4,018 research outputs found

    Smart Mobility Digital Twin Based Automated Vehicle Navigation System: A Proof of Concept

    Full text link
    Digital twins (DTs) have driven major advancements across various industrial domains over the past two decades. With the rapid advancements in autonomous driving and vehicle-to-everything (V2X) technologies, integrating DTs into vehicular platforms is anticipated to further revolutionize smart mobility systems. In this paper, a new smart mobility DT (SMDT) platform is proposed for the control of connected and automated vehicles (CAVs) over next-generation wireless networks. In particular, the proposed platform enables cloud services to leverage the abilities of DTs to promote the autonomous driving experience. To enhance traffic efficiency and road safety measures, a novel navigation system that exploits available DT information is designed. The SMDT platform and navigation system are implemented with state-of-the-art products, e.g., CAVs and roadside units (RSUs), and emerging technologies, e.g., cloud and cellular V2X (C-V2X). In addition, proof-of-concept (PoC) experiments are conducted to validate system performance. The performance of SMDT is evaluated from two standpoints: (i) the rewards of the proposed navigation system on traffic efficiency and safety and, (ii) the latency and reliability of the SMDT platform. Our experimental results using SUMO-based large-scale traffic simulations show that the proposed SMDT can reduce the average travel time and the blocking probability due to unexpected traffic incidents. Furthermore, the results record a peak overall latency for DT modeling and route planning services to be 155.15 ms and 810.59 ms, respectively, which validates that our proposed design aligns with the 3GPP requirements for emerging V2X use cases and fulfills the targets of the proposed design. Our demonstration video can be found at https://youtu.be/3waQwlaHQkk.Comment: 15 pages, 10 figure

    Investigation and Implementation of Available Software and Algorithms for Autonomous Vehicle Development

    Get PDF
    The purpose of this project is to integrate available algorithms for automated driving from open source software into a simulation to demonstrate how the software can be used to quickly prototype control systems for automated vehicles. Autoware is the primary software program that will be tested which processes incoming sensing data for automated driving functions resulting in control inputs for the vehicle such as speed and steering control to respond to the various driving situations. Most of these programs for automated driving research are built based on Robot Operating System (ROS) which is an open source meta-operating system specifically designed to be used for robot software development. Testing of Autoware was completed with ROS visualization simulation tools in addition to a software program called LGSVL Simulator based on the Unity game engine which was used to develop a variety of testing scenarios. Once the software integration was completed, performance of the different algorithms was evaluated using LGSVL simulator and scenarios built in Unity. The primary goal of the project was to uncover the functionality of open source autonomous vehicle software platforms and develop realistic simulation scenarios for the testing of the algorithms.No embargoAcademic Major: Mechanical Engineerin

    Dawn of autonomous vehicles: review and challenges ahead

    Get PDF
    This paper reviews the state of the art on autonomous vehicles as of 2017, including their impact at socio-economic, energy, safety, congestion and land-use levels. This impact study focuses on the issues that are common denominators and are bound to arise independently of regional factors, such as (but not restricted to) change to vehicle ownership patterns and driver behaviour, opportunities for energy and emissions savings, potential for accident reduction and lower insurance costs, and requalification of urban areas previously assigned to parking. The challenges that lie ahead for carmakers, law and policy makers are also explored, with an emphasis on how these challenges affect the urban infrastructure and issues they create for municipal planners and decision makers. The paper concludes with strengths, weaknesses, opportunities, and threats analysis that integrates and relates all these aspects.info:eu-repo/semantics/publishedVersio

    Towards Next Generation of Pedestrian and Connected Vehicle In-the-loop Research: A Digital Twin Simulation Framework

    Full text link
    Digital Twin is an emerging technology that replicates real-world entities into a digital space. It has attracted increasing attention in the transportation field and many researchers are exploring its future applications in the development of Intelligent Transportation System (ITS) technologies. Connected vehicles (CVs) and pedestrians are among the major traffic participants in ITS. However, the usage of Digital Twin in research involving both CV and pedestrian remains largely unexplored. In this study, a Digital Twin framework for CV and pedestrian in-the-loop simulation is proposed. The proposed framework consists of the physical world, the digital world, and data transmission in between. The features for the entities (CV and pedestrian) that need digital twined are divided into external state and internal state, and the attributes in each state are described. We also demonstrate a sample architecture under the proposed Digital Twin framework, which is based on Carla-Sumo Co-simulation and Cave automatic virtual environment (CAVE). The proposed framework is expected to provide guidance to the future Digital Twin research, and the architecture we build can serve as the testbed for further research and development of ITS applications on CV and pedestrian

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Adjustably Autonomous Multi-agent Plan Execution with an Internal Spacecraft Free-Flying Robot Prototype

    Get PDF
    We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault

    A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions

    Get PDF
    Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems
    corecore