \Sigma 4$
ecycle (G, Σ) the even-cycle matroid which arises from signed graph $(G, \Sigma) 5$
$(G, \Sigma) / I \backslash J$ the minor of signed graph (G, Σ) obtained by contracting I and deleting $J 5$
$(G, \Sigma) \mid F$ the induced signed graph of (G, Σ) by edge subset F of $G 5$
(G, T) the graft with graph G and terminal set $T 6$
$\operatorname{ecut}(G, T)$ the even-cut matroid which arises from graft $(G, T) 6$
$V_{\text {odd }}(G)$ the subset of odd-degree vertices of graph $G 6$
$(G, T) / I \backslash J$ the minor of graft (G, T) obtained by contracting I and deleting $J 6$
$(G, T) \mid F$ the induced graft of (G, T) by edge subset F of $G 7$
(G, \mathcal{B}) the biased graph with graph G and set \mathcal{B} of balanced cycles 8
$\operatorname{FM}(G, \mathcal{B})$ the frame matroid which arises from biased graph $(G, \mathcal{B}) 8$
$\operatorname{LM}(G, \mathcal{B})$ the lift matroid which arises from biased graph $(G, \mathcal{B}) 10$
$\Sigma \Delta \Gamma$ the symmetric difference of Σ and $\Gamma 12$
$V_{G}(F)$ the vertex set of the induced subgraph of G by edge subset $F 17$
$\operatorname{cl}_{M}(X)$ the closure of edge subset X for matroid $M 23$
M^{*} the dual of matroid $M 23$
$\mathcal{I}_{G}(X)$ the set of vertices in $V_{G}(X)-\partial_{G}(X) 23$
$\lambda_{1}(N)$ the number of connected components of matroid $N 69$
$\Lambda_{2}(N)$ the collection of 3 -connected matroids that construct matroid N by 1 -sums and 2-sums 69
$\lambda_{2}(N)$ the number of matroids in $\Lambda_{2}(N) 69$
$f(M)$ the number of pairwise inequivalent signed-graph representations of matroid M 70 $\kappa(H)$ the number of components of graph $H 71$
$M_{1} \oplus_{1} M_{2}$ the 1-sum of matroids M_{1} and $M_{2} 73$
$M_{1} \oplus_{2} M_{2}$ the 2-sum of matroids M_{1} and $M_{2} 73$
$g(M)$ the number of pairwise inequivalent graft representations of matroid $M 80$
$M_{1} \oplus_{3} M_{2}$ the 3 -sum of matroids M_{1} and $M_{2} 113$

Index

adding a pin, 81
adjacent blocking pair, 37
auxiliary graph, 71
balanced cycle, 8
beads, 102
biased graph, 8
bicircular matroid, 9
bicircular-lift matroid, 11
bilateral, 161
bipartite, 71
blocking pair, 18, 32
adjaecent, 37
blocking vertex, 40, 107
blocking-pair representation, 18, 67
blocking-pair sibling, 33
boundary vertex, 3
of wheel pair, 47
of widget pair, 47
BP-move, 33
broken handcuff, 10
closed, 36
closure, 23, 126
cocycle, 143
cographic matroid, 2
cographic sibling, 15
completion
of 2-separation, 73
of 3 -separation, 114
compliant, 23, 24, 126
connectivity function, 4, 71
contraction
graph, 2
matroid, 2
counterexample
isomorphism problems, 39
cross, 102
cut, 2
cycle, 1
of a binary matroid, 143
degenerate separation, 166
deletion
graph, 2
matroid, 2
diamond, 40
donut graph, 17
double ear, 72, 120
k-uniform, 120
double path, 166
ear, 137
ear decomposition, 137
equivalent
graft, 12
graph, 3
signed graph, 12
eulerian
graft, 81
even
cut, 6
cycle, 5
edge, 5
even-cut matroid, 6
even-cycle matroid, 5
excluded minor, 175
extension
graft, 151
graph representation, 143
signed graph, 147
extremal
graft, 83
signed graph, 76
Fano matroid, 5, 6
folding, 32
$(4, \ell)$-connected, 21
4-connected
sibling, 35
frame matroid, 8
gain graph, 8
good sequence, 87
graft, 6
nice, 93
special, 93
graft matroid, 144
graft representation, 6
graph, 1
graph representation
of cographic matroid, 2
of graphic matroid, 2
graphic matroid, 2
graphic sibling, 15
group-labelled graph, 8
head, 81
homologous, 23, 126
hub, 47
induced
graft, 7
signed graph, 6
subgraph, 1
inequivalent
graft, 12
graph, 3
signed graph, 12
interior vertex
of wheel pair, 47
of widget pair, 47
internally 4 -connected, 21
isomorphism, 102
k-connected
graph, 16
k-separating, 4
exactly, 4
k-separation, 4
k-uniform
double ear, 120
theta, 120
kernel, 166
lift matroid, 10
loose handcuff, 9
Lovász-flip, 121
resulting blocking pair, 121
matching-signature pair, 14
matching-terminal pair, 14
mate, 45
matroid, 1
maximal small 2-separation, 101
minimally
non-pinch-cographic, 80
non-pinch-graphic, 69
minor
graft, 6
graph, 2
matroid, 2
signed graph, 5
N-minor, 87
necklace, 102
nice graft, 93
odd
cut, 6
cycle, 5
edge, 5
1-flip, 3
1-sum, $73,113,142$
pin, 81, 91
pinch-cographic matroid, 20
pinch-graphic matroid, 18
polygon, 1
proper, 4
pseudo-path, 36
rank function, 4
re-sign, 5
recalcitrant, $23,24,126$
reducible, 22, 112
reducing, 166
rim polygon, 48
rim vertex, 47

Shih sibling, 15, 29
shore, 2
shuffling, 19
sibling, 14, 29
blocking-pair, 33
cographic, 15
graphic, 15
$K_{6}, 173$
Shih, 15, 29
$T_{4}, 34$
sign, 4
signature, 4
signed graph, 4
simple, 40
signed-graph representation, 5
signed-graphic matroid, 10
skewed, 95
small 2-separation, 101
solid separation, 164
special
vertex, 108
special graft, 93
splitting, 82
sum
on a loop, 75
on a pin, 82
on an edge (for grafts), 83
on an edge (for signed graphs), 75
T-join, 6
T_{4} representation, 20, 67
T_{4} sibling, 34
terminal, 6
terminal set, 6
T_{4}-move, 34
theta, 120
k-uniform, 120
theta graph, 8,72
theta property, 8
3 -connected, 4, 21
3 -sum, 113
3 -sum on a triangle, 172
tight handcuff, 9
2-connected, 4
2-flip, 3
2-separation
cross, 102
maximal small, 101
small, 101
2-sum, 73, 113, 142
Type I
configuration, 23, 126
nice representation, 99
Type II
configuration, 23, 126
nice representation, 99
unbalanced
cycle, 8
theta, 9
uncontracting, 82
underlying graph
of graft, 6
of signed graph, 4
unfolding, 32
unstable, 96
well-connected, 101
wheel, 30, 143
part, 30
proper, 30
wheel pair, 30
widget, 31
part, 31
proper, 31
widget pair, 31

[^0]: ${ }^{1} 3$ choices for decide which pairs of terminals get identified, and 2×2 choices for the signature.

