1,364 research outputs found

    Rostering from staffing levels: a branch-and-price approach

    Get PDF
    Many rostering methods first create shifts from some given staffing levels, and after that create rosters from the set of created shifts. Although such a method has some nice properties, it also has some bad ones. In this paper we outline a method that creates rosters directly from staffing levels. We use a Branch-and-Price (B\&P) method to solve this rostering problem and compare it to an ILP formulation of the subclass of rostering problems studied in this paper. The two methods perform almost equally well. Branch-and-Price, though, turns out to be a far more flexible approach to solve rostering problems. It is not too hard to extend the Branch-and-Price model with extra rostering constraints. However, for ILP this is much harder, if not impossible. Next to this, the Branch-and-Price method is more open to improvements and hence, combined with the larger flexibility, we consider it better suited to create rosters directly from staffing levels in practice

    Integrating nurse and surgery scheduling.

    Get PDF
    Scheduling; Surgery scheduling; International; Theory; Applications; Euro; Researchers;

    Scheduling trainees at a hospital department using a branch-and-price approach.

    Get PDF
    Scheduling trainees (graduate students) is a complicated problem that has to be solved frequently in many hospital departments. We will describe a trainee scheduling problem encountered in practice (at the ophthalmology department of the university hospital Gasthuisberg, Leuven). In this problem a department has a certain number of trainees at its disposal, which assist specialists in their activities (surgery, consultation, etc.). For each trainee one has to schedule the activities in which (s)he will assist during a certain time horizon, usually one year. Typically, these kind of scheduling problems are characterized by both hard and soft constraints. The hard constraints consist of both work covering constraints and formation requirements, whereas the soft constraints include trainees' preferences and setup restrictions. In this paper we will describe an exact branch-and-price method to solve the problem to optimality.Branch-and-price; Constraint; Health care; Problems; Requirements; Scheduling; Staff scheduling; Time; University;

    A Constraint Programming and Hybrid Approach to Nurse Rostering Problems

    Get PDF
    This paper describes a decision support methodologies for nurse rostering problem in a modern hospital environment. In particular, it is very important to efficiently utilise time and effort, to evenly balance the workload among people and to attempt to satisfy personnel preference. We presented a complete model to formulate all the complex real-world constraints, solution approach and Hybrid approaches to nurse rostering problem. DOI: 10.17762/ijritcc2321-8169.15037

    Employee substitutability as a tool to improve the robustness in personnel scheduling

    Get PDF

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    Designing the Liver Allocation Hierarchy: Incorporating Equity and Uncertainty

    Get PDF
    Liver transplantation is the only available therapy for any acute or chronic condition resulting in irreversible liver dysfunction. The liver allocation system in the U.S. is administered by the United Network for Organ Sharing (UNOS), a scientific and educational nonprofit organization. The main components of the organ procurement and transplant network are Organ Procurement Organizations (OPOs), which are collections of transplant centers responsible for maintaining local waiting lists, harvesting donated organs and carrying out transplants. Currently in the U.S., OPOs are grouped into 11 regions to facilitate organ allocation, and a three-tier mechanism is utilized that aims to reduce organ preservation time and transport distance to maintain organ quality, while giving sicker patients higher priority. Livers are scarce and perishable resources that rapidly lose viability, which makes their transport distance a crucial factor in transplant outcomes. When a liver becomes available, it is matched with patients on the waiting list according to a complex mechanism that gives priority to patients within the harvesting OPO and region. Transplants at the regional level accounted for more than 50% of all transplants since 2000.This dissertation focuses on the design of regions for liver allocation hierarchy, and includes optimization models that incorporate geographic equity as well as uncertainty throughout the analysis. We employ multi-objective optimization algorithms that involve solving parametric integer programs to balance two possibly conflicting objectives in the system: maximizing efficiency, as measured by the number of viability adjusted transplants, and maximizing geographic equity, as measured by the minimum rate of organ flow into individual OPOs from outside of their own local area. Our results show that efficiency improvements of up to 6% or equity gains of about 70% can be achieved when compared to the current performance of the system by redesigning the regional configuration for the national liver allocation hierarchy.We also introduce a stochastic programming framework to capture the uncertainty of the system by considering scenarios that correspond to different snapshots of the national waiting list and maximize the expected benefit from liver transplants under this stochastic view of the system. We explore many algorithmic and computational strategies including sampling methods, column generation strategies, branching and integer-solution generation procedures, to aid the solution process of the resulting large-scale integer programs. We also explore an OPO-based extension to our two-stage stochastic programming framework that lends itself to more extensive computational testing. The regional configurations obtained using these models are estimated to increase expected life-time gained per transplant operation by up to 7% when compared to the current system.This dissertation also focuses on the general question of designing efficient algorithms that combine column and cut generation to solve large-scale two-stage stochastic linear programs. We introduce a flexible method to combine column generation and the L-shaped method for two-stage stochastic linear programming. We explore the performance of various algorithm designs that employ stabilization subroutines for strengthening both column and cut generation to effectively avoid degeneracy. We study two-stage stochastic versions of the cutting stock and multi-commodity network flow problems to analyze the performances of algorithms in this context

    Crew Planning at Netherlands Railways: Improving Fairness, Attractiveness, and Efficiency

    Get PDF
    The development and improvement of decision support voor crew planning at Netherlands Railways (NS
    • …
    corecore