1,024 research outputs found

    thermogram Breast Cancer Detection : a comparative study of two machine learning techniques

    Get PDF
    Breast cancer is considered one of the major threats for women’s health all over the world. The World Health Organization (WHO) has reported that 1 in every 12 women could be subject to a breast abnormality during her lifetime. To increase survival rates, it is found that it is very effective to early detect breast cancer. Mammography-based breast cancer screening is the leading technology to achieve this aim. However, it still can not deal with patients with dense breast nor with tumor size less than 2 mm. Thermography-based breast cancer approach can address these problems. In this paper, a thermogram-based breast cancer detection approach is proposed. This approach consists of four phases: (1) Image Pre-processing using homomorphic filtering, top-hat transform and adaptive histogram equalization, (2) ROI Segmentation using binary masking and K-mean clustering, (3) feature extraction using signature boundary, and (4) classification in which two classifiers, Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP), were used and compared. The proposed approach is evaluated using the public dataset, DMR-IR. Various experiment scenarios (e.g., integration between geometrical feature extraction, and textural features extraction) were designed and evaluated using different measurements (i.e., accuracy, sensitivity, and specificity). The results showed that ELM-based results were better than MLP-based ones with more than 19%

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    Breast Cancer Classification using Deep Learned Features Boosted with Handcrafted Features

    Full text link
    Breast cancer is one of the leading causes of death among women across the globe. It is difficult to treat if detected at advanced stages, however, early detection can significantly increase chances of survival and improves lives of millions of women. Given the widespread prevalence of breast cancer, it is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis. Artificial intelligence research community in coordination with medical practitioners are developing such frameworks to automate the task of detection. With the surge in research activities coupled with availability of large datasets and enhanced computational powers, it expected that AI framework results will help even more clinicians in making correct predictions. In this article, a novel framework for classification of breast cancer using mammograms is proposed. The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features including HOG (Histogram of Oriented Gradients) and LBP (Local Binary Pattern). The obtained results on CBIS-DDSM dataset exceed state of the art

    Breast cancer detection using infrared thermal imaging and a deep learning model

    Get PDF
    Women’s breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models

    Deep learning algorithms for tumor detection in screening mammography

    Get PDF
    Population-wide mammography screening was fully implemented in Sweden in 1997. The implementation has helped to identify breast cancer at earlier stages and thereby lowered mortality by 30-40%. However, it still has its limitations, many studies have shown a discrepancy between radiologist when assessing mammographic examinations. Additionally, women with very dense breasts have a lower mammographic sensitivity and cancers are easily missed. There is also a shortage on breast radiologists and the workload is increasing due to more women being screened. These challenges could be addressed with the help of artificial intelligence systems. The artificial intelligence system can serve both as an assistant to replace one radiologist in a double-reading setting and as a tool to triage women with a high risk of breast cancer for additional screening using other modalities. In this thesis we used data from two cohorts: the cohort of screen aged women (CSAW) and the ScreenTrust MRI cohort. The primary objectives were to establish performance benchmarks based on radiologists recorded assessments (study I), compare the diagnostic performance of various AI CAD systems (study II), investigate differences and similarities in false assessments between AI CAD and radiologists (study III), and evaluate the potential of artificial intelligence in triaging women for complementary MRI screening (study IV). The data for studies I-III were obtained from CSAW, while the data for study IV were obtained from the MRI ScreenTrust cohort. CSAW is a collection of data from Stockholm County between the years of 2008 and 2015. Study I was a retrospective multicenter cohort study that examined radiologist performance benchmarks in screening mammography. Operating performance was assessed in terms of abnormal interpretation rate, false negative rate, sensitivity, and specificity. Measures were determined for each quartile of radiologists classified according to performance, and performance was evaluated overall and by different tumor characteristics. The study included a total of 418,041 women and 1,186,045 digital mammograms, and involved 110 radiologists, of which 24 were defined as high-volume readers. Our analysis revealed significant differences in performance between highvolume readers, as well as a variability in sensitivity based on tumor characteristics. This study was presented during the 2019 annual meeting of the Radiological Society of North America, and was awarded the Trainee research prize that same year. Study II was a retrospective case-control study that evaluated the performance of three commercial algorithms. We performed an external evaluation of these algorithms and compared the retrospective mammography assessments of radiologists with those of the algorithms. Operating performance was determined in terms of abnormal interpretation rate, false negative rate, sensitivity, specificity and the AUC. The study included 8,805 women, of whom 740 women had cancer, and a random sample of 8,066 healthy controls. There were 25 radiologists involved. For a binary decision, the cutpoint was defined by the mean specificity of the original first-reader radiologists (96.6%). Our findings showed that one AI algorithm outperformed the other AI algorithm and the original first-reader radiologists. This study was presented during the 2020 annual meeting of the European Society of Radiology. Study III was a retrospective case-control study that evaluated the differences and similarities in false assessments between an artificial intelligence system and a human reader in screening mammography. In this study we included 714 screening examinations for women diagnosed with breast cancer and 8,003 randomly selected healthy controls. The abnormality threshold was predefined from study II. We examined how false positive and false negative assessments by AI CAD and the first radiologist, were associated with breast density, age and tumor characteristics. Our findings showed that AI makes fewer false negative assessments than radiologists. Combining AI with a radiologist resulted in the most pronounced decrease in false negative assessments for high-density women and women over the age of 55. This study was presented at the 2021 annual meeting of the Radiological Society of North America. Study IV is a randomized clinical trial that aims to investigate the effect of applying deep learning methods to select women for MRI-based breast cancer screening. The study examines how effectively AI can identify women who should be offered a complementary MRI screening based on their likelihood of having cancer that is not visible on regular mammography. The results reported in this thesis are preliminary and based on examinations from April 1, 2021 to December 31, 2022. During the indicated time period, 481 MRI examinations have been completed, and 28 cancers have been detected, yielding a cancer detection rate of 58.2 per 1,000 examinations. Although, the trial is still ongoing, the inter-rim results suggest that using AI-based selection for supplemental MRI screening can lead to a higher rate of cancer detection than that reported for density-based selection methods. In conclusion, we have shown that the use of AI for breast cancer detection can increase precision and efficiency in mammography screening

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumors’ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application

    A Review of Artificial Intelligence in Breast Imaging

    Get PDF
    With the increasing dominance of artificial intelligence (AI) techniques, the important prospects for their application have extended to various medical fields, including domains such as in vitro diagnosis, intelligent rehabilitation, medical imaging, and prognosis. Breast cancer is a common malignancy that critically affects women’s physical and mental health. Early breast cancer screening—through mammography, ultrasound, or magnetic resonance imaging (MRI)—can substantially improve the prognosis for breast cancer patients. AI applications have shown excellent performance in various image recognition tasks, and their use in breast cancer screening has been explored in numerous studies. This paper introduces relevant AI techniques and their applications in the field of medical imaging of the breast (mammography and ultrasound), specifically in terms of identifying, segmenting, and classifying lesions; assessing breast cancer risk; and improving image quality. Focusing on medical imaging for breast cancer, this paper also reviews related challenges and prospects for AI
    • …
    corecore