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Abstract

Let M be a representable matroid, and Q, R, S, T subsets of the ground
set such that the smallest separation that separates Q from R has order
k, and the smallest separation that separates S from T has order l. We
prove that, if M is sufficiently large, then there is an element e such that
in one of M\e and M/e both connectivities are preserved.

For matroids representable over a finite field we prove a stronger
result: we show that we can remove e such that both a connectivity and
a minor of M are preserved.

1 Introduction

For a matroid M on ground set E we define, as usual, the connectivity
function λM by λM (X ) := rkM (X ) + rkM (E − X )− rk(M). For disjoint sets
S, T ⊆ E, the connectivity between S and T is

κM (S, T ) :=min{λM (X ) : S ⊆ X ⊆ E − T}. (1)

Geelen, in private communication, conjectured the following.

Conjecture 1.1. There exists a function c : N2 → N with the following
property. Let M be a matroid, and let Q, R, S, T ⊆ E(M) be sets of elements
such that Q ∩ R = S ∩ T = ;. Let k := κM (Q, R) and l := κM (S, T ).
If |E(M) − (Q ∪ R ∪ S ∪ T )| ≥ c(k, l), then there exists an element e ∈
E(M)− (Q ∪ R∪ S ∪ T ) such that one of the following holds:

(i) κM\e(Q, R) = k and κM\e(S, T ) = l;

(ii) κM/e(Q, R) = k and κM/e(S, T ) = l.
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In other words, for fixed Q, R, S, T , there is a finite number of minor-
minimal matroids with the prescribed connectivities. This formulation is
reminiscent of the definition of an intertwine, which is a minor-minimal
matroid containing two prescribed minors. For that reason we speak of
the intertwining of connectivities.

For graphs the result follows readily from Robertson and Seymour’s
Graph Minors Theorem [11]. In this paper we prove the conjecture for
all representable matroids.

For matroids representable over a finite field we prove a stronger
result:

Theorem 1.2. There exists a function c : N3 → N with the following
property. Let q be a prime power, let M be a GF(q)-representable matroid,
let N be a minor of M, let S, T ⊆ E(M) be disjoint, and let k := κM (S, T ).
If |E(M)− (S ∪ T ∪ E(N))| > c(q, |E(N)|, k), then there exists an element
e ∈ E(M)− (S ∪ T ∪ E(N)) such that at least one of the following holds:

(i) κM\e(S, T ) = k and N is a minor of M\e;

(ii) κM/e(S, T ) = k and N is a minor of M/e.

For completeness, we later give a short proof that Theorem 1.2 is
indeed a strengthening of Conjecture 1.1 for matroids representable over
a fixed finite field.

By repeated use of this theorem, it is possible to bound the size of an
intertwine of any fixed number of connectivities. This solves a weak form
of the following problem:

Problem 1.3. Let M = (S,I ) be a matroid that is a gammoid. Give an
upper bound, in terms of |S|, on the size of the directed graph needed to
represent M as a gammoid.

In the case that M is represented by an (undirected) graph, Theorem
1.2 yields a very poor bound of 222...

(a tower of twos of height 2|S|).
Good upper bounds can potentially be useful in the study of parametrized
complexity (c.f. [8]).

Our proof technique for Theorem 1.2 has been used previously in,
for instance, [4, 6, 7]. For graphs it dates back at least to the work of
Robertson and Seymour on graph minors (cf. [12]). In fact, Theorem 1.2
is a generalization of [6, Theorem 1.1] and [13, Theorem 13.3].

Theorem 1.2 becomes false when the dependence on q is removed.
A counterexample is readily obtained from a construction of arbitrarily
long blocking sequences in [6, Proposition 6.1]. It follows that different
techniques are needed to prove Conjecture 1.1.

Our proof of Conjecture 1.1 for representable matroids uses a different
approach, based on a suggestion by Geelen (private communication).
Unfortunately, the proof uses a property of representable matroids that
does not hold for general matroids.

The paper is organized as follows. In Section 2 we fix some
terminology and state some easy lemmas. Section 3 contains results
related to Tutte’s Linking Theorem. The main result in that section shows
that, if Conjecture 1.1 is false, there exist matroids with arbitrarily long
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sequences of nested separations. In Section 4 we prove Theorem 1.2, and
in Section 5 we prove Conjecture 1.1 for all representable matroids.

2 Preliminaries

We will use the following elementary observation (cf. [10, 3]):

Lemma 2.1. Let M be a matroid and let (A, {e}, B) be a partition of E(M).
Then e ∈ clM (A) if and only if e 6∈ cl∗M (B).

It is well-known that the connectivity function is submodular:

Lemma 2.2. Let M be a matroid, and let X , Y ⊆ E(M). Then

λM (X ) +λM (Y )≥ λM (X ∩ Y ) +λM (X ∪ Y ).

The following lemmas are easily verified:

Lemma 2.3. Let M be a matroid, let X ⊆ E(M), and let N be a minor of
M with X ⊆ E(N). Then λN (X )≤ λM (X ).

Lemma 2.4. Let M be a matroid, let S, T be disjoint subsets of E(M), and
let N be a minor of M with S ∪ T ⊆ E(N). Then κN (S, T )≤ κM (S, T ).

We introduce some terminology.

Definition 2.5. Let M be a matroid and let S, T be disjoint subsets of
E(M). A partition (A, B) of E(M) is S − T-separating of order k + 1 if
S ⊆ A, T ⊆ B, and λM (A) = k. If B is implicit, we also say that A is
S− T-separating of order k+ 1.

If, moreover, |A|, |B| ≥ k+1 then (A, B) is an (exact) (k+1)-separation
of M . Sometimes we will be sloppy and say that (A, B) is S−T separating
if S ⊆ B and T ⊆ A.

Lemma 2.6. Let M be a matroid, let S, T ⊆ E(M) be disjoint subsets,
and let k := κM (S, T ). If (A1, B1) and (A2, B2) are S − T-separating with
λM (A1) = λM (A2) = k, then (A1 ∩ A2, B1 ∪ B2) is S− T-separating of order
k+ 1.

Proof. Clearly, (A1∩A2, B1∪B2) and (A1∪A2, B1∩B2) are S−T -separating.
Since κM (S, T ) = k, we must have λM (A1 ∩A2)≥ k and λM (A1 ∪A2)≥ k.
It follows from Lemma 2.2 that equality must hold.

Finally, we will frequently use the following well-known result and its
dual.

Lemma 2.7. Let M be a matroid, let S, T ⊆ E(M) be disjoint subsets, let
k := κM (S, T ), and let e ∈ E(M)−(S∪T ). A partition (A, B) of E(M)− e is
S−T-separating of order k in M/e if and only if (A∪e, B) is S−T-separating
of order k+ 1 in M with e ∈ clM (A)∩ clM (B).
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3 Tutte’s Linking Theorem

In [14], Tutte proved the following result, which can be seen to be a
generalization of Menger’s theorem to matroids (see [9, Section 8.5]):

Theorem 3.1. Let M be a matroid and let S, T be disjoint subsets of E(M).
Then

κM (S, T ) =max{λN (S) : N minor of M such that E(N) = S ∪ T}. (2)

Equivalently,

Theorem 3.2. Let M be a matroid and let S, T be disjoint subsets of E(M).
For each e ∈ E(M)− (S ∪ T ), at least one of the following holds:

(i) κM\e(S, T ) = κM (S, T ), or
(ii) κM/e(S, T ) = κM (S, T ).

We warn that we will henceforth use Theorem 3.1 without reference.

Definition 3.3. Let M be a matroid, let S, T be disjoint subsets of E(M),
and let e ∈ E(M)− (S ∪ T ).

(i) If κM\e(S, T ) = κM (S, T ) then we say e is deletable with respect to
(S, T ).

(ii) If κM/e(S, T ) = κM (S, T ) then we say e is contractible with respect to
(S, T ).

(iii) If e is both deletable and contractible then we say e is flexible with
respect to (S, T ).

We may omit the phrase “with respect to (S, T )” if it can be deduced
from the context. We will mainly be concerned with non-flexible
elements. The following theorem is the main result of this section:

Theorem 3.4. Let M be a matroid, let S, T be disjoint subsets of E(M), let
k := κM (S, T ), and let F ⊆ E(M)−(S∪T ) be a set of non-flexible elements.
There exists an ordering ( f1, f2, . . . , ft) of F and a sequence (A1, A2, . . . , At)
of subsets of E(M), such that

(i) Ai is S− T-separating of order k+ 1 for each i ∈ {1, . . . , t};
(ii) Ai ⊆ Ai+1 for each i ∈ {1, . . . , t − 1};

(iii) Ai ∩ F = { f1, . . . , fi} for each i ∈ {1, . . . , t};
(iv) fi ∈ clM (Ai− fi)∩clM (E(M)−Ai) or fi ∈ cl∗M (Ai− fi)∩cl∗M (E(M)−Ai).

We will need two lemmas to prove this theorem.

Lemma 3.5. Let M be a matroid, let S, T be disjoint subsets of E(M), let
k := κM (S, T ), and let e ∈ E(M)− (S ∪ T ) be non-contractible. If (A, B)
is an S − T-separating partition of order k + 1 such that e ∈ A and |A| is
minimum, then e ∈ clM (A− e)∩ clM (B).

Proof. By Lemma 2.7, there is an S − T -separating partition (A′, B′) of
order k+ 1 such that e ∈ A′ and e ∈ clM (A′ − e)∩ clM (B′). Thus, A exists.
By Lemma 2.6, A∩ A′ is S − T -separating of order k + 1. By minimality
of A, it then follows that A ⊆ A′, and therefore B ⊇ B′. In particular,
we have established that e ∈ clM (B). Finally, if e 6∈ clM (A− e), then
λM (A− e) = k− 1, contradicting κM (S, T ) = k.
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Lemma 3.6. Let M be a matroid, let S, T be disjoint subsets of E(M), let
k := κM (S, T ), and let U be an S − T-separating set of order k + 1. If
e ∈ E(M) − (T ∪ U) is non-contractible with respect to (S, T ), then e is
non-contractible with respect to (U , T ).

Proof. First, observe that κM (U , T ) = k. If the lemma is false, then
there is an S − T -separating partition (A, B) of order k in M/e, yet
κM/e(U , T ) = k. In particular, λM/e(U) = k. By submodularity,

2k− 1= λM/e(A) +λM/e(U)≥ λM/e(U ∩ A) +λM/e(U ∪ A). (3)

Since U ∪ A is U − T -separating, we have λM/e(U ∪ A) ≥ k. Hence
λM/e(U ∩A)≤ k−1. But λM (U ∩A) = k since U ∩A is S− T -separating. It
follows that e ∈ clM (U ∩ A), and in particular e ∈ clM (U). By Lemma 2.7,
we cannot have e ∈ clM (E(M)−(U∪e)). Hence u ∈ cl∗M (U) by Lemma 2.1.
But then λM (U ∪ e) = k−1, contradicting the fact that κM (U , T ) = k.

Proof of Theorem 3.4. We prove the result by induction on |F |, the case
|F |= 0 being trivial. Suppose the result fails for a matroid M with subsets
S, T, F as in the theorem. Let k := κM (S, T ) and t := |F |. For each e ∈ F ,
let (Ae, Be) be S−T -separating of order k+1 with e ∈ Ae and |Ae| as small
as possible. Let f be such that |A f | ≤ |Ae| for all e ∈ F .

Claim 3.6.1. A f ∩ F = { f }.

Proof. Suppose g ∈ A f ∩ F with g 6= f . By our choice of f , we must
have that Ag = A f (using Lemma 2.6). Since g is not flexible, Lemma
3.5 implies that (A f − g, B f ∪ g) is S − T -separating of order k + 1,
contradicting minimality of |A f |.

By Lemma 3.6 we can apply the theorem inductively, replacing S by A f
and F by F − f , thus finding a sequence (A2, . . . , At) of nested A f − T -
separating sets of order k + 1. But now the sequence (A f , A2, . . . , At)
satisfies all conditions of the theorem.

We will use the following two facts:

Lemma 3.7. Let M be a matroid, let S, T be disjoint subsets of E(M), let
k := κM (S, T ), and let (A1, B1), . . . , (At , Bt) be a sequence of nested S − T-
separations of order k + 1. Let (C , D) be a partition of E(M) − (S ∪ T )
such that C is independent, D is coindependent, and λM/C\D(S) = k. Let
i, j ∈ {1, . . . , t} with i < j. Let C ′ := C ∩ (A j − Ai), let D′ := D ∩ (A j − Ai),
and let M ′ := M/C ′\D′. Then (Ai , B j) is S − T-separating of order k+ 1 in
M ′. Moreover, M ′|Ai = M |Ai and M ′|B j = M |B j .

Proof. Let M ′ := M/C ′\D′. By definition of C and D, κM ′(S, T ) = k. By
monotonicity of λ, λM ′(Ai) = k. It follows from Lemma 2.7 that for all
e ∈ C ′, e /∈ clM (Ai ∪ (C ′ − {e}) and e /∈ clM (B j ∪ (C ′ − {e}). From this the
second claim follows.

Lemma 3.8 (Geelen, Gerards, and Whittle [5, Lemma 4.7]). Let M be a
matroid, let S, T be disjoint subsets of E(M), and let k := κM (S, T ). There
exist sets S1 ⊆ S and T1 ⊆ T such that |S1|= |T1|= κM (S1, T1) = k.

5



4 Proof of the result for finite fields

Let M be a rank-r matroid on ground set E. Write M = M[D] if the
r × E matrix D (over field F) represents M . For S ⊆ E, denote by D[S]
the submatrix of D induced by the columns labeled by S, and denote by
〈D[S]〉 the vector space spanned by the columns of D[S]. To clean up
notation we will write 〈S〉 for 〈D[S]〉 if D is clear from the context.

Recall that, if (A, B) is such that λM[D](A) = k, then 〈A〉 ∩ 〈B〉 is a
k-dimensional subspace of Fr . Assume F = GF(q). Denote by M+

(A,B)
the matroid obtained from M by adding a copy of PG(k − 1, q) to M ,
such that in the representation it is contained in 〈A〉 ∩ 〈B〉. Furthermore,
M+

A := M+
(A,B)\B and M+

B := M+
(A,B)\A. Now we can carry out row

operations to get M+
(A,B) = M[D′], with

D′ =















A X B

0 0
D1

P
D2

0 0















,

where P is a k×X matrix representing PG(k−1, q) (with elements labeled
by X ). We remark that M+

(A,B) is the generalized parallel connection of M+
A

and M+
B along X (cf. [9, Section 11.4]). The following lemma follows

easily from Lemma 3.7.

Lemma 4.1. Let M be a GF(q)-representable matroid, let S and T be
disjoint subsets of E(M) with κM (S, T ) = k, and let (A, B) be S − T-
separating of order k + 1. Let (C , D) be a partition of E(M) − (S ∪ T )
such that λM/C\D(S) = k. Then (M+

(A,B)/C\D)|X = M+
(A,B)|X .

We repeat the main result, filling in an explicit value for the constant:

Theorem 4.2. Let q be a prime power, let M be a GF(q)-representable
matroid on ground set E, let N be a minor of M on n elements, let S, T ⊆ E,
and let k := κM (S, T ). If |E − (S ∪ T )| > n+ 2(n+ 1)qn2

, then there exists
an element e ∈ E such that at least one of the following holds:

(i) κM\e(S, T ) = k and N is a minor of M\e;

(ii) κM/e(S, T ) = k and N is a minor of M/e.

The proof is not hard, but unfortunately we could not avoid using
rather involved notation. For that reason we give a rough sketch of the
idea. Let M be a counterexample. First we construct a long sequence
(A1, B1), . . . , (At , Bt) of nested S − T -separating partitions of order k+ 1.
For each i we define the matroid Mi , obtained from M+

Bi
by deleting or

contracting the elements of Bi − E(N) so that the minor N is preserved.
Since each Mi will have the same number of elements, only a finite
number of distinct represented matroids can arise. Since our matroid
is sufficiently large it follows that, after suitably relabeling the new
elements, Mi = M j for some i < j. This shows that the elements in A j−Ai
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can be removed in such a way that both N and the S− T -connectivity are
preserved, which contradicts our choice of M .

Proof. Let q, M , N , n, S, T , and k be as stated, and assume |E− (S ∪ T )|>
n+ 2(n+ 1)qn2

, yet no element can be removed keeping both the S − T -
connectivity and the minor N . Let (C , D) be a partition of E − (S ∪ T )
such that λM/C\D(S) = κM (S, T ) and such that C is independent and
D coindependent. Let (CN , DN ) be a partition of E − E(N) such that
N = M/CN\DN and such that CN is independent and DN coindependent.
By our assumption, C ∩ CN = ; and D ∩ DN = ;.

Let F := C ∪ D − E(N), and let t ′′ := |F |. Then t ′′ > 2(n + 1)qn2
.

By Theorem 3.4, there is a nested sequence (A′′1, . . . , A′′t ′′) of S − T -
separating sets of order k + 1 such that A′′i is a proper subset of A′′i+1
for i ∈ {1, . . . , t ′′ − 1}. Let ( f ′′1 , . . . , f ′′t ′′) be the corresponding ordering
of F . Consider the sequence (A′′1 ∩ E(N), . . . , A′′t ′′ ∩ E(N)). This sequence
contains at most n + 1 different elements. It follows that (A′′1, . . . , A′′t ′′)
has a subsequence (A′1, . . . , A′t ′) such that A′i ∩ E(N) = A′j ∩ E(N) for all

i, j ∈ {1, . . . , t ′}, and such that t ′ ≥ t ′′/(n+ 1)> 2qn2
.

Let ( f ′1 , . . . , f ′t ′) be the corresponding subsequence of F . Using duality
if necessary we may assume that |{ f ′1 , . . . , f ′t ′}∩C | ≥ |{ f ′1 , . . . , f ′t ′}∩D|. Let
(A1, . . . , At) be a subsequence of (A′1, . . . , A′t ′) such that Ai+1 − Ai contains

an element of C for all i ∈ {1, . . . , t − 1}, and such that t ≥ t ′/2 > qn2
.

For each i ∈ {1, . . . , t}, define Bi := E − Ai .
Let H be an r × E matrix over GF(q) representing M . Let s := (qk −

1)/(q−1). For each i, let Wi := 〈Ai〉∩ 〈Bi〉, and let X i := {x i
1, . . . , x i

s} be a
set of labels disjoint from E and disjoint from X j for all j ∈ {1, . . . , t}−{i}.
Let the k × X1 matrix P1 be an arbitrary representation of PG(k − 1, q)
having ground set X1.

For each i ∈ {1, . . . , t}, let M+
i be the matroid M+

(Ai ,Bi)
with the set X

relabeled by X i . Moreover, we assume this labeling was chosen such that,
in (M+

1 )
+
i /C\D, x i

j is parallel to x1
j for all j ∈ {1, . . . , s} (where (M+

1 )
+
i is

defined in the obvious way). This can be done because of Lemma 4.1.
Now we define, for each i, a matroid Ni as follows: first set N ′i :=

(M+
i \Ai)/(CN∩Bi)\(DN∩Bi). Now Ni is obtained from N ′i by relabeling x i

j

by x1
j . Let Hi be the corresponding representation matrix. Note that, for

i, j ∈ {1, . . . , t}, E(Ni) = E(N j)⊆ E(N)∪ X1. Hence |E(Ni)| ≤ n+ s. Since
X i ⊆ 〈Bi〉, we find that rk(Ni) ≤ n. Furthermore, for all x ∈ X1, Hi[x] =
H j[x]. Hence there are at most ((qn − 1)/(q − 1) + 1)n ≤ qn2

distinct

representation matrices Hi . Since t > qn2
, there exist i, j ∈ {1, . . . , t} with

i < j such that Hi = H j . But then M/(Bi ∩ CN )\(Bi ∩ DN ) is equal to

�

M/((A j − Ai)∩ C)\((A j − Ai)∩ D)
�

/(B j ∩ CN )\(B j ∩ DN ),

using Lemmas 3.7 and 4.1. In particular, since (A j − Ai) ∩ C 6= ;, there
exists an e ∈ C such that κM/e(S, T ) = k and M/e has N as minor, a
contradiction.

As promised, here is a proof of Conjecture 1.1 from Theorem 4.2 when
M is GF(q)-representable.
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Proof of Conjecture 1.1 for GF(q)-representable matroids. Let n := |Q ∪ R|
and set c := n+ 2(n+ 1)qn2

. Let (C , D) be a partition of E− (Q∪R) such
that λM/C\D(Q) = k. Now apply Theorem 4.2 with N = M/C\D, S, and
T . The result follows.

5 Intertwining two connectivities

In this section we prove Conjecture 1.1 for all representable matroids.
The key property we need for our proof is that we can add a point to the
intersection of two non-skew flats. Formally:

Definition 5.1. A matroid M has the intersection property if for all flats
S, T ∈ E(M) such that u(S, T ) > 0, there exist a matroid N and a non-
loop element e ∈ E(N) such that N\e = M , and e ∈ clN (S)∩clN (T ). In this
case, we say that N is a good extension of M (with respect to S, T). A class
of matroidsM is intersection-closed if every M ∈M has the intersection
property, andM is closed under minors, duality, and good extensions.

Note that the class of representable matroids is evidently intersection-
closed. The Vámos matroid shows that not all matroids have the
intersection property. See [1] for more on matroids with the intersection
property.

The restriction we use is reminiscent of the double-circuit property
from the min-max theorem for matroid matching (see [2]). However,
whereas the min-max theorem is false even for affine spaces, in our case
the condition appears to be just an artifact of our proof. We remain
hopeful that Conjecture 1.1 can be proven without this condition. We
will now state and prove the main result.

Theorem 5.2. There exists a function c : N2 → N with the following
property. Let M be a matroid in an intersection-closed family, and let
Q, R, S, T, F ⊆ E(M) be sets of elements such that Q ∩ R = S ∩ T = ;
and F ⊆ E(M)− (Q ∪ R ∪ S ∪ T ). Let k := κM (Q, R) and l := κM (S, T ).
If |F | ≥ c(k, l), then there exists an element e ∈ F such that one of the
following holds:

(i) κM\e(Q, R) = k and κM\e(S, T ) = l;

(ii) κM/e(Q, R) = k and κM/e(S, T ) = l.

Proof. We prove that the result holds for c(k, l) := 4k+l . We proceed
by induction on k + l, noting that the base case where k = 0 or
l = 0 is straightforward. Assume that the result holds for all k′, l ′ with
k′ + l ′ < k + l, but that M ,Q, R, S, T, F form a counterexample. Possibly
after relabeling we may assume k ≤ l. By Lemma 3.8 we can assume that
|S| = |T | = l, and that S and T are independent sets. Furthermore, we
can assume that for each e ∈ F either κM\e(Q, R)< k or κM/e(Q, R)< k.

Claim 5.2.1. There exists a Q−R separating partition (A, B) with λ(A) = k,
such that A∩ S 6= ;, A∩ T 6= ;, |A∩ (S ∪ T )| ≥ l, and |B ∩ F | ≥ b 1

2
c(k, l)c.
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Proof. Let (A1, . . . , At) be the nested sequence of Q − R separating
sets from Theorem 3.4, let (B1, . . . , Bt) be their complements, and let
( f1, . . . , ft) be the corresponding ordering of F . Let i := bt/2c. First we
show that one of Ai and Bi meets both of S and T . Indeed: otherwise
we have (possibly after swapping S and T) that S ⊆ Ai and T ⊆ Bi .
In that case (Ai , Bi) is S − T separating with λM (Ai) = k. It follows
that k = l. Assume fi is non-contractible with respect to (Q, R). Then
λM/ fi

(Bi) = k−1, and therefore fi is also non-contractible with respect
to (S, T ), so the theorem holds with e = fi .
Hence, possibly after exchanging the sequences (A1, . . . , At) and
(B1, . . . , Bt), we can assume Ai∩S 6= ; and Ai∩T 6= ;. If |Ai∩(S∪T )|< l
then |Bi ∩ (S ∪ T )| > l, and therefore (A, B) = (Bi , Ai) is a partition as
desired; otherwise we simply take (A, B) = (Ai , Bi).
If necessary, we relabel Q and R so that Q ⊆ A and R⊆ B. Define

S1 := A∩ S T1 := A∩ T

S2 := B ∩ S T2 := B ∩ T.

Also define F2 := B ∩ F . We try to remove the elements from A while
preserving the S − T connectivity. Let N0 := M , and order the elements
of A− (S1 ∪ T1) arbitrarily as a1, . . . , au. For i = 1,2, . . . , u define Ni as
follows. If κNi−1\ai

(S, T ) = l and ai 6∈ cl∗Ni−1
(B), then Ni := Ni−1\ai . Else, if

κNi−1/ai
(S, T ) = l and ai 6∈ clNi−1

(B), then Ni := Ni−1/ai . Otherwise Ni :=
Ni−1. Observe that κNu

(S, T ) = l and κNu
(A∩ E(Nu), R) = λNu

(B) = k. We
distinguish two cases.

Case I: uNu
(S1, T1) > 0. Since Nu is a member of an intersection-

closed family, we can find a matroid N+ in this family with a non-
loop element s such that N+\s = Nu, and s ∈ clN+(S1) ∩ clN+(T1). We
distinguish two subcases:

Case Ia: s 6∈ clN+(B). Let N := N+/s, and define Q′ := A∩ E(N). Then
κN (S, T ) = l − 1 and κN (Q′, R) = k. Since |F2| ≥ c(k, l − 1), by induction
we can find an element e ∈ F2 such that either κN/e(S, T ) = l − 1 and
κN/e(Q′, R) = k, or κN\e(S, T ) = l −1 and κN\e(Q′, R) = k. We assume the
former, and remark that the proof for the latter case is similar.

Claim 5.2.2. κM/e(Q, R) = k and κM/e(S, T ) = l.

Proof. Suppose κM/e(Q, R) < k, that is, e is non-contractible with
respect to (Q, R). By Lemma 3.6, e is also non-contractible with respect
to (A, R) in M . But (A, B) is Q′ − R separating, so we must have
λM/e(A) = k, a contradiction.
Next, let C , D be such that C is independent in N , e ∈ C and, in
N∞ := N/C\D, we have E(N∞) = S ∪ T and λN∞(S) = l − 1. Since
C is independent in N+/s, it follows that s is not a loop in N+/C .
Let N+∞ := N+/C\D. Since s ∈ clN+∞(S) ∩ clN+∞(T ), we must have that
λN+∞\s(S) = l. It follows that κM/e(S, T ) = l as desired.
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Case Ib: s ∈ clN+(B). Again we define Q′ := A∩E(N). Let (A1, . . . , At ′)
be the nested sequence of Q′−R separating sets in N+ from Theorem 3.4
(applied to N ,Q′, R, and F2), let (B1, . . . , Bt ′) be their complements, and
let ( f1, . . . , ft ′) be the corresponding ordering of F2. Let j := c(k−1, l−1).
If s 6∈ clN+(B j) then we apply the arguments from Case (Ia) with A j∩E(N)
replacing Q′, B j replacing B, and F ∩ B j replacing F2. Otherwise, let
N := N+/s, define R′ := B j and F ′2 := F2− B j . We have κN (Q′, R′) = k− 1
and κN (S, T ) = l−1. Since |F ′2| ≥ c(k−1, l−1), we find by induction an
element e ∈ F ′2 such that either κN/e(Q′, R′) = k−1 and κN/e(S, T ) = l−1,
or κN\e(Q′, R′) = k− 1 and κN\e(S, T ) = l − 1. We assume the latter, and
remark that the proof in the former case is similar.

Claim 5.2.3. κM\e(Q, R) = k and κM\e(S, T ) = l.

Proof. Suppose e = f ′i ∈ F ′2 is non-deletable with respect to (Q, R).
Then e ∈ cl∗Nu

(Bi′), so λNu\e(Bi′) = k−1. But s ∈ clN+(Bi′)∩clN+(Ai′−e),
so we must have λN+\e(Bi′) = k − 1. But then λN+\e/s(Bi′) = k − 2,
contradicting our choice of e. Hence e is deletable with respect to
(Q, R).
The proof that κM\e(S, T ) = l is the same as before and we omit it.

Case II: uNu
(S1, T1) = u∗Nu

(S1, T1) = 0. By dualizing if necessary, we
may assume there is an element e ∈ clNu

(A)∩ clNu
(B)∩ F , i.e. an element

that is deletable with respect to (Q, R) in M . We assume e ∈ A (replacing
(A, B) by (A∪ e, B− e) otherwise).

Claim 5.2.4. e ∈ clNu
(S1 ∪ T1).

Proof. First we show that cl∗Nu
(B)−(S1∪T1) spans S1∪T1. Suppose not,

and let X := (S1 ∪ T1)− cl∗Nu
(B). By construction of Nu, all remaining

elements are in clNu
(B), so we have that Nu\X has lower rank than Nu.

Hence X contains a cocircuit. But this contradicts the fact that S1 and
T1 are coskew.
Now pick B′ := cl∗Nu

(B) − (S1 ∪ T1 ∪ e) and A′ := A − B′. Then
k′ := λNu

(A′)≤ k. But since S1∪T1∪e ⊆ A′ and S1∪T1∪e ⊆ clNu
(B′), we

must have that rkNu
(S1∪T1∪e)≤ k′ ≤ k ≤ l. Note that |S1∪T1| ≥ l and,

since S1 and T1 are skew, rkNu
(S1 ∪ T1) ≥ l. It follows that k′ = k = l,

and therefore e ∈ clNu
(S1 ∪ T1) as desired.

Similar to before, we define Q′ := A∩ E(Nu) − {e}. Let (A1, . . . , At ′) be
the nested sequence of Q′ − R separating sets in Nu from Theorem 3.4
(applied to Q′, R, and F2), let (B1, . . . , Bt ′) be their complements, and let
( f1, . . . , ft ′) be the corresponding ordering of F2. Let j := c(k−1, l). Again
we distinguish two cases.

Case IIa: e 6∈ clNu
(B j). Let Nv be obtained from Nu by contracting

e and removing the other elements from A j according to the same rules
used to obtain Nu. We can then apply the arguments of Case I to Nv
(with A j replacing A and B j replacing B), observing that |F ∩ B j | ≥
2(c(k− 1, l − 1) + c(k, l − 1)).
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Case IIb: e ∈ clNu
(B j). Let N := Nu/e, and define R′ := B j .

By induction we find an element f ∈ { f1, . . . , f j} such that either
κN/ f (Q′, R′) = k − 1 and κN/ f (S, T ) = l, or κN\ f (Q′, R′) = k − 1 and
κN\ f (S, T ) = l. As before, in the former case we have κM/ f (Q, R) = k
and κM/ f (S, T ) = l and in the latter case we have κM\ f (Q, R) = k and
κM\ f (S, T ) = l. This completes the proof of the theorem.
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