167 research outputs found

    From RF-Microsystem Technology to RF-Nanotechnology

    Get PDF
    The RF microsystem technology is believed to introduce a paradigm switch in the wireless revolution. Although only few companies are to date doing successful business with RF-MEMS, and on a case-by-case basis, important issues need yet to be addressed in order to maximize yield and performance stability and hence, outperform alternative competitive technologies (e.g. ferroelectric, SoS, SOI,…). Namely the behavior instability associated to: 1) internal stresses of the free standing thin layers (metal and/or dielectric) and 2) the mechanical contact degradation, be it ohmic or capacitive, which may occur due to low forces, on small areas, and while handling severe current densities.The investigation and understanding of these complex scenario, has been the core of theoretical and experimental investigations carried out in the framework of the research activity that will be presented here. The reported results encompass activities which go from coupled physics (multiphysics) modeling, to the development of experimental platforms intended to tackles the underlying physics of failure. Several original findings on RF-MEMS reliability in particular with respect to the major failure mechanisms such as dielectric charging, metal contact degradation and thermal induced phenomena have been obtained. The original use of advanced experimental setup (surface scanning microscopy, light interferometer profilometry) has allowed the definition of innovative methodology capable to isolate and separately tackle the different degradation phenomena under arbitrary working conditions. This has finally permitted on the one hand to shed some light on possible optimization (e.g. packaging) conditions, and on the other to explore the limits of microsystem technology down to the nanoscale. At nanoscale indeed many phenomena take place and can be exploited to either enhance conventional functionalities and performances (e.g. miniaturization, speed or frequency) or introduce new ones (e.g. ballistic transport). At nanoscale, moreover, many phenomena exhibit their most interesting properties in the RF spectrum (e.g. micromechanical resonances). Owing to the fact that today’s minimum manufacturable features have sizes comparable with the fundamental technological limits (e.g. surface roughness, metal grain size, …), the next generation of smart systems requires a switching paradigm on how new miniaturized components are conceived and fabricated. In fact endowed by superior electrical and mechanical performances, novel nanostructured materials (e.g. carbon based, as carbon nanotube (CNT) and graphene) may provide an answer to this endeavor. Extensively studied in the DC and in the optical range, the studies engaged in LAAS have been among the first to target microwave and millimiterwave transport properties in carbon-based material paving the way toward RF nanodevices. Preliminary modeling study performed on original test structures have highlighted the possibility to implement novel functionalities such as the coupling between the electromagnetic (RF) and microelectromechanical energy in vibrating CNT (toward the nanoradio) or the high speed detection based on ballistic transport in graphene three-terminal junction (TTJ). At the same time these study have contributed to identify the several challenges still laying ahead such as the development of adequate design and modeling tools (ballistic/diffusive, multiphysics and large scale factor) and practical implementation issues such as the effects of material quality and graphene-metal contact on the electrical transport. These subjects are the focus of presently on-going and future research activities and may represent a cornerstone of future wireless applications from microwave up to the THz range

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Summary of Research 1994

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. The research was conducted in the areas of Aeronautics and Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics, Mechanical Engineering, Meteorology, National Security Affairs, Oceanography, Operations Research, Physics, and Systems Management. This also includes research by the Command, Control and Communications (C3) Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic Group

    Clemson Catalog, 1989-1990, Volume 64

    Get PDF
    https://tigerprints.clemson.edu/clemson_catalog/1142/thumbnail.jp

    Reports to the President

    Get PDF
    A compilation of annual reports for the 1989-1990 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans

    Naval Postgraduate School Academic Catalog - September 2021

    Get PDF

    Naval Postgraduate School Catalog 2016

    Get PDF
    Approved for public release; distribution is unlimited
    • …
    corecore