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Popular science summary of the thesis 
Breast cancer is the leading cause of global cancer incidence and the most prevalent 

type of cancer amongst women. In Sweden, about 9,000 women are diagnosed with 

breast cancer annually.  

Mortality rates started to improve in the 1980s and 1990s when many countries 

introduced screening detection programs. Most women diagnosed are over the age of 

50, but younger women can also be affected by the disease. In most cases there are no 

identifiable risk factors besides age and gender. However other risk factors connected 

to breast cancer are breast density, heredity, reproductive history, breast feeding, 

obesity, hormone therapy and alcohol consumption.  

Nearly 65% of all breast cancer is detected through mammography screening. In 

Sweden, all women between the ages of 40-74 are invited for breast cancer screening 

using mammography every 18-24 months. This screening process involves taking two 

images of each breast and asking questions regarding clinical breast symptoms such as 

a new lump or nipple secretion. All screening examinations are reviewed by two breast 

radiologists. If the mammogram is flagged due to a suspicious finding or if the woman 

reports clinical breast symptoms, the examination is reviewed at a consensus 

discussion. Throughout the consensus discussion, a minimum of two experienced breast 

radiologists review the images and decide whether the woman is healthy or needs 

further evaluation.  

The screening program faces many challenges, a lack of breast radiologist, a 

discrepancy in examination assessments, a lower mammographic sensitivity for women 

with dense breasts and a high number of interval cancers. Interval cancers are breast 

cancers that are clinically detected between two screening examinations, they are 

usually larger at the time of detection and are linked to a higher rate of mortality. The 

implementation of artificial intelligence systems in breast cancer screening would help 

address these challenges by improving the efficiency of the screening process, 

detecting cancers at an earlier stage and making the screening process more 

individualized by e.g. offering supplementary examinations to those women with highest 

risk of developing breast cancer.  

The overall aims of my research have been to explore a large retrospective dataset and 

evaluate the performance benchmarks for radiologists, to compare the diagnostic 

performance between different AI CAD systems, to examine the differences and 

similarities in false assessments between AI CAD and radiologists and to examine how 

artificial intelligence can be used as a triaging tool to select women with the highest 

need for complementary MRI screening.  



In study I, we examined around 1,000,000 screening assessments from radiologists in 

Stockholm county. We assessed the performance overall and by different tumor 

characteristics, the benchmarks showed a wide range of performance differences and 

the sensitivity varied by tumor characteristics.  

In study II, we evaluate the performance of three commercial algorithms and compare 

with the retrospective assessments of the radiologists in study I. Our conclusion is that 

the best performing algorithm assessed screening mammograms with a diagnostic 

performance exceeding that of the radiologists.  

In study III, we investigate the disagreements in assessments between the artificial 

intelligence system and the radiologists, with a focus on breast density and tumor 

characteristics. Our conclusion is that the artificial intelligence system can have an 

important complementary role when combined with radiologist especially for women 

with high breast density. 

In study IV, we perform a randomized clinical trial to examine the effect of applying 

deep learning methods to select women for MRI-based breast cancer screening. The 

trial is still ongoing but so far the results are promising. The interim results indicate that 

the cancer detection rate is substantially higher than that reported for density-based 

selection methods.   

The results presented in this thesis demonstrate that artificial intelligence is a promising 

tool for breast cancer detection in screening mammography.  

 

  



 

 

Abstract 
Population-wide mammography screening was fully implemented in Sweden in 1997. 

The implementation has helped to identify breast cancer at earlier stages and thereby 

lowered mortality by 30-40%. However, it still has its limitations, many studies have 

shown a discrepancy between radiologist when assessing mammographic examinations. 

Additionally, women with very dense breasts have a lower mammographic sensitivity 

and cancers are easily missed. There is also a shortage on breast radiologists and the 

workload is increasing due to more women being screened. These challenges could be 

addressed with the help of artificial intelligence systems. The artificial intelligence 

system can serve both as an assistant to replace one radiologist in a double-reading 

setting and as a tool to triage women with a high risk of breast cancer for additional 

screening using other modalities.  

In this thesis we used data from two cohorts: the cohort of screen aged women (CSAW) 

and the ScreenTrust MRI cohort. The primary objectives were to  establish performance 

benchmarks based on radiologists recorded assessments (study I), compare the 

diagnostic performance of various AI CAD systems (study II), investigate differences and 

similarities in false assessments between AI CAD and radiologists (study III), and 

evaluate the potential of artificial intelligence in triaging women for complementary MRI 

screening (study IV). The data for studies I-III were obtained from CSAW, while the data 

for study IV were obtained from the MRI ScreenTrust cohort. CSAW is a collection of 

data from Stockholm County between the years of 2008 and 2015. 

Study I was a retrospective multicenter cohort study that examined radiologist 

performance benchmarks in screening mammography. Operating performance was 

assessed in terms of abnormal interpretation rate, false negative rate, sensitivity, and 

specificity. Measures were determined for each quartile of radiologists classified 

according to performance, and performance was evaluated overall and by different 

tumor characteristics. The study included a total of 418,041 women and 1,186,045 digital 

mammograms, and involved 110 radiologists, of which 24 were defined as high-volume 

readers. Our analysis revealed significant differences in performance between high-

volume readers, as well as a variability in sensitivity based on tumor characteristics. This 

study was presented during the 2019 annual meeting of the Radiological Society of 

North America, and was awarded the Trainee research prize that same year. 

Study II was a retrospective case-control study that evaluated the performance of 

three commercial algorithms. We performed an external evaluation of these algorithms 

and compared the retrospective mammography assessments of radiologists with those 

of the algorithms. Operating performance was determined in terms of abnormal 

interpretation rate, false negative rate, sensitivity, specificity and the AUC. The study 

included 8,805 women, of whom 740 women had cancer, and a random sample of 8,066 



healthy controls. There were 25 radiologists involved. For a binary decision, the cut-

point was defined by the mean specificity of the original first-reader radiologists 

(96.6%). Our findings showed that one AI algorithm outperformed the other AI algorithm 

and the original first-reader radiologists. This study was presented during the 2020 

annual meeting of the European Society of Radiology. 

Study III was a retrospective case-control study that evaluated the differences and 

similarities in false assessments between an artificial intelligence system and a human 

reader in screening mammography. In this study we included 714 screening 

examinations for women diagnosed with breast cancer and 8,003 randomly selected 

healthy controls. The abnormality threshold was predefined from study II. We examined 

how false positive and false negative assessments by AI CAD and the first radiologist, 

were associated with breast density, age and tumor characteristics. Our findings 

showed that AI makes fewer false negative assessments than radiologists. Combining AI 

with a radiologist resulted in the most pronounced decrease in false negative 

assessments for high-density women and women over the age of 55. This study was 

presented at the 2021 annual meeting of the Radiological Society of North America. 

Study IV is a randomized clinical trial that aims to investigate the effect of applying 

deep learning methods to select women for MRI-based breast cancer screening. The 

study examines how effectively AI can identify women who should be offered a 

complementary MRI screening based on their likelihood of having cancer that is not 

visible on regular mammography. The results reported in this thesis are preliminary and 

based on examinations from April 1, 2021 to December 31, 2022.  During the indicated 

time period, 481 MRI examinations have been completed, and 28 cancers have been 

detected, yielding a cancer detection rate of 58.2 per 1,000 examinations. Although, the 

trial is still ongoing, the inter-rim results suggest that using AI-based selection for 

supplemental MRI screening can lead to a higher rate of cancer detection than that 

reported for density-based selection methods. 

In conclusion, we have shown that the use of AI for breast cancer detection can increase 

precision and efficiency in mammography screening.  
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1 Introduction 
Breast cancer is the most prevalent type of cancer amongst women. In Sweden, 
approximately 9,000 women are diagnosed with breast cancer annually (1). The 
corresponding number for women diagnosed globally is 2.3 million (2).  

Most women diagnosed are over the age of 50, but younger women can be affected by 
the disease (1). In most cases there are no identifiable risk factors besides age and 
gender. However other risk factors connected to breast cancer are breast density, 
heredity, reproductive history, breast feeding, obesity, hormone therapy and alcohol 
consumption (3).  

Although the breast cancer incidence has been increasing during the last decades, the 
mortality rate has decreased. Mortality rates started to improve in the 1980s and 1990s 
when many countries introduced screening detection programs. The implementation 
has helped to identify breast cancer at earlier stages and thereby lowered mortality by 
30-40% (4, 5, 6, 7, 8). However, it still has its limitations, studies have shown a 
discrepancy between radiologist when assessing mammographic examinations (9), also 
women with very dense breasts have a lower mammographic sensitivity and cancers 
are easily missed (10, 11). Studies have shown that the average sensitivity of 
mammography is significantly lower than the average sensitivity of MRI (12). However, 
MRI is more costly and time-consuming than mammography, which means that it is not 
suitable for population-wide screening. Additional limitations in the mammography 
screening programs is a shortage of breast radiologists and an increasing workload due 
to more women being screened. The use of AI is gradually being implemented to 
address these challenges.  

The research results presented in this thesis demonstrate that artificial intelligence is a 
promising tool for detecting breast cancer in screening mammography. Throughout this 
thesis, AI will be used as an abbreviation for artificial intelligence, more precisely deep 
learning. 
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2 Literature review 

2.1 The breast 

2.1.1 Breast anatomy 

The breast is developed from the same embryological tissue in both males and females. 
It is located over the pectoral muscles in the upper part of the torso and extends from 
the second to the sixth rib and from the sternum to the midaxillary line (13). The nipple 
and areola (which is the pigmented area surrounding the nipple), are located at the 
center of the breast. The breast consists of glandular, stromal and adipose tissue, with 
varying proportions in each woman, and is divided into four quadrants: upper, lower, 
lateral and medial. The mammary glands, which are glandular tissue that lies in the 
superficial fascia are responsible for milk production and secretion. The mammary 
glands consists of lobes and each breast contains about 15-20 lobes that are further 
divided into smaller lobules. In addition, each lobule contains groups of milk-producing 
cells called alveoli. Milk from the alveoli is carried through small ducts that converge into 
larger ducts, eventually emptying into the nipple. The stromal tissue is mainly composed 
of collagen, which helps maintain the breasts shape and internal structure (13). The 
adipose tissue, is located between the glandular tissue and the skin. The amount of fat 
tissue varies among individuals and can affect the size and shape of the breast. Each 
breast also contains a network of blood vessels and lymph vessels. The lymph vessels 
drain into lymph nodes located in groups under the arm (axillary), above the collarbone 
(supraclavicular) and in the chest (13). The development of the breast is hormone 
dependent and is inactive until pregnancy starts and milk production is initiated. 

 

 

 

 

 

 

 

 

 

Image 1: Anatomy of the female breast (side view). 

(https://www.cdc.gov/cancer/breast/images/breast1_566_838.jpg) 
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2.1.2 Breast development over time  

The female breast is influenced by hormonal changes during the menstrual cycle, 
pregnancy, breastfeeding and menopause. Before puberty, the breasts are mostly made 
up of fatty tissue and connective tissue but do not have much functional mammary 
gland tissue. During puberty, the body experience a surge in hormones, including 
estrogen and progesterone, which play a key role in the development of the breasts. 
This causes a proliferation of mammary gland tissue. Proliferation of breast tissue refers 
to the growth and development of the mammary glands and continues throughout the 
teenage years and into a woman’s early twenties. The development of mammary gland 
tissue leads to the formation of ducts and lobules.  

After breast development is complete, the mammary gland tissue will continue to 
mature and may undergo further changes during pregnancy and breastfeeding. The 
proportion of proliferation in the breast tissue varies during puberty, the different stages 
of the menstrual cycle, pregnancy, lactation and menopause (14, 15). 

• During puberty the epithelial cells are immature and undifferentiated with high 
proliferation.  

• During the menstrual cycle, proliferation is low in the early follicular phase and 
increases as the cycle progresses, peaking in the luteal phase.  

• During pregnancy, proliferation increases as the breasts prepare for lactation.  
• During lactation, the proportion of proliferation decreases as the breasts are 

producing milk.  
• After pregnancy and lactation, the mammary glands may undergo involution, 

which is the process of shrinking and returning to their pre-pregnancy state (16). 
• During menopause, proliferation decreases as the levels of estrogen and 

progesterone decrease. At this stage the breast are mainly composed of fatty 
tissue as the stromal tissue regress (17).  

Compared to parous women, nulliparous women have less differentiated breast tissue 
overall. Studies have shown that lower differentiation in the breast tissue makes it more 
susceptible to carcinogenesis, which can explain the higher incidence of breast cancer 
in nulliparous women (16, 18, 19). 
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2.2 Breast cancer 

2.2.1 Epidemiology 

As of 2021 breast cancer is the leading form of cancer globally and the incidence is 
increasing yearly by approximately 0.5% (2, 20, 21). Approximately one in eight women 
will be diagnosed with breast cancer at some point in their lives and one out of 39 
women will die due to the disease (1).  

Breast cancer incidence vary all over the world, however it is the most common cancer 
form in women in both developed and undeveloped regions. Globally 2.3 million women 
received a breast cancer diagnosis in the year of 2020 (21, 22). In Sweden around 9,000 
women are diagnosed with the disease each year (1, 22). In 2020, there were 1,385 
deaths for women aged 15 and older due to breast cancer, which accounts for 33 deaths 
per 100,000 women. The mortality has been reported to be higher for older age groups 
and less than 5% of women are under the age of 40 when they receive a diagnosis (23). 
Although breast cancer incidence is increasing, breast cancer related deaths have 
decreased over time, this could be explained by the introduction of mammography 
screening programs. Early diagnosis with mammography screening accounts for a 30-
40% decrease of breast cancer mortality (4, 5, 6, 7, 8). Additionally, the incidence of  
breast cancer has had a clear decline for the age group of 50 to 60 years from the year 
of 2003 and onwards. This is mainly due to the decrease of the use of hormone 
replacement therapy (HRT) in response to studies being published indicating the 
connection between HRT and breast cancer (24).  

 

Image 2: Breast cancer incidence over time between age groups during the years 1970-
2019.  

(https://www.socialstyrelsen.se/globalassets/sharepoint-
dokument/artikelkatalog/statistik/2020-12-7133.pdf)  
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2.2.2 Signs and symptoms 

The symptoms of breast cancer vary among women, with the most common sign being 
the appearance of a lump or mass that feels different from the rest of the breast tissue. 
Other symptoms of breast cancer may include; skin thickening, change in the size or 
shape of the breasts, discomfort or pain, dimpling of the skin, a rash, nipple discharge or 
a change in breast color (25). However, it is important to note that these symptoms can 
also be caused by benign breast conditions like mastitis and fibroadenomas, which are 
more common than breast cancer.  

2.2.3 Risk factors 

Breast cancer has several risk factors, both genetic and non-genetic. The identifiable 
risk factors are gender, increasing age, family history, obesity, reproductive history, 
alcohol consumption, tobacco use, history of radiation exposure, mammographic 
density and postmenopausal hormone therapy (10, 26, 27, 28, 29). However, 50% of 
breast cancer occur in women who have no known risk factor other than increasing age 
(>40 years) and gender (female) (27). Studies have shown that the age-related increase 
in risk slows down after menopause (27, 30, 31, 32).  

A woman’s risk of getting breast cancer increases if she has a family history of the 
disease. However, hereditary breast cancer only accounts for 5-10% of all breast 
cancers (27, 28, 29). Certain inherited gene mutations greatly increase the risk of 
developing breast cancer by as much as 50-80%, primarily mutations in the breast 
cancer gene 1 (BRCA1) and the breast cancer gene 2 (BRCA2) (24, 33). Studies indicate 
that carriers of the BRCA1 gene tend to have more aggressive tumors, such as triple-
negative breast cancers, compared to BRCA2 gene carriers who are more likely to have 
ductal carcinoma in situ. Additionally, carriers of the BRCA1 gene are also more likely to 
have tumors that are less visible on mammography (34). In Sweden, genetic testing for 
the BRCA1 and BRCA2 genes is offered to the following patient groups: 

• Women with breast cancer <40 years of age,  
• Women with triple negative breast cancer,  
• Women with breast cancer <50 years of age, and at least one relative with breast 

cancer, 
• Women <60 years of age, with at least two relatives of breast cancer,  
• Male breast cancer regardless of age,  
• Ovarian cancer patients  

After testing, if they are identified as carriers of the mutations they are offered yearly 
breast imaging that involves magnetic resonance imaging (MRI). Furthermore, two 
additional groups of inherited gene mutations that are associated with an increased risk 
of breast cancer have been identified. One of these groups consist of less common 
genetic mutations, such as CHEK2, PALB2 and ATM, while the other group consists of 
single nucleotide polymorphisms (SNPs), which are more common types of mutations 
(35).  
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Reproductive factors also play an important role in breast cancer risk. Early onset of 
menstruation and late onset of menopause, as well as a late first pregnancy, are 
associated with increased risk of breast cancer (27, 30, 36). Additionally, women who 
have not given birth or have had fewer pregnancies have a higher risk of developing 
breast cancer. It is estimated that each childbirth lowers the risk by 7%. Breast feeding is 
also linked to a reduced risk  of breast cancer, with approximately 4% lower risk for each 
year of completed nursing (37).  

Furthermore, mammographic density, which will be discussed in the following section, is 
considered one of the most significant risk factors for breast cancer (26).  

Breast Density 

Breast density refers to the amount of fibrograndular tissue visible on a mammogram. 
The fibrograndular tissue appears white on the mammographic images and the fatty 
tissue appears black. The denser the breast tissue, the harder it is to see abnormalities 
such as cancer on a mammogram due to the masking effect of the fibrograndular tissue.  

Breast density can be classified into four different categories based on the American 
College of Radiology (ACR) BI-RADS atlas terminology (38):  

A. Almost entirely fatty: This type of breast tissue appears mostly black on a 
mammogram, as fat absorbs very little X-ray radiation. This is the least dense 
type of breast tissue. 

B. Scattered fibrograndular tissue: This type of breast tissue has some density, but 
it is not uniform and is interspersed with areas of fat.  

C. Heterogenously dense: This type of breast tissue has a mix of dense and fatty 
tissue, making it more difficult to see abnormalities on a mammogram.  

D. Extremely dense: This is the densest type of breast tissue and appears white on 
a mammogram making it very difficult to detect abnormalities. 

This classification is the most frequently used classification for mammographic density 
(39). Research has shown that women with denser breast tissue are at a higher risk for 
breast cancer. This can be due to the dense breast tissue making it harder to detect 
cancer but also due to the breast tissue being more biologically active, which could also 
increase the risk of cancer (26, 40, 41, 42, 43, 44, 45). In 2006 McCormack et al. 
conducted a meta-analysis of publications on mammographic patterns in relation to 
breast cancer risk and found that high mammographic density is strongly associated 
with an increased breast cancer risk (10, 26). Women with higher breast density (>75% 
dense tissue) have a two to six times greater risk of developing the disease as opposed 
to women with lower breast density (<5% dense tissue) (10, 26).  Breast density is 
currently not reported on as part of the screening protocol in Sweden.  
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(https://radiologyassistant.nl/breast/bi-rads/bi-rads-for-mammography-and-ultrasound-2013) 

2.2.4 Staging 

Tumor stage is used for the clinical assessment of breast cancer to help guide the 
choice of treatment and determine the prognosis (46). For classification of solid tumors, 
including breast cancer, the tumor node metastasis (TNM) classification system is used. 
The TNM system is an international classification system maintained and revised by the 
American joint committee on cancer and the international union for cancer control (47). 
The system is the internationally accepted standard not only for breast cancer staging 
but for staging histologically confirmed carcinomas.  

T - Tumor.  Used to describe the size of the primary tumor and its' invasion into 
surrounding tissues. T0 indicates that no evidence of tumor is present, while T1-T4 are 
used to identify the size and extension of the tumor, with progressive enlargement and 
invasiveness from T1 to T4.  

N - Nodes. Corresponds to the extent of regional lymph node involvement of the tumor. 
N-values are assessed differently for specific tumors and their regional lymph node 
drainage. For breast cancer N0 indicates no spread to the lymph nodes. N1 indicates 
spread to 1-3 axillary lymph nodes. N2 indicates spread to 4-9 axillary lymph nodes and 
N3 indicates spread to > 9 axillary lymph nodes as well as the infra- and supraclavicular 
and/or parasternal lymph nodes. 

Image 3: Mammographic breast density 
classification according to ACR BI-RADS 
atlas.  
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M - Metastasis. Corresponds to the extent of distant metastases of the primary tumor. 
Metastasis is when the tumor spreads beyond regional lymph nodes. A tumor is 
classified as M0 if no distant metastasis is present and M1 if there is evidence of distant 
metastasis (48).  

Another staging system that has been shown to correlate strongly with prognosis is the 
Nottingham histologic grade, also known as the Elston grade. It is a morphological 
assessment of the tumor, where its gland formation, nuclear image and mitotic activity 
are combined into a tumor grade of 1-3 (49).  

2.2.5 Histopathology and molecular classifications 

The histopathology and molecular subtype has become widely important when 
choosing the appropriate oncological treatment for breast cancer. Breast cancer is 
divided into non-invasive (carcinoma in situ) and invasive cancer.  

Carcinoma in situ (CIS) is responsible for 10.9% of all newly diagnosed breast cancers in 
Sweden, of which 83% are ductal carcinoma in situ (DCIS) (1). Carcinoma in situ refers to 
the malignant cells being confined to the ducts or lobules without invasion of the 
surrounding tissues, this is the initial stage of cancer and generally causes no symptoms. 
In situ cancers have a low potential for metastasis, however, they may progress over 
time and invade the surrounding breast tissue and thereby become invasive breast 
cancer (50, 51). On the contrary, DCIS can also be present and asymptomatic without 
evolving into invasive cancer for prolonged periods of time. The likelihood of DCIS 
progressing into a fully invasive cancer is currently uncertain. Untreated cases of DCIS 
may not always progress due to genotype differences that inhibit progression (52). The 
classification of DCIS lesions correlate with the clinical course of the disease and is 
based on the differentiation and growth of the lesion. The lesions are categorized as 
low-grade, intermediate-grade, or high-grade (53). DCIS is bilateral in approximately 
20% of cases (54).  

Invasive breast cancer is characterized by the infiltration of cancerous cells into nearby 
tissues. Invasive breast cancer has the potential to spread to nearby lymph nodes in the 
axilla (also known as regional metastasis) or to other organs in the body (also known as 
distant metastasis) (55). The most common type of breast cancers is invasive ductal 
carcinoma, which is currently classified as invasive carcinoma of no special type 
according to updated definitions by the world health organization. This group accounts 
for 70-80% of all breast cancers (56).  

 
Image 4: Illustration of DCIS and Invasive breast cancer. 
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Four immunohistochemical biomarkers are being used today in clinical assessment of 
breast cancer: estrogen receptor (ER), progesterone receptor (PR), HER2 receptor and 
Ki67.  

Approximately 80% of the breast tumors express ER and this expression is strongly 
correlated with the therapeutic response to endocrine treatment. Breast cancers that 
are ER-positive are likely to have a more favorable outlook due to their slower rate of 
proliferation compared to ER-negative cancers (57, 58).  

PR expression is mainly of prognostic value. When ER is positive, PR serves as a positive 
prognostic factor as it is influenced by estrogen. The presence of PR is also linked to the 
positive response to endocrine and chemotherapy treatment (59, 60).  

HER2 is a predictive factor that is linked to more advanced disease, an increased 
likelihood of relapse and reduced patient survival (61).  

Ki-67 is regarded as an unfavorable prognostic indicator. Many studies have 
demonstrated that a higher proportion of Ki-67 is linked to a reduced survival and a 
higher chance of tumor recurrence among patients (62, 63). However, in some types of 
tumors, high Ki-67 levels may indicate a favorable response to chemotherapy.  

The St. Gallen classification is a classification system based on the expression of these 
four immunohistochemical biomarkers and is widely used by clinicians within breast 
cancer care to help guide and customize treatment. We used the St. Gallen classification 
as a standard for defining the molecular subtypes in our studies. The classification 
specifies four different subtypes of breast cancer (64): 

• Luminal A – This subtype is characterized by positive ER and/or PR, negative 
HER2 and a low Ki-67 (<14%). 

• Luminal B – This subtype is characterized by positive ER, negative HER2 and 
either a high Ki-67 (>14%) or negative PR. 

• HER2-overexpressing – This subtype is characterized by positive HER2 and 
negative ER and PR. 

• Basal like – This subtype is characterized by negative ER, PR, and HER2, and is 
also known as triple-negative breast cancer. 

 
The subtypes strongly correlate with prognosis, with the luminal A subtype being 
associated with the most favorable prognosis and the basal like subtype being 
associated with the least favorable prognosis (65).  
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2.2.6 Treatment and Prognosis 

Breast cancer treatment options are mostly determined by tumor characteristics, 
patient tolerance and the risk of recurrence. Surgery is the primary choice of treatment 
for localized breast cancer, either by mastectomy or breast conserving surgery (BCS).  

During mastectomy the entire breast tissue is removed. Depending on the patient’s 
medical history and the extent of the cancer, the surgeon may remove the entire breast 
tissue along with the nipple (total mastectomy), or remove the breast tissue while 
preserving the nipple (nipple-sparing mastectomy) (66).  

The surgical approach most frequently recommended is BCS, which involves removing 
the tumor along with a surrounding margin of healthy tissue. The amount of tissue 
removed depends on the size and location of the tumor. Achieving surgical radicality 
and good functional and cosmetic outcomes are important factors when considering 
surgery. If the tumor size in relation to breast size makes these outcomes difficult to 
achieve, preoperative treatment to reduce tumor size should be considered. BCS has 
the highest rate of success for DCIS and T1-T2 tumors, given that radiation therapy can 
be administered afterwards. For T1 to T2 breast cancers, BCS followed by radiation 
therapy has been shown to be just as effective when it comes to survival as a complete 
mastectomy (67). However, BCS is not recommended for women with a high risk of 
recurrence (68). It is crucial to achieve tumor-free margins during BCS. In cases of 
invasive cancers, there should be no presence of tumor on ink, while for DCIS, a tumor-
free margin of at least 2 mm is recommended. If this is not obtained, the woman has to 
undergo re-excision, which happens in about 20% of all BCS cases (69). BCS is always 
followed by administrating radiotherapy to the entire breast (70), this is also known as 
adjuvant (post-operative) radiation therapy.  

Adjuvant radiation therapy reduces the risk of local recurrence by 50% and increases 
breast cancer survival rate after both mastectomy and BCS for all breast cancer 
patients except for patients with low risk tumors and no metastases (70). For these 
types of tumors no proven benefit of adjuvant radiotherapy has been observed (71). The 
side effects of radiation therapy can be very troublesome and irreversible and this must 
be taken into consideration when choosing the appropriate treatment for the patient.  

Apart from surgery and radiation, many patients who are diagnosed with high or 
intermediate risk breast cancer are generally recommended to receive chemotherapy 
as part of their treatment plan. According to the latest guidelines from the St. Gallen 
consensus, neoadjuvant chemotherapy, which is a pre-operative systemic treatment, is 
recommended for all HER2-positive and triple-negative tumors that are 2 cm or larger, 
even if they are operable (72). For HER2-overexpressing tumors, an anti-HER2 treatment 
is given in addition to neoadjuvant chemotherapy. An example of this treatment is the 
monoclonal antibody trastuzumab. Pertuzumab is another monoclonal antibody that is 
often administered in combination with trastuzumab. 
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Approximately 80-85% of all diagnosed breast cancer express ER. These receptors bind 
the female hormone estrogen to the tumor cells and stimulate cell division that leads to 
tumor growth. Endocrine treatment is a type of cancer therapy that works by preventing 
ER production or by blocking the action of ER. Tamoxifen, a selective estrogen receptor 
modulator, works by attaching to ER receptors and blocks the binding of ER to the 
receptor. Treatment with tamoxifen for five years is the gold standard for pre-
menopausal women with ER-positive breast cancer. For post-menopausal women the 
gold standard is treatment with an aromatase-inhibitor for five years followed by 
another five years with tamoxifen if there are lymph node metastases present (24). 

For locally advanced breast cancers that are inoperable, the recommended treatment is 
neoadjuvant therapy followed by surgery. However, due to the mammography screening 
system in Sweden only a few percent of all patients with a primary breast cancer 
diagnosis have a locally advanced disease. In countries without mammography 
screening these numbers are significantly higher (73, 74). Patients with locally advanced 
breast cancer should be offered a treatment consisting of neoadjuvant chemotherapy, 
surgery and locoregional adjuvant radiation therapy. Women with a ER-positive tumor 
are in addition recommended a subsequent endocrine treatment. And women with a 
HER2-overexpressing tumor are offered additional anti-HER2 treatment. There is a lack 
of recent good-quality clinical trials concerning locally advanced breast cancer, however 
older studies report approximately a 5-year survival rate of 30-40% following systemic 
therapy. The corresponding 5-year survival rate for patients without systemic therapy 
has been reported to be 3.5-15% (75). 

The prognosis for breast cancer patients is better than most other cancers, having a 10-
year survival rate of around 80% in Sweden (1). So far early detection and treatment has 
been the largest factor for improvement of breast cancer survival rates (76). Factors 
that negatively influence prognosis are those connected to advanced disease. One of 
the main factors connected to metastasis and recurrence is tumor size. Larger tumor 
size is linked to a higher mortality rate in breast cancer patients (77, 78, 79, 80). Several 
studies have demonstrated a correlation between tumor size and cancer stage, 
including lymph node involvement and distant disease (80). Among breast cancer 
patients, axillary lymph node involvement is the most significant prognostic factor, 
particularly among women with four or more affected lymph nodes (81). Distant 
metastasis is another predictor of poor prognosis, with the brain, skeleton, liver and 
lungs being the most frequently affected sites (80).   
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2.3 Imaging and diagnostics 

2.3.1 Mammography 

Mammography is the main breast imaging technique used in breast cancer screening. It 
is a radiographic examination that plays a central role in early diagnosis of breast cancer. 
Besides its use in screening it can also be used as a diagnostic tool for women who 
report breast symptoms outside the time for screening. The image emitted by the 
mammographic equipment is generated by having an X-ray tube on one side and a 
detector on the other side of the breast. Mammography uses low X-ray energy (usually 
around 20 keV) to enhance the contrast between a potential tumor and fatty tissue 
(82). During the procedure the breast is compressed between two plates in the 
mammography unit to even out the thickness of the breast tissue and achieve a better 
image quality.  

Mammographic screening has resulted in an earlier detection of tumors which has 
lowered breast cancer mortality with 20-40% (6, 7, 8, 83). A study by Tabar et al. (8) 
showed that mortality was lowered by 35% for women that participated regularly in 
screening. Another, more recent study by Duffy et al. (74) showed that mortality was 
lowered by 41% within 10 years for women that participated in screening.  

The sensitivity of mammography ranges between 58-82% and is in the upper range for 
women with lower breast density compared to women with higher breast density (26, 
40, 84, 85, 86, 87). Diffusely growing cancers such as lobular cancers can be hard to 
detect on mammography also contributing to a lower mammographic sensitivity (88, 
89). Several studies have shown a mammographic specificity that range between 90-
95% (87, 90, 91, 92, 93).  

The main problems with today’s mammography screening is that we fail to identify 
about 30% of the breast cancers at screening, also known as interval cancers (10, 26, 94, 
95). Interval cancers are cancers that go by undetected during screening and are 
detected later by the woman feeling a lump or a different symptom in the breast such 
as e.g. pitting of the skin or abnormal nipple discharge. The interval cancer rate is 
approximately 28% for women regularly attending biennial screening (96). Interval 
cancers have a higher mortality rate and are more aggressive (97). Besides interval 
cancers there is also roughly 15% of screen detected cancers that are over 2-cm when 
detected (98). So despite the decreased mortality due to mammography based breast 
cancer screening there is still room for improvement.  

2.3.2 The mammography screening system in Sweden  

Sweden was amongst the first countries in Europe to implement a breast cancer 
screening program (83, 99). In Sweden the general mammography screening system 
includes all women 40-74 years of age. The time interval for screening varies between 
the Swedish counties ranging between 18-24 months. The screening program is 
organized by the Swedish National Board of Health and Welfare and is offered free of 
charge to all eligible women. The routine mammography screening acquires a two-view 
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mammogram that includes a craniocaudal view and a mediolateral oblique view. An 
illustration of the two views can be seen below. Every screening is reviewed by two 
independent radiologists – this type of mammogram assessment is referred to as 
double-reading. If there are any previous mammograms available the radiologist 
compare them with the current examination. When one or both reviewing radiologists 
observe a suspicious finding in the mammogram the case gets “flagged” for consensus 
discussion. The woman gets recalled within seven days for additional procedures if the 
discussion concludes that there is a suspicion of a pathologic lesion. If the woman 
reports any breast symptoms such as a lump or nipple discharge at the time of 
screening she will also be recalled for additional procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 5: Mammographic image, Karolinska university 
hospital, study participant ScreenTrust MRI study. 

 
  

Craniocaudal (CC view) 

Mediolateraloblique (MLO view) 
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In Sweden we use a 5-grade coding system for grading breast lesions in mammographic 
images, ultrasound examinations and MRI examinations. The European guidelines 
recommend the five-code classification system that is being used in Sweden where 
code 1 defines a normal finding and code 5 defines a highly suspicious malignant finding. 
In North America, the primary system used for mammography is the BI-RADS system, 
which classifies breast lesions using a seven-code classification system. This system 
ranges from BI-RADS 1, indicating a normal result, to BI-RADS 5, indicating malignancy. 
Compared to the Swedish system, the BI-RADS system includes two additional 
categories: BI-RADS 0 for an incomplete assessment and BI-RADS 6 for a biopsy-
verified malignancy. Another difference between the two grading systems is that lesions 
with code 3 are always biopsied according to the Swedish system while the BI-RADS 
system allows for the possibility of a six month imaging follow up instead. Category 4 in 
the BI-RADS system also contains sub-groups (100).  

2.3.3 Tumor appearance on mammography 

Breast cancer tumors can manifest differently on mammography and can be seen as 
architectural distortion, microcalcifications, asymmetry and masses that can be 
spiculated or indistinct.  

Architectural distortion is characterized by an alteration in the normal pattern of breast 
tissue and may be challenging to detect.  

Microcalcifications are small white specks that appear on a mammogram, often less 
than 5 millimeters in size and are composed of calcium deposits that have formed in the 
breast tissue. When microcalcifications are clustered together in a specific pattern they 
may indicate a higher likelihood of breast cancer. However, it can be difficult to 
differentiate them from benign or malignant origin without a biopsy. Clusters of 
calcifications are typically the most common mammographic features observed in 
cases of DCIS.  

A mass may appear as a denser area in the breast tissue that is distinct from the 
surrounding tissue. It can have an irregular shape with poorly defined (indistinct) or 
spiculated edges (spiculated mass) on mammography.  

2.3.4 Tomosynthesis 

Breast tomosynthesis, also known as 3D mammography has the advantage of reducing 
the effect of overlapping tissue compared to regular mammography. Hence, 
tomosynthesis is recommended and mainly used for further evaluation of findings in 
women that have been recalled from screening to confirm or exclude the presence of a 
tumor (101). For the evaluation of microcalcifications, tomosynthesis has proven to be 
just as good as digital mammography. There is sparse literature regarding the use of 
tomosynthesis in clinical work-up (102), however studies have shown that compared to 
digital mammography breast tomosynthesis has a higher sensitivity but a lower 
specificity for tumor detection (103, 104, 105, 106). A recent study by Conant et al. (107) 
compiled data from five healthcare systems in the United States that used 
tomosynthesis for breast cancer screening. This study is the largest known study on 3D 
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mammography. They found that tomosynthesis had a higher cancer detection rate 
(CDR) and a lower recall rate compared to 2D mammography. Tomosynthesis had a CDR 
of 5.3 cancers per 1,000 women compared to 4.5 cancers per 1,000 women for 2D 
mammography.  

2.3.5 Contrast Enhanced Mammography  

Contrast enhanced mammography (CEM) has emerged as a promising imaging 
technique for improving the accuracy of breast cancer screening and diagnosis. This 
technique involves the use of an iodine-based contrast agent injected intravenously 
prior to mammography. The contrast enhances the visibility of breast lesions and 
abnormalities, making them easier to detect. This can be particularly useful in 
mammograms that are difficult to interpret, for example due to dense breast tissue. 
Several studies have demonstrated the potential benefits of CEM compared to 
traditional mammography, particularly in cases of dense breast where conventional 
imaging may have a limited sensitivity. In a systematic review and meta-analysis of 60 
studies, the pooled sensitivity was found to be higher than that of traditional 
mammography (108). Another study that compared the diagnostic performance of CEM 
and ultrasound with traditional mammography in women with dense breasts and an 
increased risk of breast cancer found CEM to be more sensitive than traditional 
mammography but with a reduced specificity (109). Despite many studies showing 
promising results when compared to traditional mammography (110), CEM is not yet 
widely adopted in clinical practice. However, when comparing CEM to magnetic 
resonance imaging (MRI) studies show that MRI is superior in terms of diagnostic 
performance. A systematic review and meta-analysis published in Radiology aimed to 
compare the diagnostic performance of CEM to that of contrast enhanced MRI (111). 
Pötsch et al. examined the diagnostic accuracy of both methods in patients with known 
abnormalities but no histologic confirmation of cancer. The study results showed that 
the sensitivity of CEM was significantly lower than that of breast MRI. Although, CEM has 
certain potential advantages compared to MRI such as; shorter examination time, lower 
costs and often being more accessible.  

2.3.6 Ultrasound 

Another imaging technique greatly used within breast cancer diagnosis is breast 
ultrasound. Breast ultrasound is mainly used as a complement to mammography to 
examine the breast and axilla, particularly in cases where the woman is recalled from 
screening. It has also shown promise in women with dense breasts (112, 113, 114) and it can 
be used as a first hand method for women under the age of 30, pregnant women and 
lactating women since the technique does not use harmful X-rays. Ultrasound is also 
used as a guidance tool for breast biopsies. Previously, ultrasound was mostly used to 
differentiate between cystic and solid tumors but lately the technique has evolved to 
even be able to detect tumors that are not visible on a mammogram. Studies indicate 
that the rates of ultrasound detected only cancers range between 2.7 to 4.6 cancers per 
1,000 women screened (115, 116, 117, 118, 119, 120, 121, 122). Using ultrasound as a breast 
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screening method is appealing, since it does not use harmful radiation but the downside 
is that it is time consuming and operator dependent and also has a lot of false-positive 
findings (114). 

2.3.7 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is used in preoperative assessment of ill-defined 
tumors to determine the extent of the tumor and as part of screening for gene mutation 
carriers and women with a family history of breast cancer (123). The examination is 
performed with the woman lying on her stomach and entering the MRI machine.  

 

 

 

 

 

 

 

 

 

 

 

 

Intravenous contrast media is most often administered during MRI examinations to 
evaluate the uptake and dynamics of malignant tumors. The intravenous contrast media 
being used during MRI examinations is Gadolinium based. MRI has been shown to be 
more sensitive when it comes to breast cancer diagnosis (124). However, it may be 
perceived as uncomfortable by patients due to a longer and louder examination 
compared with regular mammography. Additionally, the use of MRI is contradicted for 
patients with pacemakers and other non-MRI compatible metal in the body, and it might 
not be suitable for patients with severe claustrophobia. In image 7 you can see an MRI 
examination with a contrast enhanced lesion in the left breast.  

 

Image 6: MRI machine at the 
mammography department at 
Karolinska University Hospital 
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Image 7: An MRI examination image from the ScreenTrust MRI study; consisting of both breasts 
with a contrast enhanced BI-RADS 5 lesion in the left breast.  

The sensitivity for MRI ranges between 80-100%, and the specificity ranges between 
83-98% (124, 125, 126, 127, 128, 129, 130). Studies have shown that the number of interval 
cancers were up to 80% lower when undergoing an MRI examination compared to digital 
mammography (131, 132). The DENSE trial, a randomized clinical trial by Bakker et al. used 
breast density as a selection method for complementary MRI examinations in screening. 
The DENSE trial demonstrated that compared to mammography an MRI examination 
lowered the number of interval cancers by 80% (132). A recent study by Hussein et al. 
(133) aimed at evaluating the role of different supplementary screening tests in women 
with dense breast tissue and average or intermediate risk of breast cancer, who had a 
negative screening mammogram. The meta-analysis was based on 22 studies including 
261,233 patients screened for breast cancer to determine the most effective screening 
method for women with dense breasts. Breast MRI was the superior screening method, 
detecting even the smallest cancers with high precision.  

Although MRI is the most accurate method for breast cancer diagnosis, traditional 
mammography is still the only screening modality in wide use today. The downside to 
MRI is the examination costs, which runs around 5-10 times higher than a mammography 
examination (134). An additional downside is the long examination time compared to 
mammography. To address this, new abbreviated MRI protocols have become highly 
relevant in the development and research of MRI technique for breast cancer screening 
(135). These protocols reduce radiologist workload and scanner time and do not affect 
screening accuracy (136, 137). According to a meta-analysis by Baxter et al. (137), 
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abbreviated MRI did not show a significant decrease in performance in terms of 
sensitivity or specificity compared to full diagnostic MRI. 

To grade MRI examinations, the ACR has established the BI-RADS classification system. 
We used this classification for grading of all MRI examinations in study IV. The BI-RADS 
system for MRI classifies findings into seven categories as follows: 

• BI-RADS 0 – Incomplete results that require additional imaging evaluation 
• BI-RADS 1 – Negative results with no abnormalities found 
• BI-RADS 2 – Benign findings such as non-enhancing fibroadenomas and cysts. 
• BI-RADS 3 – Propably benign findnings that require follow up within 6 months 
• BI-RADS 4 – Suspicious findings that do not have a classic appearance of 

malignancy but justify a recommendation for biopsy 
• BI-RADS 5 – Highly suggestive findings of malignancy that require tissue 

diagnostic tests 
• BI-RADS 6 – Biopsy proven malignancy, which requires MRI for cancer staging or 

evaluating neoadjuvant therapy 

2.3.8 Triple diagnostics 

Needle biopsy is done as a complement to breast imaging when there is a suspicion of 
cancer, this is also known as the triple test, which is the use of three diagnostic 
modalities for the diagnosis of breast cancer - palpation of the breast, radiologic 
imaging and pathology. This approach is often referred to as the gold standard when 
examining all breast abnormalities (138). Using all three modalities gives a high diagnostic 
safety and improves the likelihood of diagnosis (139, 140). Biopsies are guided by 
ultrasound, MRI or are vacuum assisted. Core needle biopsies are mainly used when 
there is a suspicion of cancer while fine needle biopsies are used when there is a 
suspicious pathological lymph node. The use of vacuum assisted biopsy is becoming 
more popular as it gives bigger biopsies and increases the chance of getting 
representative tissue during the procedure. MRI biopsies are most often used when the 
lesion is not visible or cannot be localized during ultrasound. 
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2.4 Artificial intelligence in breast imaging 

2.4.1 AI, machine learning and deep learning 

Artificial intelligence (AI) was developed in the 1950’s and has achieved state-of-the-
art results in many areas, including healthcare. AI is a computer program that consists 
of algorithms that can perform complicated tasks that usually require human 
intelligence without any human intervention.  

Machine learning is a subfield of artificial intelligence. Machine learning is the method 
of teaching computers to learn and make decisions on their own, without being 
explicitly programmed to perform a specific task. It involves feeding large amounts of 
data to a computer program, which uses that data to learn how to perform a particular 
task. Within the machine learning algorithm we have artificial neural networks that are 
inspired by the structure and function of the human brain. Artificial neural networks 
are made up of layers of interconnected neurons which process and transmit 
information.  

Deep learning is a subfield of machine learning and is composed of multiple layers of 
artificial neural networks. Deep learning uses multiple layers of processing to extract 
higher level features from raw data (141, 142). By combining enough of these layers, deep 
learning models can learn to recognize and understand complex patterns in the data. 
Deep learning has surpassed other machine learning methods in various tasks such as 
natural language understanding, particularly in tasks such as topic classification, 
question answering and language translation. Additionally, deep learning has advanced 
in image (143, 144) and speech recognition (142, 145).   

 

Image 8: Illustration of AI , machine learning and deep learning 
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Over the past decades there has been a great optimism in developing and 
implementing artificial intelligence computer aided diagnosis (AI CAD) systems for 
screening mammography to help aid radiologists in detecting suspicious findings in the 
images and reduce the broad variation in human performance (146, 147). CAD is based 
on traditional machine learning techniques and was once widely used within 
mammography screening. In contrast to modern AI that uses deep learning and is 
trained on large amounts of data, traditional CAD uses more limited techniques and can 
only be trained on small amounts of data. Most commercial CAD systems have been 
used as “assistants” until recently (148). Traditional CAD has had problems with a large 
number of false-positive findings per mammogram (149). Early evaluation of using CAD 
as an assistant showed an increased sensitivity but later studies concluded that using 
CAD did not improve the diagnostic accuracy (148, 150, 151, 152, 153).  

2.4.2 Implementation of AI in breast cancer screening 

Breast cancer screening programs are widely important for early detection but they 
phase several challenges. Apart from the wide variation in human performance, the 
overall costs of breast cancer screening programs are extensive. The cost of breast 
cancer screening programs can vary depending on the specific program and the 
country of implementation. For instance, in 2010, the estimated cost for mammography 
screening in the US was 7.8 billion USD (154). This poses a challenge in low-income 
countries. The utilization of AI can help enhance the screening performance and reduce 
the overall costs of mammography screening, thereby mitigating these challenges.  

AI can be implemented in various ways, such as an assistant directing the attention of 
the radiologist to suspicious areas in the image or as an independent reader making an 
assessment of the mammogram without further human intervention. AI can also be used 
as a risk predictor to estimate the risk of detecting cancer before the next screening or 
as a triaging tool triaging cases by complexity. 

Recently an increasing number of studies have shown positive results when using 
artificial intelligence for mammographic tumor detection and also for prediction of 
future breast cancer (147, 155, 156, 157). A multi-reader, multi-case cross-country study 
where they compared the stand-alone performance of AI compared to that of 101 
radiologists in detecting breast cancer in mammography showed that the performance 
of the AI system was statistically noninferior to that of the average of the 101 radiologists 
(147). Another study on AI that shows potential for breast cancer screening, used a large 
representative data set from the UK and a large enriched data set from the USA. Usage 
of the AI system showed a reduction in false positives and false negatives. In the same 
study they ran a simulation in which they used AI in the double-reading process that is 
used in the UK and found that the AI system not only reduced the workload of the 
second reader by 88% but also managed to maintain a non-inferior performance to the 
radiologists (158). Additionally, Leibig et al. (159) conducted a study demonstrating the 
potential of AI through a decision-referral approach. The study simulated a safety-net 
warning system that combined traditional triage and cancer detection. Results showed 
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that this approach was superior to both individual radiologists and a stand-alone AI 
system in terms of sensitivity and specificity. Conversely, a meta-analysis by Freeman 
et al. concluded that the use of AI for image analysis in breast cancer screening 
programs is far from having the quality needed for implementation into clinical practice 
(160). A total of twelve studies were included and their conclusion was that prospective 
studies on large screening populations are required before considering an integration of 
artificial intelligence into clinical practice. This conclusion is on the basis of the studies 
being of poor methodological quality and that no prospective studies on AI in a 
mammography screening setting was found.  

2.4.3 AI, breast cancer risk and density assessment  

There are several tools that can be used to assess an individual’s risk of developing 
breast cancer. These tools take into account different risk factors such as age, family 
history etc. and use this information to calculate an individual’s risk of breast cancer 
(161). Some examples of the tools being used for breast cancer risk assessment include:  

• Gail model: This tool estimates the risk of developing breast cancer over a 5-year 
period and a lifetime based on factors such as age, family history and personal 
history of breast biopsies.  

• Breast cancer risk assessment tool (BCRAT): This tool estimates the risk of breast 
cancer over a 5-year period and a lifetime based on riskfactors such as age, 
family history etc. 

• Tyrer-Cuzick model: This tool estimates the risk of breast cancer over a 10-year 
period and a lifetime based on riskfactors such as age, family history, genetic 
mutations etc.  

However, only the latest version of the Tyrer-Cuzick model takes density into account 
(44). Density can also be assessed using automated systems. The output of these 
automated systems is typically a quantitative measure of the breast density.  

Recently there have been numerous studies conducted evaluating the risk of breast 
cancer using AI, and the findings have been promising. The results indicate that AI-
based risk assessment tools can provide a more accurate estimate of an individual’s risk 
of breast cancer (162, 163, 164, 165, 166, 167, 168). The algorithms can analyze data based 
on the above-mentioned factors and in addition identify patterns and features in the 
images that are associated with an increased breast cancer risk (169). A study by 
Dembrower et al. evaluated and compared a deep learning risk score with the 
standardized mammographic density score for breast cancer risk prediction and 
concluded that the deep neural network could predict which women are at risk for 
future breast cancer more accurately, with a lower false-negative rate for more 
aggressive cancers compared to the density-based models. Yala et al. (167) developed a 
deep learning model that identifies imaging biomarkers on mammograms to predict the 
risk of developing breast cancer, the model was tested on several diverse data sets 
from different countries and maintained a high accuracy across all datasets. Another 
study by Eriksson et al. (168) developed a clinical model that evaluates the short-term 
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risk by using mammographic density in combination with information regarding several 
breast cancer risk factors and CAD evaluation of the images. The results showed a high 
AUC for the full model enabling early identification of women with high risk of breast 
cancer. Overall, the use of AI in breast cancer risk assessment has the potential to 
improve the accuracy and efficiency of the risk assessment process.  

Additionally, some studies have evaluated the use of AI for breast density assessment. A 
study by Lehman et al. (170) developed a deep learning algorithm for automatic 
assessment of breast density. The model achieved high accuracy in classifying breast 
density with a high sensitivity and specificity. Another study by Magni et al. (171) also 
developed a deep learning algorithm for breast density classification. Their results 
revealed that the AI algorithm performed comparably to the radiologists in determining 
breast density.  
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3 Research aims 
The primary objective of this thesis was to examine the operational performance of AI 
systems and investigate the potential integration of AI into the mammography 
screening system.  

The specific aims for each study are listed below: 

3.1 Study I – Radiologist performance in Breast cancer screening 
Our aim was to establish performance benchmarks based on radiologists assessments 
in the source cohort, facilitating a comparison between the performance of AI CAD 
systems and these benchmarks.  

We wanted to get a better understanding of the performance of the radiologists in our 
dataset and how the performance was influenced by tumor characteristics.  

3.2 Study II – Comparative study of various AI CAD systems as independent 
readers  

Our aim was to determine and compare the performance of three different commercial 
AI CAD systems as they are applied to make screening decisions without human 
interaction.  

Our hypothesis was that one of the algorithms would exhibit superior performance 
compared to the other algorithms. 

3.3 Study III – Exploring differences between human and AI CAD systems in 
screening mammography 

Our aim was to examine the disagreements in assessments between the AI CAD system 
and the radiologists.  

We hypothesized that variances in evaluations could provide improved insights into the 
potential outcomes of implementing AI in breast cancer screening.  

3.4 Study IV – Examining the effect of applying deep learning methods to select 
women for MRI based breast cancer screening 

Our aim was to perform a randomized clinical trial to examine how effectively AI can 
identify women that should be offered a complementary MRI screening based on their 
likelihood of having cancer that is not visible on mammography. One commercial and 
three in-house-developed AI algorithms were combined to calculate the 
AISmartDensity score. 

Our hypothesis was that by utilizing AI-based selection for supplemental screening 
rather than density-based selection, we would identify a greater number of undetected 
cancers.
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4 Materials and methods 

4.1 Study population 

Studies I,II and III were retrospective studies derived from the CSAW dataset (172, 173). 
CSAW is a dataset containing all women invited for mammographic screening within the 
Stockholm County area between 2008 and 2015. Prospectively recorded information on 
radiological assessments and clinical cancer data were extracted from the Regional 
Cancer Center Stockholm-Gotland. Study I included 418 041 women. Study II and study 
III included a case-control subset of data within CSAW, based on a random selection of 
healthy women and all women diagnosed with breast cancer within the data set.  

Study IV is a prospective study that includes all women undergoing screening at 
Karolinska University Hospital from April 1st 2021 until April 7th 2023.  

An overview of the study populations and methods for studies I-IV is presented in Table 
1. 

Table 1. 

 Study I Study II Study III Study IV 

Study 
design 

Retrospective 
multicenter 
cohort study 

Retrospective 
case-control 
study 

Retrospective 
case-control 
study 

Prospective 
case-control 
study 

Sample CSAW 
dataset 

Subset of CSAW 
dataset 

Subset of 
CSAW 
dataset 

Subset of 
ScreenTrust 
MRI dataset 

Inclusion 
period 

1/1/2008-
31/9/2015 

1/1/2008-
31/12/2015 

1/1/2008-
31/12/2015 

1/4/2021-
31/12/2022 

Total 
women 
included 

418,014 8,805 8,743 481* 

*) Women that performed MRI. 
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In study I, the data base consisted of 504,566 women invited for screening between 
January 1st 2008 and September 31st 2015. 83,225 women were not examined due to 
non-participation. 3,300 women were excluded due to unknown radiologist identity. The 
final study population consisted of 418,041 women and 1,186,045 screening 
examinations.  

In study II, the study sample was derived from the CSAW data set used in study I. 

However, in this study we only included screening examinations from Karolinska 

University Hospital. All women between 40 to 74 years of age that were diagnosed with 

breast cancer between January 1st 2008 and December 31st 2015 were included in the 

study (n=1,253). The study excluded women that did not undergo a complete screening 

examination before their diagnosis, women who had a history of breast cancer and 

women with breast implants. We excluded all examinations with a cancer diagnosis that 

had a gap of more than 12 months between the examination date and diagnosis (n=419). 

This was because the probability of cancer being present at the time of screening was 

lower. We also excluded all examinations with an unknown radiologist identity (n=95). A 

random sample of 10,000 healthy women were included. From this sample we excluded 

women that had less than a 2-year cancer-free follow up (n=995), women that had 

examinations outside our indicated study period (n=909), women with breast implants 

(n=26) and also all examinations with an unknown radiologist identity (n=99). The final 

study population consisted of 8,066 healthy women and 739 women with breast 

cancer. 

In study III, we used the same subset and inclusion criteria as in study II. Additionally, we 

excluded women with clinical symptoms. The final study population consisted of 8,029 

healthy women and 714 women with breast cancer. 

In study IV, we included all women undergoing mammography screening at Karolinska 

University Hospital from April 1, 2021 to December 31, 2022. All women with a positive 

screening examination were excluded from the study (n=386). We also excluded women 

with breast implants, breastfeeding, pregnancy and MRI contraindications such as 

pacemaker or other non MRI compatible implants. Women in the surveillance program 

for breast cancer were also excluded. All women with an AISmartDensity score above 

1.97 (approximately the highest 8%) were invited to participate in the study. Of those 

that accepted to participate, half were randomized to supplemental MRI and the other 

half to be in the observational control group.  
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The invitation process can be seen in detail in the flowchart below (Figure 2 manuscript 
4). 
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4.2 Register data 

Sweden maintains a number of population-based registers that contain information on 
the populations health. In 1947 the personal identification number system was 
introduced which helped facilitate population-based registers. The Swedish Cancer 
Register was implemented in 1958. It contains data concerning type of cancer, date of 
diagnosis, TNM stage and histological type. It is used to monitor trends in cancer 
incidence, mortality and survival over time. The register is considered one of the most 
comprehensive and serves as a valuable resource for researchers and healthcare (174).  

In studies I-III data was retrieved by linking the women using the personal identification 
numbers with the Screening Register at the Regional Cancer Centre Stockholm-Gotland 
and the breast cancer quality register which in turn receives data from the Swedish 
Cancer Register.  

In study II, the personal numbers of all women in the subset data were linked with 
Karolinska University Hospital PACS (radiology image database) for the mammographic 
examination images, this information was later used in study III as well.  

In study IV, the diagnosis of breast cancer was collected through the pathology reports 
stored in the medical journal system used at Karolinska University Hospital (Take care).  

4.3 Readers 

In study I, there were 110 interpreting radiologist. We classified radiologists into two 
groups: low-volume and high-volume readers. This classification was based on the 
number of annual screening mammograms. Radiologists who read less than 5,000 
screening mammograms for at least one year during the study period were considered 
low-volume readers, while those who read 5,000 or more were categorized as high-
volume readers. We grouped the high-volume readers into quartiles, with quartile one 
comprising the worst-performing readers and quartile four comprising the best-
performing readers. 

Studies II and III involved 25 first reader radiologists and 20 second reader radiologists. 
In addition, study II, involved three different commercial AI CAD algorithms for analysis of 
screening images.  

In study IV, two radiologists evaluated all MRI examinations, while all radiologists at the 
Karolinska University Hospital breast radiology department conducted additional work-
up for recall cases. Additionally, three different algorithms were used for analysis of 
screening images. 
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4.4 Algorithms 

All deep learning algorithms included in study II were commercial. The vendors for the 

algorithms chose to remain anonymous, apart from algorithm 1. Details on their training 

can be seen in detail in table 2 below.  

Table 2. 

 Algorithm 1 Algorithm 2 Algorithm 3 

Network architecture ResNet-34 MobileNet Did not disclose 

Training procedure Two-stage 

procedure 

Two-stage 

procedure 

Unclear 

Number of training 

cases 

72,000 cancer 

images, 680,000 

normal images 

10,000 cancer 

images, 229,000 

normal images 

6,000 cancer 

images, 106,000 

normal images 

Mammography 

device brand 

Mostly GE Mostly Hologic Mostly Hologic 

 
 
For study III we used the best performing algorithm (algorithm 1) from study II. For study 
IV, we also used algorithm 1 from study II in combination with three deep learning 
algorithms developed with our collaborating researchers and engineers at KTH Royal 
institute of technology in Stockholm. The training data was mainly derived from the CSAW 
dataset used in study I. The algorithms were trained to assess cancer signs, inherent risk 
and masking potential. Further details on the algorithms can be seen in table 3. 
 
Table 3. 
 Cancer model Risk model Masking model 

Network 
architecture 
 

Efficientnet-B3+2 
residual blocks 

Efficientnet-B3 ResNet-34 
 

Training 
procedure 
 

Two-stage procedure Binary classification Ordinal classification 

Mammography 
device brand 

Mostly Hologic Mostly Hologic Only Hologic 
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4.5 Statistical methods 

All statistical analyses in this thesis were conducted using the computer software Stata, 
version 15.1. All statistical tests were two-sided. The level for significance was set at 
alpha=0.05. 

Linear Regression 

To model the relationship between a predictor variable and one or multiple output 
variables linear regression can be used. The purpose of linear regression is to find the 
values of the parameters that best fit the data.  

In study I, using the quartile as the predictor, linear regression models were used to test 
for an association across quartiles of radiologists performance.  

95% Confidence Interval (CI)  

To estimate an unknown population parameter with a certain level of confidence 95% CI 
can be used. A 95% CI indicates that if the same sample were collected multiple times 
and a CI was calculated for each sample, we would expect the true population 
parameter to fall within the calculated CI 95% of the time. 

The 95% CI was calculated for studies I and II. 

P-value 

A p-value is a probability used in statistical hypothesis testing to indicate the level of 
evidence against a null hypothesis. The null hypothesis is a statement of no difference 
between groups. A p-value is the probability of obtaining a test statistic as extreme or 
more extreme than the one observed, under the assumption that the null hypothesis is 
true. For example, if a p-value is 0.05 it means that there is a 5% chance of getting a test 
statistic as extreme or more extreme than the one observed, if the null hypothesis were 
true. If the p-value is less than the pre-specified level of significance (usually 0.05), the 
null hypothesis is rejected. 

P-value was calculated for studies I and III.  

Standard deviation 

Standard deviation (SD) is a statistical measure of the dispersion of a set of data. It is a 
way to quantify the amount of variation or deviation from the mean of a dataset. The 
standard deviation is useful because it tells us how much the data deviates from the 
mean. A low standard deviation indicates that the data points are close to the mean, 
while a high standard deviation indicates that the data points are spread out over a 
wider range.  

The standard deviation was calculated for study I. 
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Bootstrapping  

Bootstrapping is a statistical method that involves resampling a dataset with 
replacement to estimate certain properties of a population, such as the mean, standard 
deviation or confidence intervals. In study II for example, the dataset was enriched with 
positive cases, so we applied stratified bootstrapping with a 14:1 ratio of healthy to 
diagnosed women to mimic the ratio in the source screening cohort. Stratified 
bootstrapping is a variation of the standard bootstrapping method, in stratified 
bootstrapping the data is resampled within each stratum separately, rather than 
sampling from the entire dataset as a whole. This ensures that the proportion of 
observations from each stratum in the resampled dataset is the same as in the original 
dataset.  

Bootstrapping was used for studies I-III. 

AUC 

Area under the receiver operating characteristic curve (AUC), is a measure of the 
performance of a binary classification model. AUC ranges from 0 to 1 with a value of 1 
indicating a perfect model and a value of 0.5 indicating a model that performs no better 
than random. AUC can be useful in assessing the performance of a model because it is 
independent of the classification threshold and can provide an overall measure of the 
model´s accuracy. It also allows for the comparison of different models and can be used 
to select the best model for a given dataset. 

AUC was calculated for study II using the DeLong method and the AUC CIs were 
estimated by the sandwich variance estimator. 

DeLong method 

The DeLong method is a statistical method for comparing the AUC of two different 
diagnostic tests.  

The DeLong method was used for study II.  

IQR 

Interquartile range (IQR) is a statistical measure used to describe the spread of a 
dataset. The IQR is defined as the difference between the 75th and 25th percentiles of the 
dataset.   

IQR was used for studies II, III and IV. 
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5 Results 

5.1 Study I 

In this study we analyzed 1,186,045 screening mammograms for 418,041 women. Among 

these mammograms, 972,899 were assessed by high volume readers, while the 

remaining 213,146 were assessed by low-volume readers. A total of 4,723 women were 

diagnosed with breast cancer either at screening or within a period of 12 months. The 

mean age at screening was 54 years (SD 9.5), and the mean age at diagnosis was 59 

years (SD 10.1). The study included 24 high-volume readers and 86 low-volume readers. 

While the sensitivity and specificity measures were similar for both groups, there was a 

notable discrepancy between Q1 (quartile 1) and Q4 (quartile 4), especially regarding 

sensitivity.  

The below table reports the first-reader performance measures (Table 2 article 1). 

 

We also analyzed the screening outcomes according to sensitivity quartile of high-

volume readers based on 10,000 screening mammograms per quartile. The most 

sensitive radiologists (Q4) diagnosed more cancers than the least sensitive radiologists 

(Q1) however, the abnormal interpretation rate was substantially higher for Q4 

compared to Q1. For Q1, 14 cancers were missed and for Q4, 7 cancers were missed.  
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The screening outcomes per 10,000 women for each quartile of high-volume reader 

according to sensitivity can be seen in the below table (Table 3 article 1).  

 

We also examined first reader sensitivity for each tumor subgroup. The molecular 

subtypes were defined according to the St. Gallen consensus (64). Analysis by quartile 

of high-volume readers revealed that the sensitivities for the most sensitive high-

volume readers (Q4) were 85% for invasive cancers and 99% for in situ cancers only 

(high grade). The biggest variation in performance was observed for the basal molecular 

subtype, where the sensitivity for the least sensitive quartile (Q1) was 53%, while the 

sensitivity for the most sensitive quartile (Q4) was 89%.  

Sensitivity for all tumor subgroups can be seen in the table below (Table 4 article 1).  
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Mammograms that were assessed as true-positive or false-negative by the first reader 

can be seen below (Figure 2 article 1). 
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5.2 Study II 

In this study we incorporated 8,805 women and screening examinations, of which 739 

women had been diagnosed with breast cancer and 8,066 women were included as 

healthy controls. The median age at screening was 54.5 years (IQR, 47.4-63.5 years), and 

the median age at diagnosis was 59.8 years (IQR, 49.8-5.8).  

The study examined the AUC of each algorithm for detecting cancer, both overall and 

within subgroups. Overall, the AUC was 0.956 (95% CI, 0.948-0.965) for AI algorithm 1 

(AI-1), 0.922 (95% CI, 0.910-0.934) for AI-2, and 0.920 (95% CI, 0.909-0.931) for AI-3. 

There was a statistically significant difference (P<.001) between AI-1 and the other two 

AI algorithms (AI-2 and AI-3). However, there was no statistical significance for the 

difference between AI-2 and AI-3 (P=.68). Additionally, for all the analyzed subgroups, 

AI-1 displayed a significantly higher AUC compared to AI-2 and AI-3. 

We also calculated the AUC for younger and older women in addition to lower and 

higher breast density. For the best performing algorithm we observed that the AUC was 

lower for younger women in comparison to older; 0.974 for women 55 years or older and 

0.925 for women younger than 55 years. For density the corresponding numbers were 

0.933 for mammograms with high percent density and 0.976 for mammograms with low 

percent density.  

The AUC’s for all algorithms overall and by subgroups can be seen in the table below 

(Table 1 article 2). 

 

Additionally, we compared the performance benchmarks of all algorithms with that of 
the radiologists. After bootstrapping the total simulated screening population consisted 
of 112,924 examinations for healthy women and 739 examinations for women with a 
breast cancer diagnosis. The sensitivities were 81.9 % for AI-1, 77.4% for the first reader, 
80.1% for the second reader and 98.5% for the consensus discussion.  
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There was a statistically significant difference (P=0.03%) in sensitivity between AI-1 and 
the first reader (P=0.03%), while no statistical significance was observed in the 
comparison between AI-1 and the second reader (P=.40) or the consensus discussion 
(P=.11). The specificity of the AI algorithms was pre-defined to match that of the first 
reader, hence it could not be compared.  

In the below table (Table 2 article 2) the screening performance benchmarks for the 
comparison between the AI algorithms and the radiologists can be seen in more detail.  

 

Additionally, we simulated three different scenarios by combining the binary decisions 
of the three AI algorithms and the readers. For the first reader, the addition of AI-1 
resulted in a 15% relative increase in cancer detection, whereas the addition of the 
second reader lead to a 12% relative increase. Furthermore, the incorporation of AI-1 
resulted in a 78% relative increase in abnormal interpretations, while the addition of the 
second reader led to a 24% relative increase.  

The results of the simulated scenarios can be seen in more detail in the table below 
(Table 3 article 2). 

 

 

 



 

 41 

The images below are examples of mammograms with cancers either missed by both 
radiologists but identified by AI or missed by all three AI but identified by radiologists 
(eFigure 2 & eFigure 3 article 2). 
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5.3 Study III 

In this study we included 714 women who were diagnosed with breast cancer and a 
random sample of 8,029 healthy controls. After bootstrapping, the total simulated 
screening population comprised 113,120 screening examinations from 8,743 women. The 
median age at screening was 54.1 (IQR=47-63), and the median age at diagnosis was 
60.2 (IQR=50-66).  

We analyzed the distribution of false assessments between AI and the radiologists and 
observed that for AI, RAD 1 (first reader) and RAD 2 (second reader), the FN (false 
negative) assessments were more frequent in high-density than low-density women. 
The FN assessments were distributed between low- and high-density women, with 53 
(42%) and 72 (58%) for AI CAD, 59 (36%) and 104 (64%) for RAD 1, and 47 (36%) and 84 
(64%) for RAD 2. Regarding age, the distribution of FN assessments between younger 
and older women were 69 (55.2%) and 56 (44.8%) for AI CAD, 88 (54%) and 75 (46%) for 
RAD 1 and 76 (58%) and 55 (42%) for RAD 2. In contrast to AI, the FP assessments for 
RAD 1 were more common in younger women (p=<0.001). However, AI had more FP 
assessments for older women compared to both radiologists (p=<0.001).   

Additionally, we conducted a simulation of a double-reading scenario by combining AI 
with RAD 1 and AI with RAD 2, and compared the results with the actual double-reading 
combination of RAD 1 and RAD 2. The addition of AI to any radiologists resulted in a 
significantly higher number of false positive assessments (p=<0.001); 6790 (6%) for AI + 
RAD 1; 6,202 (5.5%) for AI + RAD 2 and 4,382 (3.9%) for RAD 1 + RAD 2. The corresponding 
numbers for false negative assessments were 83 (11.6%); 75 (10.5%) and 98 (13.7%), 
respectively. The largest increase in false positive assessments was noted for older 
(>=55) women when combining AI with radiologists compared to radiologists only, for AI 
+ RAD 1 the increase was 89% and for AI + RAD 2 the increase was 78% (p=<0.001).  

The results from the simulated double-reading can be seen in more detail in the table 
below (Table 3 manuscript 3). 

 

Table 3. Double-reading. Errors in assessments across age, density and tumor characteristics
RAD 1 + RAD 2 FALSE POSITIVE AI+RAD 1 FALSE POSITIVE AI+RAD 2 FALSE POSITIVE

n and %
Total n cases (n=113,120) Total n Absolute % *** Total n Absolute % Change n** Change %** P -value**** Total n Absolute % Change n** Change %** P -value****
All false positive 4,382 3.9% 6,790 6.0% +2,408 +55% <0.001 6,202 5.5% +1,820 +42% <0.001

Age<55 2,828 2.5% 3,850 3.4% +1,022 +36% <0.001 3,430 3.0% +602 +21% <0.001
Age>=55 1,554 1.4% 2,940 2.6% +1,386 +89% <0.001 2,772 2.5% +1,218 +78% <0.001

Low-density 1,988 1.8% 3,136 2.8% +1,148 +58% <0.001 2,814 2.5% +826 +42% <0.001
High-density 2,394 2.1% 3,654 3.2% +1,260 +53% <0.001 3,388 3.0% +994 +42% <0.001

RAD 1 +RAD 2 FALSE NEGATIVE AI+RAD 1 FALSE NEGATIVE AI+RAD 2 FALSE NEGATIVE
All false negative
Cancer(n=714) 98 13.7% 83 11.6% -15 -15% 0.233 75 10.5% -23 -24% 0.062

Age <55 63 8.8% 56 7.8% -7 -11% 0.464 51 7.1% -12 -19% 0.202
Age >=55 35 4.9% 27 3.8% -8 -23% 0.293 24 3.4% -11 -31% 0.139

Low-density 29 4.1% 24 3.4% -5 -17% 0.475 22 3.1% -7 -24% 0.308
High-density 69 9.7% 59 8.3% -10 -15% 0.331 53 7.4% -16 -23% 0.113

Histology* (n=616) 86 (12 missing)
Ductal 74 12.0% 61 9.9% -13 -18% 0.229 56 9.1% -18 -24% 0.090
Lobular 10 1.6% 8 1.3% -2 -20% 0.616 6 1.0% -4 -40% 0.291
Other 2 0.3% 1 0.2% -1 -50% 0.556 2 0.3% 0 0% 1.000

Invasiveness (n=700) 91 (7 missing)
Invasive component 86 12.3% 70 10.0% -16 -19% 0.171 64 9.1% -22 -26% 0.055
In situ only 5 0.7% 5 0.7% 0 0% 1.000 5 2.3% 0 0% 1.000

Molecular subtype (n=573) 75 (23 missing)
Luminal A 53 9.2% 45 7.9% -8 -15% 0.393 37 6.5% -16 -30% 0.076
Luminal B 9 1.6% 6 1.0% -3 -33% 0.401 6 1.0% -3 -33% 0.401
Her2-overexpressing 4 0.7% 4 0.7% 0 0% 1.000 4 0.7% 0 0% 1.000
Basal 9 1.6% 7 1.2% -2 -22% 0.578 8 1.4% -1 -11% 0.786

*) Ductal includes tumors that are only ductal as well as mixed tumors with a ductal component
**) Change is the total number of false assessments for AI + RAD divided by the total number of false assessments for RAD 1 + RAD 2
***) Absolute % is the number of false assessments divided by all examinations
****) P-value for the absolute difference between AI+RAD and RAD 1+RAD 2
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5.4 Study IV 

During the indicated study period, we analyzed 52,310 examinations of which 3,668 (7%) 
women had above AISmartDensity threshold and 3,245 (6.2%) were invited to 
participate. Of those invited, 1,180 consented to participate, and 592 women were 
randomized to complementary MRI screening. The median age of women invited to the 
study was 58 (IQR;49-66). 

The study population can be seen in detail in the flowchart below (Figure 1 manuscript 
4). 

 

In this interim report we evaluated the outcomes of MRI and biopsy for the 481 (81%) 
women who underwent MRI. The median AISmartDensity score was 2.39 (IQR;2.15-2.87). 
Out of all completed MRI examinations, 399 (83%) were categorized as BI-RADS 1-2, 48 
(10%) had a BI-RADS 3 finding, 20 (4%) had a BI-RADS 4 finding and 14 (3%) had a BI-
RADS 5 finding. Biopsies were guided by ultrasound for 54 women, by MRI for 4 women 
and by stereotactic biopsy for 1 woman. Among women who underwent biopsy, 48% had 
breast cancer. CDR was 58.2 per 1,000 MRI examinations. For all BI-RADS 3-5 
examinations, PPV and FPR were 34% and 13%, respectively.  
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The MRI and biopsy outcome can be seen in more detail in the table below (Table 2 
manuscript 4). 

 

Below you can see a case example from the study. A 72-year old woman that underwent 
screening mammography. The images in the middle are from the current 
mammographic examination and the images outwards are from the previous 
examination two years ago. There were no signs of malignancy on her examination and 
she was declared healthy. She scored above threshold AISmartDensity and was invited 
to the study and randomized to MRI.  

 

Table 2. MRI and Biopsy outcome

Total, n Not Biopsied Biopsied Benign* (n) Cancer * (n) CDR** PPV of BIRADS 3-5
BI-RADS 1 304 N/A N/A N/A N/A N/A N/A
BI-RADS 2 95 N/A N/A N/A N/A N/A N/A
BI-RADS 3 48 24 24 19 5 N/A 10%
BI-RADS 4 20 1 19 8 11 N/A 55%
BI-RADS 5 14 0 14 2 12 N/A 86%
All, n 481 25 59 31 28 58.2 34%

*) Biopsy verified
**) CDR = Cancer Detection Rate (per 1000 examinations).
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On the MRI examination below you can see a BI-RADS 3 finding in the right breast.  

 

The second look ultrasound revealed a suspicious lesion that was biopsied.  

  

She underwent surgical excision and the pathology report revealed an invasive cancer 
with mucinous differentiation and DCIS.  
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6 Discussion 

6.1 Study I 

In this study we explore the performance benchmarks for first readers of screening 

mammograms based on a dataset of more than 1 million screening examinations.  

In our study the sensitivity and specificity were similar between low- and high-volume 

readers. These results suggest that there is no significant difference in sensitivity and 

specificity between low- and high-volume readers. This means that readers who 

interpret fewer mammograms perform just as well as those who interpret a larger 

volume of mammograms in terms of detecting breast cancers and avoiding false 

positives. Additionally, we observed significant variations in sensitivity among individual 

high-volume readers. Interestingly, this indicates that the experience level of radiologists 

may not be the only factor that affects their accuracy in interpreting mammograms. 

Previous studies have reported contradictory data regarding the relationship between 

experience level and accuracy in interpreting mammograms (175, 176, 177), this 

underscores the need for further research into this topic. It is possible that other factors, 

such as the complexity of the cases presented or the training of the radiologists, may 

influence the relationship between experience level and accuracy in mammogram 

interpretation.  

Another key finding was that radiologists who operated at higher sensitivity levels had a 

lower rate of false-negative screenings by the first reader, which could indicate a 

reduced incidence of interval cancers. However, these same radiologists also had a 

higher incidence of abnormal interpretations, which could cause additional recalls. These 

findings are consistent with a prior study by Burnside et al. (178) which establishes a 

correlation between higher recall rates and lower interval cancer rates. This highlights 

the importance of a balance between sensitivity and specificity when interpreting 

mammograms to optimize the detection of breast cancer while minimizing the number 

of unnecessary recalls.   

Another important finding was the difference in sensitivity observed among radiologist 

for different tumor subgroups. We found that the most sensitive radiologists had a 99% 

sensitivity level for high-grade in situ cancers, in contrast to 85% for invasive cancers. 

The greater sensitivity for in situ cancers could potentially be explained by their 

mammographic appearance of calcifications. Calcifications are generally visible on a 

mammogram and often lack accompanying clinical symptoms, making them less likely 

to be detected by the woman (89, 179, 180).  

Finally, our study found that the largest difference in performance among radiologists 

was observed for the basal molecular subtype, with the most sensitive quartile 
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detecting 89% and the least sensitive quartile detecting only 53%. This difference in 

sensitivity could be partly explained by the fact that basal cancers often have benign 

mammographic findings that make them easier to miss (181).  

6.2 Study II 
 
In this study we evaluated the performance of three commercially available AI systems 
for screening mammography and compared them to the performance of the 
radiologists.  
 
We observed a difference in the AUC among the three AI systems ranging from 0.920 
to 0.956. The difference in AUC among the three AI systems suggests that some AI 
algorithms may perform better than others. We also found that the best AI algorithm 
reached, and in some comparisons surpassed, the performance level of radiologists in 
assessing screening mammograms with a sensitivity level of 81.9%. Additionally, we 
found that combining the first reader with the best algorithm identified more cancer 
cases than combing the first and second readers.  
 
A subgroup analysis revealed a decreased performance for younger women and 
women with higher mammographic breast density. This is consistent with previous 
studies that have concluded that there is a decreased mammographic sensitivity for 
younger women and women with higher breast density (26, 182, 183, 184). These results 
highlight the need for improvement in the performance of the AI systems in these 
subgroups. 
 
The superior performance of AI-1 compared to the other two algorithms may be due to 
factors such as its larger training dataset, pixel-level annotations, higher capacity 
backbone and data augmentation techniques. Additionally, AI-1 was very robust as it 
performed well on images acquired from different equipment (it was trained on 
images from GE equipment and the images in the study was acquired on Hologic 
equipment) and on a different population (South Korean women vs Scandinavian 
women in the study). The superior performance of AI-1 indicate that for developing 
algorithms, the volume of cases may hold greater significance than the diversity of 
vendors or patient populations used in the training of the algorithm.    
 
Overall, the results indicate that AI systems have the potential to improve the 
accuracy and efficiency of screening mammography, but further research is needed to 
optimize the performance and address potential limitations.  
 
Freeman et al. (160) conducted a systematic review of 12 studies that focused on the 
use of AI for image analysis in breast cancer. One of the studies included in the review 
was our study, study II. The authors noted that there was a lot of bias present in the 
reviewed studies, which could affect the generalizability of the results. Their 
conclusion was that the current evidence is not yet sufficient to determine the 
accuracy of AI in screening. They suggested that further prospective studies are 
needed to evaluate the effectiveness of AI in breast cancer screening programs. For 
our study, the authors noted bias in the selection of randomly chosen controls. 
However, random selection processes are designed to avoid bias and was partly why 
we chose randomization. Furthermore, the authors of the review indicated that the 
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applicability of the studies to European or UK breast cancer programs was low. 
However, our study was based on a true population-based screening cohort and also 
compared the performance of the AI systems with the decision from the consensus 
discussion making it fully applicable to European breast cancer programs. 
Nonetheless, I fully agree with their statement regarding the need for further 
prospective studies to evaluate the potential benefits and limitations of AI in clinical 
practice.  

6.3 Study III 
In this study we evaluated the differences and similarities in false assessments by an 
AI algorithm and radiologists in mammography screening, with a focus on the impact 
of age and breast density. 
 
We found that a younger patient age group caused more FP assessments for 
radiologists than for AI, but there was no associated decrease in FN assessments. This 
is consistent with prior studies that have reported higher FP rates among younger 
women, which decreased with increasing age (185, 186). 
 
On the contrary, breast density did not cause a difference in FP assessments between 
radiologists and AI, but radiologists made more FN mistakes for high-density women 
compared to AI. This is in line with previous studies that demonstrated the masking 
effect of dense breast tissue, making it harder for radiologists to detect cancers in 
these women (26, 40, 41, 42, 43, 44, 45). 
 
We also found that adding AI as a second reader in a double-reading simulation 
decreased the FN assessments for high-density women, leading to an improvement in 
diagnostic performance of assessments in dense breasts. This was most notable for 
high-density older women. These results anticipate that radiologists might be cautious 
when assessing images for younger patients, leading to both a higher FP rate for 
younger high-density women and a higher FN rate for older high-density women.  
 
Overall, the study highlights the potential benefits of incorporating AI as a second 
reader in mammography screening, particularly for high-density women.  

The role of breast density in optimizing breast cancer screening is increasingly 
becoming an important topic of discussion and the results of this study emphasize the 
importance of elevating that discussion. In addition to making it more difficult for 
radiologists to identify tumors on mammography, dense breast tissue serves as an 
independent risk factor for breast cancer (10, 26, 40, 187). In the United States, some 
states have been reporting breast density in mammography reports over the past years, 
while others have not. However, the FDA recently (2023) updated its regulations, 
mandating breast density reporting in all US states. Since 2022, EUSOBI (European 
Society Of Breast Imaging), also recommend informing women about their breast 
density and its diagnostic and prognostic implications. Additionally, they recommend 
supplemental screening for women with extremely dense breasts, preferably with MRI. 
By increasing awareness of breast density and developing individualized screening 
plans, early detection of breast cancer and more effective treatment can be provided. 
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6.4 Study IV 
In this study we present interim results for ScreenTrust MRI, a prospective clinical trial 
using AI to select women for supplemental MRI examinations in breast cancer screening. 
 
We found that supplemental MRI screening after a negative screening mammogram in 
women with above threshold AISmartDensity resulted in a CDR of 58.2 cancers per 
1,000 examinations. Many studies have explored supplemental screening methods to 
improve the cancer detection rate in women with dense breasts.  
 
Recently, a meta-analysis conducted  by Hussein et al. (133) aimed to evaluate different 
supplemental screening methods for women with dense breasts and negative 
mammogram results. Out of 22 studies, only three studies covered breast MRI. The CDR 
for MRI was 25.7 per 1,000 examinations. The three MRI studies evaluated had different 
inclusion criteria, age range and study designs than in our study, this could account for 
the differences in CDR. The CDR for the study by Bakker et al. was 16.5 per 1,000 
examinations, whereas the studies by Kuhl et al. and Chen et al. reported rates of 28.9 
per 1,000 examinations and 33.5 per 1,000 examinations, respectively.  
 
In our study the CDR was higher than that reported in all the MRI studies included in the 
meta-analysis. However, among the studies analyzed Chen et al. (188) had the highest 
CDR, although the indication for MRI in their study was unclear. Additionally, the ethnic 
composition of the study differed from our study. Also, it is important to note that China 
has a lower screening rate for women compared to Western countries (189), and Asian 
women typically have more dense breast tissue than European women and an earlier 
age of breast cancer onset (190, 191). These factors are all associated with advanced 
stage breast cancer and could explain the higher CDR in the study by Chen et al. 
compared to the other two studies. When comparing the results of our study to the 
results of the DENSE trial by Bakker et al. we note some similarities but also certain 
differences. The Dutch screening program is similar to the Swedish program with a two 
view mammography acquired biannually and assessed by two independent radiologists. 
However, the difference is the age of which women are invited, the Dutch program 
invites women 50 to 75 years of age unlike the Swedish program that invites women 40 
to 74 years of age.  

While mammography remains the standard screening tool for breast cancer, it has its 
limitations, particularly in women with dense breast tissue (10, 40). MRI has 
demonstrated a greater sensitivity for detecting breast cancer in this patient group (132, 
133). However, replacing mammography with MRI for all women in breast cancer 
screening is not feasible due to MRI being more expensive and time consuming 
compared to mammography. Therefore, it is essential to identify the women who would 
benefit the most from a supplemental MRI examination. While the recommendation by 
EUSOBI to offer MRI to all women with extremely dense breasts seems promising, our 
results suggest that using artificial intelligence to select women for supplemental MRI 
screening after negative mammography yields a higher cancer detection rate than using 
breast density as a selection criterion.  
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7 Conclusions 
In this thesis we have shown that the incorporation of AI in mammography screening 

can improve the accuracy and efficiency of breast cancer detection. So far, the breast 

cancer screening process has remained uniform for all women in screening despite the 

growing scientific evidence regarding the promising use of AI and the importance of 

additional imaging for women with dense breasts. The incorporation of AI into breast 

cancer screening has great possibilities and can facilitate tailored screening approaches 

to ensure that those who are at higher risk of breast cancer receive more intensive 

screening or screening with different modalities. The continued progress in modalities 

like tomosynthesis, contrast enhanced mammography and MRI, has the potential to 

make the transition towards individualized screening more achievable. 

In study I, we determine a range of screening mammography benchmarks, that can be 

useful for comparing the performance of standalone AI systems and selecting an 

appropriate operating point for AI.  

In study II,  we evaluate three commercial AI algorithms and conclude that the best 
performing algorithm could assess screening mammograms with a diagnostic 
performance exceeding that of radiologists.  

In study III, we determine several differences in false assessments between AI and 
radiologists in mammography screening and highlight that AI can have an important 
complementary role when combined with radiologists, not only to reduce the risk of 
ageism amongst women attending screening but also to increase sensitivity for high-
density women. 

In study IV, we evaluate the efficiency of AI in identifying women with undetected 
cancer after negative screening mammography. We conclude that using AI to triage 
women with high AISmartDensity scores to supplemental MRI, diagnoses a considerable 
number of undetected cancers in mammography screening. Employing AI as a selection 
method for supplemental MRI screening results in a greater cancer detection rate than 
using breast density. 

To summarize, the results presented in this thesis demonstrate the significant potential 

of AI in tumor detection. As research and development in this field continues to 

advance, we can expect further improvements in the accuracy of AI systems, ultimately 

leading to better patient outcomes and more individualized screening.  
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8 Ethical considerations 
The possibilities for AI within breast radiology are limitless and it is crucial that the 

ethical considerations are prioritized in the design and implementation of the AI 

systems. 

One of the most significant ethical considerations when implementing AI systems is 

systemic bias. AI systems are only as good as the data they are trained on, and if that 

data is biased in any way, the AI system will reflect that bias. For example, if an AI 

system is trained on data that reflects bias, the AI system will perpetuate those biases, 

creating inequality in assessments - biased input leading to biased output. An algorithm 

trained mainly on one ethnic population might not work as well in another ethnic 

population causing prejudice. To combat this issue, its crucial to ensure that the data 

used to train AI systems is diverse and representative of all groups without the potential 

of bias.  

Another important ethical consideration when implementing AI systems is transparency. 

AI systems often operate in opaque ways, which can make it difficult to understand why 

they make certain decisions. This lack of transparency can lead to distrust and 

suspicion of AI systems. For the algorithm to be as correct as possible in assessment 

making one must understand what the algorithm does and why, and also how it was 

trained and on what data. It’s essential to ensure that AI systems are transparent and 

explainable, to do this we must tackle the ”black-box” problem and know why and how 

AI reached its conclusion.  

The question of responsibility has been up for debate many times. Who bears the legal 

responsibility when a cancer is missed? It all depends on how the algorithm is 

implemented. If the algorithm only acts as an advisory, the doctor that makes the 

decision might be the one that bears legal responsibility. However, implementation of 

tools that streamline assessments may lead to a superstition towards the AI algorithm 

and the doctor might make decisions based on the algorithm without any real influence; 

for example when the production requirements are high and the assessments can’t be 

as rigorous. It’s crucial to ensure that there is a clear chain of responsibility and 

accountability for all different scenarios when implementing AI systems in medical 

imaging.  

In conclusion, I believe that the implementation of artificial intelligence can transform 
breast radiology. However, the ethical discussion must be lifted forward and proper 
principals must be endorsed before the algorithms are installed in clinical practice. 
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All studies included in the thesis have an ethical approval from the Ethical review board. 
 
Sub studies I, II and III; DNR: 2016/2600-31 

In these two retrospective studies we analyze data from all patients that underwent 

mammograms in Stockholm county during the years 2008-2015. All data is anonymous. 

The studies consist of a large number of patients with coded data, securely stored at 

Karolinska University Hospital Solna, to ensure the safety of patient personal integrity. 

Sub study IV; DNR: 2020-00487 

It is a randomized clinical trial. Patients undergoing supplemental MRI have given their 

written consent. All data is securely stored at Karolinska University Hospital Solna, to 

ensure the safety of patient personal integrity. 
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9 Points of perspective 
Breast cancer is the most common type of cancer affecting women. The last decade 

there have been many advances concerning treatment, prevention and diagnostics. The 

progress within breast cancer care will continue in the future and the implementation of 

artificial intelligence will have a major role. Artificial intelligence has the potential to 

revolutionize breast radiology by enabling more accurate and efficient diagnosis of 

breast abnormalities. The use of AI in clinical practice will enhance patientcare, reduce 

expenses, provide improved decision-making and reduce radiologist workload.  

Currently mammography is the only tool used in breast cancer screening. However the 

last years have brought on an intensive discussion about how breast cancer screening 

can be made more efficient. I believe that this can be achieved by individualizing the 

screening program and incorporating AI in the clinical workflow. The latest guidelines 

from EUSOBI have recommended a shift towards more individualized screening and 

advocate supplemental screening with MRI for women with dense breasts. Using breast 

density as an indicator for supplemental MRI screening is promising but might be 

difficult to implement due to limited MRI resources and increased costs. However, 

utilizing an artificial intelligence model to further narrow down which women that require 

additional imaging could be a more sustainable and cost-effective solution.  

The last years there has been an uprise in the amount of research regarding artificial 
intelligence and breast imaging, the study results have shown that AI is a promising tool 
that have evolved and perform just as well as radiologists and sometimes even better. 
However, most studies have been retrospective and on limited data. There is a need for 
more prospective studies where we evaluate AI in a clinical setting to get a better 
understanding of different problems that might arise and how the implementation will 
affect the daily workflow.  

In conclusion, I believe that the future of AI in breast radiology is bright as it has the 
potential to improve mammography screening by reducing the inter-reader variation in 
radiologist assessments and help identify cancers at an earlier stage. Additionally, AI can 
provide a more accurate estimation of breast cancer risk. While being optimistic, one 
must also keep in mind that the introduction of AI in breast radiology will come with its 
challenges. However, with proper infrastructure, maintenance and monitoring we can 
ensure patient safety and quality patient care.   
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10 Sammanfattning på Svenska (Swedish summary) 
Bröstcancer är den vanligaste formen av cancer bland kvinnor i världen. I Sverige 

diagnostiseras cirka 9,000 kvinnor med bröstcancer varje år. Dödligheten började 

minska på 1980- och 1990-talet, då många länder införde mammografiscreening. 

Mammografiscreening används i flera länder runt om i världen och implementeringen har 

bidragit till tidigare diagnos vilket har minskat dödligheten med 30-40%. De flesta 

kvinnor som får en bröstcancer diagnos är över 50 år, men även yngre kvinnor kan 

drabbas. I de allra flesta fall finns inga identifierbara riskfaktorer förutom ålder och kön. 

Ytterligare riskfaktorer som är kopplade till bröstcancer är brösttäthet, ärftlighet, 

reproduktiv hälsa, amning, fetma, hormonterapi och alkohol konsumtion.  

Nästan 65% av all bröstcancer upptäcks genom mammografiscreening. I Sverige bjuds 

alla kvinnor mellan 40-74 år in till mammografiscreening var 18-24 månad. 

Screeningsprocessen innebär att man tar två bilder av varje bröst och frågar om kliniska 

symptom från brösten såsom en nytillkommen knöl eller sekretion från bröstvårtan. Alla 

screeningundersökningar granskas av två bröstradiologer. Om mammografi-

undersökningen flaggas på grund av en misstänkt förändring i bröstet eller om kvinnan 

har kliniska symptom, granskas undersökningen ånyo vid en konsensusdiskussion. Under 

konsensusdiskussionen granskar minst två erfarna bröstradiologer bilderna och tar 

beslut om kvinnan är frisk eller om hon behöver kallas tillbaka för vidareutredning.  

Mammografiscreeningen står inför många utmaningar, såsom brist på bröstradiologer, 

betydande variation i bedömningarna mellan radiologer, en lägre sensitivitet för kvinnor 

med täta bröst samt en hög andel intervallcancrar. Intervallcancer är bröstcancer som 

upptäcks kliniskt mellan två screeningsundersökningar. De är vanligtvis större vid 

tidpunkten för upptäckt och de är kopplade till en högre mortalitet. För att lösa dessa 

utmaningar, kan artificiell intelligens vara ett användbart verktyg. Implementeringen av AI 

skulle kunna effektivisera screeningsprocessen genom att upptäcka cancer i ett tidigare 

skede, minska frekvensen av intervallcancer och skräddarsy screeningsprocessen och 

göra den mer individualiserad. 

I denna avhandling har vi analyserat hur man kan använda artificiell intelligens för och ta 

itu med de ovannämnda utmaningarna.  

I studie I, analyserade vi cirka 1,000,000 mammografiscreenings bedömningar från 

radiologer i Stockholms län. Vi undersökte den övergripande prestandan men även 

uppdelat efter olika tumörkarakteristika. Resultaten visade på en stor variation i 

prestanda och sensitiviteten varierade beroende på tumör typ.  

I studie II, utvärderade vi prestandan hos tre kommersiella algoritmer och jämförde dem 

med de retrospektiva bedömningarna från radiologerna i studie I. Resultaten visade att 
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den algoritm som presterade bäst överträffade radiologerna i bedömningen av 

screeningundersökningarna.  

I studie III, undersökte vi om det fanns oenigheter i  bedömningarna mellan AI och 

radiologerna. Vi undersökte vidare huruvida brösttäthet och tumörkarakteristika 

påverkade bedömningarna. Resultaten visade att AI kan ha en viktig kompletterande roll 

när den kombineras med radiologerna, särskilt för kvinnor med hög brösttäthet. 

I studie IV, genomför vi en randomiserad klinisk studie för och utvärdera effekten av ett 

AI-baserat urval till kompletterande screening med MR. Studien pågår fortfarande, men 

hittills är resultaten hoppgivande. De preliminära resultaten visar att cancerdetektions 

frekvensen är betydligt högre vid AI-baserat urval än vad som rapporterats för 

urvalsmetoder baserade på brösttäthet. 

Sammanfattningsvis har vi visat att användningen av AI för detektion av bröstcancer kan 

öka precisionen och effektiviteten inom mammografi-screening. 
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