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Chapter 1

Introduction

Netherlands Railways (abbreviated as NS, from the Dutch name Nederlandse Spoor-
wegen) is the major public transport operator in the Netherlands, serving more than
1.3 million passengers on an average working day, and employing a workforce con-
sisting of more than 3,000 drivers and 2,500 guards spread over 28 different crew
depots. Each day, these drivers and conductors operate over 5000 timetabled trips,
leading to an extremely challenging crew planning problem. As a result, Operations
Research (OR) techniques have been used intensively to support (parts of) the crew
planning process at NS.

NS is by far the largest operator in the Netherlands: Approximately 90% of the
passengers travel with NS. As a result, the operations of NS have a major impact
on society: The societal costs of disturbances in the railway system or strikes of NS
personnel are estimated to be hundreds of millions of euros∗. In both cases, crew
planning plays an important role: In the case of disturbances, the re-planning of
crew is an important part of an efficient response, whereas strikes can be avoided
by incorporating the demands of the employees in the crew planning process. In
recent years, decision support has been developed for crew planning at NS (Abbink
2014), yet there remains room for improvement: Parts of the planning process are
still solved sequentially (due to their complexity), or even planned by hand. In this
thesis, we aim at further improving the crew planning process, making the next step
towards decision support for integrated crew planning at NS.

∗sources (in Dutch): https://www.kimnet.nl/mobiliteitsbeeld/mobiliteitsbeeld-2017 and
http://www.seo.nl/pagina/article/ov-staking-kostte-honderden-miljoenen/.
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1.1 Planning Problems and Decision Support

The planning problems at NS can be decomposed based on the involved resources
and the considerd planning horizons (Abbink 2014). The three key resources at NS
are rail-infrastructure (owned by the government), rolling stock, and crew, leading
to planning problems concerning line planning, timetabling, rolling stock allocation
and circulation, and crew scheduling and rostering. Each of the planning problems
can be roughly categorized into four planning phases, according to different plan-
ning horizons: strategic, tactical, and operational planning; and operational control
(Abbink 2014). Strategic planning problems, i.e., long term decision making, span
numerous years, and include investing in new rolling stock, the construction of the
line plan (i.e., where and with which frequency trains are operated), and the hiring
and training of new crew. Tactical planning problems have a planning horizon of a
few months up to a year. Important tactical planning problems are, for example,
the construction of the generic timetable, rolling stock schedule, and crew schedule.
Each of these problems is solved in a generic context, i.e., a ‘typical’ week of work
is assumed when solving the problem. The details of these plans are then further
developed in the operational planning phase, which has a time horizon of roughly
one month. In this phase of the planning process, the finalized plans are obtained.
In particular, the generic plans constructed in the tactical planning phase are now
transformed into precise plans for each calender day. Finally, operational control
focuses on real-time adjustments such as adjusting the operated timetable due to
delays or updating the crew schedules whenever a crew member calls in sick.

Every planning phase has unique characteristics and hence calls for different solution
approaches. In strategic planning, for example, forecasting is of utmost importance,
whereas in many other planning phases parameters can be assumed to be fixed. In
the tactical and operational planning phases, on the other hand, we already consider
a lot of detail and hence computationally difficult problems arise. It is therefore no
surprise that the tactical and operational planning problems are strongly represented
in OR literature. Finally, operational control concerns real-time problem solving, and
is therefore often approached using heuristics or even simple ‘rules of thumb’. As a
result, a wide variety of planning methods is applied at NS, ranging from state-of-
the-art mathematical programming techniques to simulation-based optimization, all
with the goal of operating the Dutch railway network as efficiently as possible. For a
thorough discussion of the different planning problems and solution approaches, we
refer to Huisman et al. (2005b) and Kroon et al. (2009), and references therein.
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1.2 Crew Planning at Netherlands Railways

In this thesis, we focus on crew planning in the tactical and operational planning
phases (see, for example, Abbink et al. (2018)). We consider the timetable and
rolling stock schedules to be given, i.e., the tasks (indivisible blocks of work) are
considered input, and the goal is to assign these tasks to the crew members. In this
setting, crew planning at NS is typically decomposed into two phases: crew scheduling
and crew rostering. In crew scheduling, the days of work (i.e., duties) have to be
constructed, and in crew rostering the constructed duties have to be assigned to the
crew members. The construction of duties follows from a centralized process: The
duties for all crew bases throughout the Netherlands are constructed simultaneously.
The duties are then communicated with the individual crew bases, which then, in a
decentralized fashion, each construct the rosters for their crew members.

1.2.1 Crew Scheduling

In crew scheduling, the focus is mainly on operational cost (i.e., the number of
necessary crew members), together with the constraints imposed in the collective
labor agreement. Among these constraints are a maximum duty length (depending
on the start time of the duty) and a proper meal break for every duty exceeding a
certain length. Furthermore, each duty should start and end at the same crew base.
Figure 1.1 gives an example of three duties, involving the major stations The Hague
(Gvc), Zwolle (Zl), Utrecht (Ut), Rotterdam (Rtd), and Groningen (Gn). Note that
each duty starts and ends at the same station. Furthermore, a proper meal break
(indicated by a star) is specified, and the duty does not exceed 9.5 hours (which is
the maximum length for duties starting after 6 in the morning).

The crew schedule implicitly allocates the work over the different crew bases. Mod-
ern day duty scheduling at NS is based on the ‘Sharing-Sweet-and-Sour’ rules, which
concern the allocation of work among the different crew bases. Developed around
the turn of the century (see Abbink et al. (2005)), this set of rules resolved a seem-
ingly unresolvable conflict between NS and its employees, thereby ending a series
of nationwide strikes shutting down the railway operations. The new rules led to
improved schedules, both from the crew’s and the operator’s point of view.
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Gn

Zl

Ut

Rtd

Gvc

6:00 8:00 10:00 12:00 14:00 16:00
?

UtZl Rtd Ut Zl Gn Zl

6:00 8:00 10:00 12:00 14:00 16:00
?

GnZl Zl Gn Zl

6:00 8:00 10:00 12:00 14:00 16:00
?

UtGvc Gvc Ut Zl Ut Gvc

Figure 1.1: Schematic visualization of the railway network operated by NS and ex-
amples of three duties traversing this network for employees based at Zwolle (Zl) and
The Hague (Gvc). Each block represents a trip. For each trip the departure station
(top left) and/or arrival station (top right) are shown. The star indicates a meal
break.

1.2.2 Crew Rostering

Crew rostering consists of combining the duties into rosters, which are sequences
of duties satisfying numerous labor constraints. Typical constraints consider, for
example, days off, rest times, and the variation of work. The rosters at NS are cyclic,
i.e., multiple employees are working the same roster in a so-called roster group. Each
cyclic roster consists of rows and columns. The rows represent a week of work, and
the columns represent each of the week days (Monday to Sunday). The number of
rows is always equal to the number of employees in the roster group. Each cell (i.e.,
intersection of a row and column) represents a single day of work. Furthermore, each
cell has a specific type (e.g., early duty or rest day). Figure 1.2 shows an example of
a cyclic roster. The numbers indicate the different duties and the top left character
indicates a type for each cell: an Early (E), Late (L), or Night (N) duty; or a rest
day (R). The first row of the roster starts with two late duties, followed by a rest
day, three early duties, and again a rest day.

The employees cycle through the rows of the same roster. Hence, assigning a duty to
a given row in the roster means that the duty is performed every week, but each week
by a different employee of the roster group. This is illustrated in Figure 1.3, which
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Mon Tue Wed Thur Fri Sat Sun
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R E
44

R E
7

E
25

Figure 1.2: Example of a cyclic roster for four employees. The type of each cell
(Early, Late, Night, and Rest) is indicated above the cell, and the numbers indicate
the assigned duties.

‘unfolds’ the roster of Figure 1.2 for the first two employees over the period February
11 until February 24. Note that the schedule for the first employee is obtained from
the first two rows of the roster, and that of the second employee from the second and
third row. The cyclicity implies that duty 105 on Wednesday, which appears in the
second row of the roster, is executed by the second employee on February 13, and by
the first employee on February 20. In this way, each duty is always covered by one
of the employees.

Mon Tue Wed Thur Fri Sat Sun Mon Tue Wed Thur Fri Sat Sun

126 124 54 13 40 105 111 123

11 Feb - 17 Feb 18 Feb - 24 Feb

Schedule for crew member 1.

Mon Tue Wed Thur Fri Sat Sun Mon Tue Wed Thur Fri Sat Sun

105 111 123 118 107 115 108 121 103

11 Feb - 17 Feb 18 Feb - 24 Feb

Schedule for crew member 2.

Figure 1.3: Roll-out of the cyclic roster shown in Figure 1.2 for the first two employ-
ees. The schedules cover the period from February 11 until February 24.

The quality of the cyclic rosters depends on numerous aspects. These aspects include,
for example, the rest times between duties, thereby enforcing a minimum rest time
and avoiding, but not forbidding, rest times close to this minimum, and a maximal
amount of work within a row (i.e., a working week).
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1.2.3 Evaluation and Decision Support

The crew rosters, i.e., the end product of the crew planning phase, can be evaluated
based on three criteria: fairness, attractiveness, and efficiency. The efficiency relates
mostly to the number of employees necessary, and hence is predominantly considered
in the crew scheduling phase. Fairness on the duty level is based on the ’Sharing-
Sweet-and-Sour’ rules, i.e., an equal distribution of work among the crew bases.
These rules naturally extend to crew rostering: The work per base should be equally
distributed among the roster groups of that base. The attractiveness, on the other
hand, relates to the precise rosters, e.g., the rest times and weekly variation within
the roster. Although fairness and attractiveness are closely related, they are also
substantially different, as we will discuss in Chapter 2.

Decision support for crew planning at NS can be considered both state-of-the-art
and non-existing: Duty scheduling is done using a well-designed column generation
algorithm, whereas rostering is still a manual process. The ‘Sharing-Sweet-and-Sour’
rules turned out to be too complex to be taken into account in the manual planning
process, which was a major motivator for succesfull implementation of algorithmic
support tooling (see Abbink et al. (2005)). For the rostering process such an urgent
need did not occur before, although a successful pilot study was conducted in Hartog
et al. (2009). As a result, the construction of the rosters is still a manual process.

1.3 Contributions

The contributions of this thesis are fourfold. Firstly, we present novel optimization
problems which further integrate the crew planning process at NS. In Chapters 2 and
3 we focus on the combination of fairness and attractiveness in crew rostering, thereby
extending the ’Sharing-Sweet-and-Sour’ rules to crew rostering. In particular, we
analyze the explicit trade-off between fairness and attractiveness, in which we show
the trade-off between an equal distribution of work among the roster groups and the
overall (utilitarian) quality of the rosters. Furthermore, in Chapter 5, we propose an
integrated approach towards crew re-planning (i.e., updating the crew schedules due
to planned maintenance), where we exploit additional freedom in the crew rosters to
efficiently re-schedule the crew after disruptions. In this chapter we focus on efficiency
(i.e., minimizing the number of necessary duties), while explicitly assuring that hard
constraints regarding attractiveness (e.g., minimum rest times) are respected.
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Secondly, we develop suitable solution methods for each of the presented problems.
In Chapters 2 and 4 we develop exact branch-and-price solution methods for crew
rostering with and without fairness requirements. To cope with the large instances en-
countered in practice, we also propose sophisticated heuristics: In Chapter 3 we built
upon the exact solution framework proposed in Chapter 2 to obtain efficient heur-
istics for crew rostering with fairness requirements. In doing so, we combine column
generation techniques with state-of-the-art local search techniques. In Chapter 4
we show that good solutions for difficult instances can be found by using heuristic
branching strategies, and, in Chapter 5, we propose a sophisticated column genera-
tion heuristic able to cope with large re-planning instances. In all cases, we obtain
strong lower bounds to assess the solution quality.

Thirdly, we provide rigorous theoretical results to motivate the problems and math-
ematical formulations presented. In Chapter 2, we analyze a class of resource al-
location problems, in which the resource allocation is based on approximate utility
functions. We consider a fairness scheme for this class, inspired by the ‘Sharing-
Sweet-and-Sour’ rules, and analyze this scheme in detail. In particular, we show that
the proposed scheme, on which the mathematical formulation is based, has optimal
properties under the assumption that all employees derive similar utilities. Further-
more, we derive a tight upper bound for the loss of attractiveness for the considered
fairness scheme whenever the utility can differ among employees. In Chapter 4, we
propose a family of formulations for crew rostering, and derive explicit analytical
results regarding the relative strength of the formulations. Furthermore, we show
which type of constraints lead to the theoretically strongest formulation possible.

Finally, we evaluate the performance of all developed solution methods using real-
world data from NS. In Chapters 2, 3, and 4 we consider data from crew base Utrecht,
one of the largest crew bases in the country. In Chapter 5 we consider re-planning
instances based on historical data. By using real-world data from NS, the practical
benefit of the developed solution methodology can readily be examined.

1.4 Thesis Overview

Figure 1.4 gives a schematic overview of the problems considered in each chapter.
In Chapters 2, 3, and 4, we focus on crew rostering on the tactical level (i.e., the
allocation of duties to the roster groups and the construction of the rosters per group)



8 Chapter 1

and in Chapter 5 we consider the simultaneous adjustment of duties and rosters (i.e.,
integrated crew re-planning) in the operational planning phase.

Tactical Planning Operational Planning

D
ut

ie
s

Ro
st

er
s

Construction Duties

Allocation Duties to Groups

Construction Roster per Group

Chapters 2 and 3

Chapter 4

Adjusting Duties

Adjusting Rosters

Chapter 5

Figure 1.4: Schematic overview of the problems considered in this thesis. The vertical
blocks indicate the planning horizon (i.e., tactical and operational planning), and the
horizontal blocks indicate the output of each of the problems (i.e., duties and rosters).
The arcs indicate the (current) order in which the problems are solved, and for each
chapter the considered problems are indicated.

Each chapter in this thesis can be read as a stand-alone work. We recommend, how-
ever, to read the chapters in their natural order. Chapters 2 and 3 follow naturally,
as Chapter 3 builds upon the research presented in Chapter 2. The work in Chapter
4 consists of an in-depth analysis of the modeling techniques used in Chapters 2
and 3. We therefore strongly recommend to read Chapter 4 after Chapters 2 and 3.
The work presented in Chapter 5 has little overlap with the other chapters, and can
therefore easily be read as an independent chapter.

Below, we briefly summarize each chapter and re-state the contributions per chapter.
The chapters are modifications of papers submitted to academic journals, or papers
in the final stage before submission. The work in Chapters 2, 4, and 5 has been



Chapter 1 9

done independently, under close supervision of mentioned co-authors, and the work
in Chapter 3 has been done in close collaboration with the mentioned co-authors.

Chapter 2: T. Breugem, T. Dollevoet, and D. Huisman: Is Equality always desirable?
Analyzing the Trade-Off between Fairness and Attractiveness in Crew Rostering,
currently under second revision at Management Science. This paper has been awarded
the INFORMS RAS 2017 best student paper award.

In this chapter, we analyze the trade-off between perceived fairness and perceived
attractiveness in crew rostering. First, we introduce the Fairness-oriented Crew Ros-
tering Problem (FCRP). In this problem, fair and attractive cyclic rosters have to
be constructed for groups of employees. We consider a fairness scheme motivated by
a class of resource allocation problems, in which the allocation is based on approx-
imate utility functions. We analyze this fairness scheme in detail and derive a tight
upper bound on the relative loss of attractiveness. We then propose a mathemat-
ical formulation for the FCRP and develop an exact branch-price-and-cut solution
method. We conclude by applying our solution approach to practical instances from
NS: We analyze the explicit trade-off curve between fairness and attractiveness, and
confirm the loss of attractiveness due to fair allocations. Thus, in order to generate
high-quality rosters, the explicit trade-off between fairness and attractiveness should
be taken into account.

Chapter 3: T. Breugem, C. Schulz, T. Schlechte, and R. Borndörfer: A Three-Phase
Heuristic for Cyclic Crew Rostering with Fairness Requirements, in preparation for
journal submission.

In this chapter, we consider the Cyclic Crew Rostering Problem with Fairness Re-
quirements (CCRP-FR). In this problem, attractive cyclic rosters have to be con-
structed for groups of employees, considering multiple, a priori determined, fairness
levels. We propose a three-phase heuristic for the CCRP-FR, which combines the
strength of column generation techniques with a large-scale neighborhood search al-
gorithm. The design of the heuristic assures that good solutions for all fairness levels
are obtained quickly, and can still be further improved if additional running time
is available. We evaluate the performance of the algorithm using real-world data
from NS, and show that the heuristic finds close to optimal solutions for many of the
considered instances. In particular, we show that the heuristic is able to quickly find
major improvements upon the current sequential practice: For most instances, the
heuristic is able to increase the attractiveness by at least 20% in just a few minutes.
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Chapter 4: T. Breugem, T. Dollevoet, and D. Huisman: Analyzing a Family of
Formulations for Cyclic Crew Rostering, in preparation for journal submission.

In this chapter, we analyze a family of formulations for the Cyclic Crew Rostering
Problem (CCRP), in which a cyclic roster has to be constructed for a group of
employees. We derive analytical results regarding the relative strength of the different
formulations, which can serve as a guideline for formulating a given problem instance.
Furthermore, we propose a column generation approach, which we use to develop a
branch-and-price solution method. We conclude by applying our proposed solution
method to practical instances from NS. In particular, we show that the computation
time depends heavily on the selected formulation, and that the column generation
approach outperforms a commercial solver on hard instances.

Chapter 5: T. Breugem, T. Dollevoet, and D. Huisman: A Column Generation
Approach for the Integrated Crew Re-Planning Problem, in preparation for journal
submission.

In this chapter, we propose a column generation solution approach for crew re-
planning. The problem of re-scheduling the crew has been formalized as the Crew
Re-Scheduling Problem (CRSP) in Huisman (2007). In the current practice, the feas-
ibility of the new rosters is ‘assured’ by allowing the new duties to deviate only slightly
from the original ones. In the Integrated Crew Re-Planning Problem (ICRPP) we
aim at exploiting exactly this flexibility: The ICRPP considers the re-scheduling of
crew for multiple days simultaneously, thereby allowing more flexibility in the re-
scheduling. We propose a mathematical formulation for the ICRPP and develop a
column generation approach to solve the problem. We apply our solution approach
to practical instances from NS, and show the benefit of integrating the re-scheduling
process.
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Is Equality always desirable?
Analyzing the Trade-Off
between Fairness and
Attractiveness in Crew
Rostering∗

2.1 Introduction

In recent years, the Netherlands has seen numerous strikes from personnel of Neth-
erlands Railways (NS). Reasons for these strikes were, for example, little variation
in work (adding the infamous ‘rondje om de kerk’ or ‘circling the church’, a mocking
reference to repetitive work, to the Dutch vocabulary), or demand for higher staff-
ing levels for certain rolling stock. One of such conflicts led to the development of
the ‘Sharing-Sweet-and-Sour’ rules (‘Lusten-en-Lasten-Delen’ in Dutch), a new set
of scheduling rules aimed at increasing the quality of work. As mentioned in Abbink

∗This chapter, up to minor modifications, is a direct copy of T. Breugem, T. Dollevoet, and
D. Huisman (2017): Is Equality always desirable? Analyzing the Trade-Off between Fairness and
Attractiveness in Crew Rostering.

11
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et al. (2005), one of the key success factors of the project was the openness and trans-
parency during the development of the new rules. Using state-of-the-art Operations
Research techniques, NS was able to generate schedules satisfying the new rules for
all employees, leading to a new agreement between NS and the labor unions. These
events highlight the importance of a participative approach to crew planning. In
particular, they show the importance of incorporating the demands of personnel in
the planning process.

The construction of rosters (i.e., the precise assignment of duties to the employees) is
a major part of the personnel planning process. Unlike many operational problems,
the goal when creating rosters is not to minimize expenses. Instead, the rosters are
evaluated on two different aspects: perceived fairness and perceived attractiveness.
Perceived fairness considers the distribution of work among personnel. In line with
the ‘Sharing-Sweet-and-Sour’ rules, the aim is to balance certain attributes as fairly
as possible over the employees. A first step in achieving this is the use of roster groups.
That is, to use groups of employees that are assigned the same work. This approach
leads to cyclic rosters, as often seen at railway operators and other public transport
companies. In a cyclic roster, each employee of the roster group ‘cycles’ through the
same roster, which implies that each employee performs exactly the same work in
the long term. Although within each group every employee does the same work (and
hence the distribution is fair), it is not necessarily the case that the distribution of
work among roster groups is fair. Perceived fairness therefore takes the distribution
among the different groups into account, aiming for an overall fair allocation of duties.
Perceived attractiveness, on the other hand, focuses on the rosters on an individual
level, that is, on the actual work scheduled. In the attractiveness of the roster, one can
take, for example, the workload over the different weeks into account. Furthermore,
sufficient rest time and other (un)desirable properties can be incorporated.

It is important to note that fairness and attractiveness are distinct concepts: Fairness
considers solely the allocation of work to roster groups, without any regard to the
actual quality of the rosters. Attractiveness, on the other hand, considers solely the
quality of the rosters, without any regard to the bigger picture (i.e., the distribution
of work over the groups). Hence, one can have a very fair, but unattractive, set of
rosters, and vice versa. For example, one can have a balanced distribution of the total
workload over the groups (i.e., a fair allocation), but at the same time a set of rosters
where certain weeks have a very high workload (i.e., unattractive rosters). Hence,
crew rostering is a trade-off between perceived fairness and perceived attractiveness.
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On the one hand, the allocation of duties should be as fair as possible, while on the
other hand, the attractiveness of the rosters should be maximized.

In this chapter, we present a unified approach to crew rostering. This approach
allows for a simultaneous optimization of the perceived fairness and the perceived
attractiveness. We call this problem the Fairness-oriented Crew Rostering Problem,
abbreviated as FCRP. In current approaches, crew rostering is solved in a sequential
fashion. First, an assignment of duties to the groups is made. Then, the attractive-
ness of the separate rosters is optimized. In such a sequential optimization procedure,
possible good solutions might be lost: Focusing solely on fairness in the first stage can
lead to rosters that turn out disproportionally unattractive in the second stage. As
a consequence, the resulting rosters can be perceived undesirable by the employees.
In the FCRP, on the other hand, we aim at finding the explicit trade-off between
fairness and attractiveness for the rostering problem as a whole.

The contribution of this chapter is fourfold. Firstly, we analyze a class of resource
allocation problems, in which the resource allocation is based on approximate utility
functions. We consider a fairness scheme for this class, inspired by the ‘Sharing-
Sweet-and-Sour’ rules, and analyze this scheme in detail. In particular, we derive a
tight upper bound for the loss of attractiveness for the considered fairness scheme.
Secondly, we propose a mathematical formulation to solve the FCRP. The formulation
we propose is versatile, and can be easily adapted to different settings. Thirdly, we
develop an exact Branch-Price-and-Cut solution method for the FCRP. Finally, we
apply the solution method to real life instances at NS, where we show the benefits of
our integrated approach. In particular, we generate multiple rosters with a different
trade-off between fairness and attractiveness, and confirm that the roster with the
highest fairness might not be the most desirable one.

The remainder of this chapter is organized as follows. In Section 2.2, we discuss crew
rostering in detail and formalize the FCRP. In Section 2.3, we give an overview of
related research, and, in Section 2.4, we analyze the fairness scheme inspired by the
‘Sharing-Sweet-and-Sour’ rules. Our mathematical model is introduced in Section
2.5, and in Section 2.6, we propose a Branch-Price-and-Cut approach to solve the
FCRP. In Section 2.7, we show the benefits of our approach in a case study at NS,
and discuss the acquired managerial insights.
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2.2 Problem Description

We now discuss crew rostering in more detail. We first give a description of the input
for the crew rostering phase and discuss the concept of cyclic rostering. We then
discuss how perceived fairness and perceived attractiveness are measured, and end
with a formal statement of the FCRP.

The input to the crew rostering phase is a basic schedule for each roster group, and
a set of generic duties (often simply referred to as duties). Each basic schedule
specifies the key elements of the roster. This schedule, for example, could specify
when employees have a day-off or what type of work should be scheduled on a certain
day (the level of detail may vary according to the application). Figure 2.1 shows an
example of a set consisting of three basic schedules, each indicated by one of the
stacked rectangles. Each basic schedule consists of rows and columns. The rows
represent a week of work, and the columns represent each of the week days (Monday
to Sunday). Each cell (i.e., intersection of a row and column) represents a single day
of work. Note that not all basic schedules in Figure 2.1 have the same number of
rows (i.e., the number of employees cycling through this schedule). In this example,
the foremost basic schedule specifies that the first row of the roster starts with a
late duty, followed by two night duties, and then a day off (indicated by L, N and
R in the basic schedule, respectively). In practice, the basic schedules are generally
created manually by the planners and based on those used in the previous year. For
a more detailed discussion on the construction of basic schedules, we refer to Hartog
et al. (2009) and Abbink et al. (2018).

The use of generic duties is a consequence of using cyclic rosters. Recall that in a
cyclic roster multiple employees cycle through the rows of the same roster. Hence,
assigning a duty to a given cell in the roster means that the duty is performed every
week, but each week by a different employee of the roster group. The duties are
therefore generic, which means that each duty belongs to, for example, Wednesday,
and not to, say, Wednesday the 11th of October. A detailed example of a cyclic roster
is shown in Figure 2.2. The numbers in the cells indicate different scheduled duties.
The roster consists of four rows, meaning that it belongs to a roster group of four
employees. The cyclicity of the roster implies that the second employee starts in row
2, and, after completing this row, he or she carries out the duties of row 3. Similarly,
the duty indicated by 118 on Monday, is first carried out by the third employee,
and then a week later by the second employee. Note that the cyclicity implies that
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8

7

6

5

4

3

2

1

L L N N R L N

N

R

N

L

N

N

N

R N N R N N N

N

R

R

N

R

L N N R N L N

R L R E R E E

L L R E E E R

L L R E E E R

R R N N L R R

L N N R N L N

N L R E R E E

N R L E R E E

Figure 2.1: Example of basic schedules for three groups. The schedules specify the
early (E), late (L), and night (N) duties; and rest days (R).

after four weeks each employee has carried out each duty shown in Figure 2.2 exactly
once. Furthermore, note that some overlap between rows (and hence weeks) can be
present. For example, the last duty of row 3 starts on Sunday night and ends on
Monday morning.
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E
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44

R E
7

E
25

Figure 2.2: Example of a cyclic roster for four employees.

In practice, multiple rosters need to be constructed simultaneously. That is, the given
set of duties should be assigned to the cells of the different basic schedules at once.
The goal is to find a fair assignment of the duties such that the resulting rosters are
feasible and of high quality. This implies that a trade-off has to be made between
perceived fairness and perceived attractiveness.

The perceived fairness of the rosters is based on duty attributes. Since a duty consists
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of multiple tasks, it has certain characteristics. Hence, we can say that some duties
are ‘desirable’ and some are not. Duties with many short trips, for example, are
undesirable, while duties with fewer but longer trips are considered desirable, as long
trips allow crew members to traverse large parts of the Netherlands at high speed.
We refer to these desirable and undesirable characteristics as duty attributes. Other
examples of duty attributes at NS are the duty length and the percentage of work
on double decker trains. A fair allocation, according to the ‘Sharing-Sweet-and-Sour’
rules, means that the spread (i.e., the difference between the maximum and minimum
average value) over the groups is minimized. Note that a spread of zero implies that
all groups are assigned the exact same average values.

The perceived attractiveness and the feasibility of a roster are expressed using roster
constraints. These constraints impose restrictions on the assignment of the duties
to the basic schedule. Rest constraints, for example, are often present in crew ros-
tering. Rest constraints enforce that an employee has a certain minimum time to
rest after a duty (if it is a hard constraint), or penalize rest times shorter than a
certain threshold (if it is a soft constraint). Another classical example are workload
constraints, enforcing a maximum amount of work within a week. The perceived
attractiveness is maximized by minimizing the penalty incurred from the soft roster
constraints. As we will show in Section 2.5, the developed model allows for a broad
range of roster constraints. In Section 2.7, we discuss the duty attributes and roster
constraints applied at NS.

The FCRP can now be stated as follows: Given a set of duties, and a set of basic
schedules, create cyclic rosters which are perceived both fair and attractive. The goal
of the FCRP is to present a set of solutions, each optimal for a different trade-off
between fairness and attractiveness. We note that the FCRP, although formulated
for a cyclic context, naturally extends to domains where acyclic rostering is common
practice (e.g., nurse rostering, airline crew planning). A fair allocation for cyclic
rostering means that the duties should be fairly allocated over the different roster
groups, as each employee in the group performs the same work. Hence, a fair al-
location for acyclic rostering means that the duties should be fairly allocated over
the individual employees, as each employee is assigned a personal roster. It is not
difficult to see acyclic rostering as a special case of cyclic rostering with regard to
the FCRP: Each basic schedule could correspond to an individual employee, instead
of a group of employees. Hence, although we focus on cyclic rostering, the approach
presented in this research can be extended to acyclic rostering problems as well.
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2.3 Literature Review

In this section we give an overview of related literature. We first discuss the literature
related to crew planning, thereby focusing on crew rostering in particular. Then, we
give a brief overview of the literature related to perceived fairness. Finally, we discuss
the research that integrates some form of fairness concept in crew rostering, i.e., the
research that relates most closely to our work.

Crew planning appears in a wide variety of contexts, such as the railway sector, the
airline industry and the healthcare sector. The railway sector focuses mainly on cyc-
lic rosters, whereas the airline industry almost exclusively works with acyclic rosters.
Ernst et al. (2004) and Van den Bergh et al. (2013) give extensive overviews of dif-
ferent staff scheduling problems, discussing both applications and solution methods.
Kohl and Karisch (2004) give a detailed overview of applications and techniques for
crew planning at an airline operator. Burke et al. (2004) present the state-of-the-art
for nurse rostering, i.e., the rostering of personnel at medical facilities. Huisman et al.
(2005b), Caprara et al. (2007), and Abbink et al. (2018) review popular models and
solution methods for crew planning at a railway operator.

Crew planning is often decomposed into two consecutive planning problems: crew
scheduling, and crew rostering. The crew scheduling problem consists of constructing
the duties or pairings, given the tasks, whereas the crew rostering problem consists
of constructing the rosters, given the duties/pairings (which are the output of the
crew scheduling problem). The crew scheduling problem is well-studied, and appears
in the literature in many variants (see, for example, Stojković and Soumis (2001)
and Abbink et al. (2005) for an operational variant and a strategic variant of the
problem, respectively).

In crew rostering, many complex labor rules have to be taken into account (e.g.,
maximum total workload and sufficient rest time for each employee). The (railway)
crew rostering problem occurs in roughly two variants: either the basic schedules are
considered input, or the construction of the basic schedules is part of the optimization
problem (i.e., the rosters are constructed without a pre-specified basic schedule).
Proposed algorithms for crew rostering vary according to the considered objective
and constraint structure (see Van den Bergh et al. (2013) for a detailed overview).

Hartog et al. (2009) propose an assignment model with side constraints to solve the
crew rostering problem at NS. They first optimize the basic schedules, and then
the assignment of the duties to the schedules (as first proposed in Sodhi and Norris
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(2004)). Their results were (blindly) presented to the NS workforce, which preferred
their generated rosters over manually constructed ones (see Hartog et al. (2009) for
the details of this experiment). Xie and Suhl (2015) propose a multi-commodity flow
formulation for the cyclic and non-cyclic crew rostering problem. They consider both
the sequential approach of Sodhi and Norris (2004) and an integrated approach (i.e.,
constructing the rosters directly without first constructing basic schedules). The
developed methods are applied to practical instances of a German bus company, for
which reasonable sized instances could be solved using a commercial solver. Mesquita
et al. (2013) develop a model for the integrated vehicle scheduling and crew rostering
problem, for which they develop a non-exact Benders decomposition approach.

Caprara et al. (1997) propose alternative formulations for crew rostering. They de-
velop a multi-commodity flow model and a set partitioning model. The usefulness of
the models is related to the constraint set (e.g., a set partitioning model is preferred
when many high level constraints are imposed). The developed models are applied to
crew rostering at an Italian railway operator. Freling et al. (2004) develop a flexible
Branch-Price-and-Cut algorithm based on a set covering formulation. The perform-
ance of their approach is evaluated on different practical instances. Borndörfer et al.
(2015) discuss both a network flow model and a set partitioning model. They pro-
pose a heuristic solution method based on the well-known Lin-Kernighan heuristic
(Lin and Kernighan 1973). Their algorithm is evaluated for cyclic rostering in public
transport and for the rostering of toll enforcement inspectors.

Perceived fairness as considered here closely relates to distributive justice (see e.g.,
Greenberg (1990)). This concept originates from equity theory, and relates to the
equitability of resource distributions. Although often limited to monetary compens-
ation, the concept readily extends to other domains (e.g., desirable and undesir-
able work). As mentioned before, a similar concept was applied in Abbink et al.
(2005) in the context of crew scheduling, thereby ending a seemingly unresolvable
conflict between NS and the labor unions. The effects of distributive justice are
well-established in the literature. In different meta-analytical studies (Colquitt et al.
(2001), Colquitt et al. (2013)) a significant relation is found between distributive
justice and, for example, task performance and organizational trust. Similar results
are presented in Rhoades and Eisenberger (2002), where a significant relation is found
between distributive justice and perceived organizational support.

The joint analysis of fairness, i.e., the equitability of the work allocation, and effi-
ciency (e.g., operational costs) has received considerable attention in recent literature.
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Recent work considering fairness includes Bertsimas et al. (2013) with regard to organ
allocation for kidney transplantation, and Barnhart et al. (2012) and Bertsimas and
Gupta (2015) with respect to air traffic flow management. Bertsimas et al. (2011)
derive tight bounds for the price of fairness, i.e., the efficiency loss due to a fair alloc-
ation, for well-known fairness schemes. Finally, Bertsimas et al. (2012) derive bounds
regarding the trade-off between fairness and efficiency, and argue how to apply this
to practical problems.

Fairness in crew rostering, however, remains relatively unexplored. Hartog et al.
(2009) propose to allocate the duties using an assignment model with side constraints.
The allocation is determined a priori creating the rosters, hence no direct trade-off
is made between fairness and attractiveness. Their fairness concept is identical to
the one considered in the FCRP. Borndörfer et al. (2015) incorporate fairness in
their solution approach by penalizing undesirable sequences of duties (e.g., changing
starting times on consecutive days). Especially interesting is their incorporation of
fatigue measures, a highly non-linear concept, in a rostering application for airline
traffic. Nishi et al. (2014) propose a decomposition approach for crew rostering with
fair working conditions. Their concept of fairness solely concerns the distribution of
workload. Their decomposition approach splits the problem into assigning the duties
to groups and creating the rosters (similar to Hartog et al. (2009)). The resulting
problem is solved using Benders decomposition. Finally, Maenhout and Vanhoucke
(2010) propose a hybrid scatter search heuristic for crew rostering with fair working
conditions.

Summarizing, crew rostering and perceived fairness are both well studied in the lit-
erature. The integration of these two concepts, however, is, to the best of our know-
ledge, relatively unexplored in this context. Although some approaches incorporate
(parts of) a fairness concept in crew rostering, none of these approaches consider a
joint optimization of the attractiveness of the rosters and the equitability of the duty
allocation, so that an explicit trade-off can be made.

2.4 ‘Sharing-Sweet-and-Sour’ Rules: A Theoretical
Analysis

In this section, we analyze the ‘Sharing-Sweet-and-Sour’ rules in more detail. We
do this by introducing a class of resource allocation problems, where the resource
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allocation is based on approximate utility functions. To assure that our terminology
is consistent with the literature, we will refer to the roster groups as players and to
the duty attributes as resources throughout this section.

We focus on resource allocation problems traditionally solved in two phases: In the
first phase, an allocation of resources to the players has to be determined, and, in the
second phase, each player derives a utility from his or her allocated resources. The
allocation of resources in the first phase, however, is based on approximate utility
functions, instead of exact utility functions. This setting is typical for sequential
optimization problems: The allocation influences derived utility (or cost) in later
stages of the planning process. This relationship, however, is not easily established,
due to, e.g., the complexity of the different planning stages. As a result, the quality of
the allocation is evaluated based on simpler indicators. In other words, the utility in
later stages is approximated when allocating the resources. The use of approximate
utilities could also be motivated by a desire for transparency and rules for allocating
the resources that are easy to explain. We refer to this type of problem as an
Approximate Resource Allocation Problem (ARAP).

The current sequential approach for crew rostering at NS fits the ARAP paradigm.
First, the duties are allocated over the groups, based on the duty attributes. The
allocation to the groups is according to the ‘Sharing-Sweet-and-Sour’ rules, i.e., it
assures that each group has roughly the same average amount of each attribute. Here,
it is implicitly assumed that all groups derive a similar utility from each attribute
(e.g., all groups derive the same utility from a given average duty length). The exact
utility (i.e., attractiveness), on the other hand, may differ among groups, due to e.g.,
the size and structure of the basic schedules. We show that the ‘Sharing-Sweet-and-
Sour’ rules are a natural expression of fairness for the ARAP. To be more precise, we
show that ‘Sharing-Sweet-and-Sour’ rules lead to efficient and fair allocations with
respect to a large class of approximate utility functions. Furthermore, we bound the
loss of overall (exact) utility due to applying these rules.

The remainder of this section is organized as follows. In Sections 2.4.1 and 2.4.2, we
develop the necessary notation and terminology, and in Section 2.4.3, we formalize the
fairness scheme based on the ‘Sharing-Sweet-and-Sour’ rules, and derive analytical
results regarding this scheme.
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2.4.1 Resource Allocation Problems and Fairness

The ARAP can be seen as an extension of the Resource Allocation Problem (RAP),
a well-studied problem in the economic literature. In the RAP, a set of k resources
has to be allocated among n different players. The resource set specifies all possible
allocations of resources to the players. This set is represented by X ⊆ Rnk+ . For
notational convenience, we denote, for some allocation x ∈ X, the resource allocation
of the i-th player by xi ∈ Rk+, and the amount of resource j allocated to the i-th
player by xij ∈ R+. Figure 2.3a gives an example of the resource set for two players
and one resource. The resource set, in this case, is given by all x ∈ R2

+ satisfying
x1 + x2 ≤ 1.

Each player is assigned a utility function fi : X → R+, i.e., fi(x) represents the
utility the i-th player derives from allocation x ∈ X. The utility set U consists of all
achievable utilities with respect to the utility functions fi. That is, the utility set U
is defined as

U =
{
u ∈ Rn+ | ∃x ∈ X : ui = fi(x), i = 1, . . . , n

}
.

For notational convenience, let U(x) ∈ U denote the utility derived from the al-
location x ∈ X. Figure 2.3b shows the utility set U for f1(x) = x1, and f2(x) =
min{1, 2x2}, where X, as shown in Figure 2.3a, is the underlying resource set.

1

1

X
x̄

x̂

x1

x2

(a) Resource allocations x̄ and x̂.

1

1

ū

û

U

u1

u2

(b) Utilities ū and û.

Figure 2.3: Resource set X ⊆ R2
+ restricted by x1 +x2 ≤ 1, and corresponding utility

set U ⊆ R2
+, for f1(x) = x1 and f2(x) = min{1, 2x2}. The points ū = (2/3, 2/3) and

û = (1/2, 1) correspond to the max-min fair and utilitarian allocation, respectively.
The allocations x̄ = (2/3, 1/3) and x̂ = (1/2, 1/2) show the corresponding resource
allocations.

The goal of the RAP is to find a resource allocation which is ‘good’ with respect to
the derived utilities. One could for example allocate the resources such that the sum
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over all utilities is maximized. This is commonly known as the utilitarian allocation.
Figure 2.3 shows the utilitarian allocation for the utility set U and the corresponding
resource allocation in X, indicated by û and x̂, respectively. Note, that a utilitarian
allocation might be perceived unfair by the players, as one player might derive much
more utility compared to the other players.

The concept of fairness is formalized using fairness schemes: A fairness scheme is a
function S : 2R

n
+ → Rn+ which maps a utility set to an element of that set. The utility

vector S(U) ∈ Rn+ is said to be the ‘fair’ allocation, with respect to the fairness scheme
S. Bertsimas et al. (2011) give a detailed discussion on the axioms that a fairness
scheme should (ideally) satisfy. Resulting from these axioms are two well-established
fairness schemes: max-min fairness, where the utility allocation is lexicographically
maximized and which generalizes the Kalai-Smorodinsky solution for the two player
bargaining problem (see Kalai and Smorodinsky (1975)), and proportional fairness,
which generalizes the Nash solution for the two player bargaining problem (see Nash
(1950)). Figure 2.3 shows the max-min fair allocation for the utility set U and the
corresponding resource allocation in X, indicated by ū and x̄, respectively.

An important characteristic of a fairness scheme is the ‘loss’ of overall utility due to
applying this scheme. To analyze this loss of utility, we use the following definitions,
which were introduced in Bertsimas et al. (2011). Let SYSTEM(U) denote the utility
derived from the utilitarian allocation, i.e.,

SYSTEM(U) = max
u∈U

n∑
i=1

ui. (2.1)

Furthermore, let FAIR(U, S) denote the utility derived under the fairness scheme S,
i.e.,

FAIR(U, S) =
n∑
i=1

S(U)i. (2.2)

The Price of Fairness (POF) of a fairness scheme S, given a utility set U , represents
the relative amount of utility lost due to enforcing S. Formally, the POF for S, given
U , denoted by POF(U, S) is defined as

POF(U, S) = SYSTEM(U)− FAIR(U, S)
SYSTEM(U) . (2.3)
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Bertsimas et al. (2011) derived upper bounds on the POF for both max-min and
proportional fairness, and showed that the derived bounds are tight (i.e., can be
achieved for certain classes of problems).

2.4.2 Approximate Utility Functions

The ARAP extends the RAP by considering not one but two utility functions per
player: an approximate utility function fi : X → R+, and an exact utility function
gi : X → R+. The resource allocation is based on the approximate utilities, but each
player’s derived utility follows from the exact utilities. Note that the ARAP collapses
to the RAP whenever the approximate and exact utilities are equal. For any RAP
and ARAP, the derived utility corresponds directly with one or multiple resource
allocations. The key question in the ARAP is how a resource allocation based on the
approximate utilities fi influences the final utility derived from the exact utilities gi.

1

1

X
x̄

x̂

x1

x2

(a) Resource allocations x̄ and x̂.

1

1

v̄

v̂

V

v1

v2

(b) Utilities v̄ and v̂.

Figure 2.4: Resource set X, similar to 2.3a, and corresponding utility set V ,
for g1(x) = x1 and g2(x) = min{1, (3/2)x2}. The points v̄ = (2/3, 1/2) and
v̂ = (1/2, 3/4) show the derived utilities for x̄ and x̂. In this case, v̄ and v̂ do
not correspond to a max-min fair and utilitarian allocation in V , respectively.

It is clear that differences between the approximate and exact utilities could lead
to ‘sub-optimal’ behavior. In particular, the utility derived by the players might be
skewed whenever some utility functions are approximated either too optimistically
or too pessimistically, and the overall derived utility could be lower than possible.
The above is illustrated in Figure 2.4. Suppose U was only an approximation of
the utility set, e.g., suppose that the exact utility of the second player was given
by min{1, (3/2)x2}, instead of min{1, 2x2}. In other words, the exact utility of the
second player was modeled too optimistically. The resulting utility set, denoted by
V , is depicted in Figure 2.4b. In this case, the resource allocations x̄ and x̂ no
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longer correspond to max-min fair and utilitarian allocations. In particular, the
max-min fair allocation, which normally guarantees a balanced utility when possible,
is skewed, and the utilitarian allocation, normally guaranteeing the largest overall
utility, is sub-optimal.

2.4.3 Analytical Results

We now turn to a specific class of ARAPs. We first introduce and analyze a fairness
scheme, which relates closely to the notion of perceived fairness defined in Section 2.2.
We conclude by proving a tight upper bound on the POF for this fairness scheme.
We do this under the following assumptions.

Assumption 2.4.1. The exact utility function gi(x) of the i-th player depends only
on xi, i.e., the utility function gi(x) can be written as gi(xi), with gi : Rk+ → R+.
The function gi is assumed to be concave, bounded, and continuous over X.

Assumption 2.4.1 states that the utility of the i-th player depends only on the al-
location of resources to the i-th player. In other words, the derived utility depends
only on the player’s own allocation. This assumption, including the concavity of the
utility function, is similar to that in Bertsimas et al. (2011), and common in the
literature.

Assumption 2.4.2. The resource set X ⊆ Rnk+ consists of all x ∈ Rnk+ , such that∑n
i=1 xi = γ. Here γ ∈ Rk+ specifies the available amount of each resource.

Assumption 2.4.2 states that each resource is non-disposable, i.e., a fixed amount
should be divided among the players. Note that this is the case for the FCRP, where
a fixed set of duties needs to be allocated among the groups.

Assumption 2.4.3. The approximate utility function fi(x) of the i-th player is of
the form fi(x) = φif(xi/φi), with f : Rk+ → R+ the same for each player. Here
φi ∈ N+ represents the ‘size’ of the player. The function f is assumed to be concave,
bounded, and continuous over X.

Assumption 2.4.3 states that the approximate utility of each player is based on the
allocated resources (divided by the player’s size), multiplied by the size of the player.
This type of utility function is motivated by practice. At NS, for example, the
allocation of duties follows from a centralized process. During this process, the
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allocation per roster group is evaluated based on the ‘average work’ allocated, e.g.,
two ‘bad’ duties for a group of four employees is considered equivalent to four of such
duties for a group of eight employees. Furthermore, it is assumed that there is little
distinction between groups when it comes to the evaluation of this allocation, i.e., f
is assumed to be the same for each group. The multiplication with the group size
assures that all employees are weighed equally.

Under Assumptions 2.4.2 and 2.4.3, the optimal resource allocation regarding the
approximate utilities can be derived.

Theorem 2.4.1. Consider an ARAP satisfying Assumptions 2.4.2 and 2.4.3. The
vector x̂ ∈ X with

x̂i
φi

= γ∑n
j=1 φj

, (2.4)

for all i = 1, . . . , n, is a utilitarian allocation regarding the approximate utilities
φif(xi/φi).

Proof. See Appendix 2.A.1.

Theorem 2.4.1 has an interesting interpretation: The overall approximate utility is
maximized by focusing on a fair balance of the resources among the players. In
other words, assigning each player the same average value assures that the sum
of the approximate utilities is maximized, independent of the (possibly unknown)
function f . This motivates the ‘Sharing-Sweet-and-Sour’ model applied at NS, which
focuses on a balanced distribution of resources among different groups. Note that this
solution can also be considered fair, as each employee is assigned exactly the same
average for each attribute. In particular, it is readily seen that, under Assumptions
2.4.2 and 2.4.3, the solution specified by (2.4) coincides with the max-min fairness
allocation with regard to the non-weighted approximate utilities f(xi/φi).

Corollary 2.4.1. Consider an ARAP satisfying Assumptions 2.4.2 and 2.4.3. The
vector x̂ ∈ X satisfying (2.4) is a max-min fairness allocation regarding the non-
weighted approximate utilities f(xi/φi).

Proof. See Appendix 2.A.1.
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Under Assumptions 2.4.2 and 2.4.3, Theorem 2.4.1 and Corollary 2.4.1 advocate to
allocate the resources according to (2.4). The effect of this allocation can be analyzed
by considering a normal RAP with the exact utilities, and the ‘Sharing-Sweet-and-
Sour’ fairness scheme SS&S, where each player is assigned the utility derived from
the resource allocation specified by (2.4).

Definition 2.4.1. Consider a RAP satisfying Assumption 2.4.2. The fairness scheme
SS&S is given by:

SS&S : U 7→ U (x̂) . (2.5)

with x̂ ∈ X as defined by (2.4).

The fairness scheme SS&S can be seen as special case of the perceived fairness measure
introduced in Section 2.2, namely when a spread of zero can be achieved over all roster
groups. We now derive a tight upper bound on the price of fairness for the scheme
SS&S.

Theorem 2.4.2. Let U be the utility set for a given RAP satisfying Assumptions
2.4.1 and 2.4.2, and let SS&S be the fairness scheme defined by (2.5). It holds that

POF
(
U, SS&S) ≤ 1− φ?∑n

i=1 φi
, (2.6)

with φ? = mini∈{1,...,n} φi. Furthermore, this bound is tight for all φ ∈ Nn+.

Proof. See Appendix 2.A.2.

Interestingly, the derived bound on the POF is independent of the utility functions.
Equation (2.6) can be equivalently expressed in a more intuitive way by means of the
standardized minimum player size ρ, defined as the minimum player size divided by
the mean player size, i.e.,

POF
(
U, SS&S) ≤ 1− ρ

n
, (2.7)

where

ρ = nφ?∑n
i=1 φi

. (2.8)



Chapter 2 27

Note that, by definition, ρ is between zero and one, and equals one whenever all
players have equal size. Based on (2.7), it is readily seen that the upper bound
increases due to both a large number of players, and a small standardized minimum
player size (i.e., the smallest size is much smaller than the average size). Figure 2.5
shows the upper bound on the price of fairness as a function of the standardized
minimum player size ρ, for various numbers of players n.
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Figure 2.5: Upper bound on the price of fairness as a function of the standardized
minimum player size. Each line represents a different number of players.

Theorem 2.4.2 suggests how employees should be divided over roster groups. If we
consider an instance with 50 employees, for example, then grouping them in two
groups of 25 will give a worst case attractiveness loss of 50%, whereas grouping them
in a group of 10 and a group of 40 or in five groups of 10 will both result in a worst
case loss of 80%. Hence, in order to safeguard against a large loss of attractiveness, it
is recommended to limit the number of roster groups, and to assure that each group
is of roughly the same size, whenever this is practically possible.

2.5 Mathematical Model

In the remainder of this chapter, we analyze the trade-off between fairness and at-
tractiveness empirically, by developing an exact solution method for the FCRP. In
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order to do so, we first give a mathematical formulation. In Section 2.5.1, we intro-
duce the concept of roster sequences, and in Section 2.5.2 we discuss roster constraints
in detail. We introduce the necessary notation in Section 2.5.3, and we conclude by
giving a mathematical formulation for the FCRP in Section 2.5.4.

2.5.1 Roster Sequences

We develop a mathematical model based on the rows of each roster. That is, we
simultaneously assign a number of duties to a row, instead of assigning a duty to
each cell separately. Constraints regarding the rows occur naturally, as each row
represents a week of work (consider, for example, a maximum workload over a week).
Many roster constraints at NS, for example, consider the rows of the roster (we
will discuss these in detail in Section 2.7). Hence, modeling the rostering problem
based on the rows often leads to a strong formulation, as it implies that many of
the roster constraints can be modeled implicitly. Initial experiments showed that
modeling based on the rows of the roster improved the performance of the algorithm
substantially compared to modeling based on the cells of the roster. In Chapter 4 we
give a detailed analysis of different modeling approaches for crew rostering.

The key concept of our modeling approach is the use of roster sequences. Modeling
the problem based on the rows of a roster implies we need to simultaneously assign
multiple duties to all cells in a row. We call such an assignment of duties a roster
sequence (or simply a sequence, if there is no ambiguity). Note that the roster
sequences should always satisfy the basic schedule.

Mon Tue Wed Thur Fri Sat Sun

s1

s2

L L R E E E R

L
126

L
124

E
54

E
13

E
40

L
118

L
123

E
44

E
13

E
40

Figure 2.6: Example Sequences.
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Figure 2.6 shows two examples of possible roster sequences. The first row of the basic
schedule shown in Figure 2.2 is depicted, together with two possible roster sequences
s1 and s2 for this row. The first roster sequence is obtained from the assigned duties
in Figure 2.2, while the second roster sequence is obtained by swapping some duties
currently assigned to the first row with those assigned to the third and fourth row.
Note that both sequences satisfy the given basic schedule, and that the sequences
only specify the assigned duties (i.e., the rest days are not specified in the sequences,
as these are input to the problem).

2.5.2 Roster Constraints

Roster constraints impose restrictions on the assignment of duties in the roster, and
are used to quantify the attractiveness of the roster. We consider both hard roster
constraints (i.e., constraints that must always be satisfied) and soft roster constraints
(i.e., constraints that may be violated against a certain penalty). Each roster con-
straint is fully specified by a coefficient for each possible assignment of a duty to a
cell in the basic schedule, a threshold value, and a violation interval. It is assumed
that each violation interval is a closed interval on the real line. This assumption is
important when developing the Branch-Price-and-Cut approach, as will be noted in
Section 2.6.2.

A roster constraint restricts the possible assignment of duties by enforcing that if the
sum of coefficients of assigned duties exceeds the threshold value (i.e., the constraint
is violated), then the difference between the sum and the threshold lies within the
violation interval. Note that this general form allows both for hard and soft con-
straints. Hard constraints can be modeled by setting the violation interval equal to
{0} (i.e., no violation is allowed), whereas soft constraints can be modeled by picking
a suitable violation interval, such as the interval [0, 1] (i.e., a violation is allowed, but
of at most one unit). Each soft constraint has a specified penalty, which is used to
penalize deviations above the threshold value.

Mon Tue Wed Thur Fri Sat Sun

L L R E E E R

1

2

Figure 2.7: Example Roster Constraints.
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A wide variety of practical constraints can be expressed in this general form (for a
thorough discussion we refer to Hartog et al. (2009)). To illustrate this, consider the
row depicted in Figure 2.7, which corresponds to the first row shown in Figure 2.2.
Two different roster constraints are indicated.

• The first constraint considers the rest time between the duties scheduled on
Tuesday and Thursday. A certain minimal rest time is required between these
two days. This is done by introducing a roster constraint for each possible duty
assigned to Tuesday in this week. Consider d124, a possible duty for Tuesday.
The assignment of d124 to Tuesday in this row, and all assignments of duties
to Thursday that would violate the rest time with respect to d124 are given
coefficient 1. All other assignments are given coefficient 0. By setting the
threshold value equal to 1 and the violation interval equal to {0} we model the
rest time as a hard constraint. An alternative choice would be the violation
interval [0, 1], thereby modeling the rest time as a soft constraint.

• The second constraint considers the average duty length measured over the
row. We penalize those assignments of duties where the average duty length
in the row exceeds the average duty length measured over all duties. This can
be done as follows. The coefficient for each assignment to a day in this row
equals the length of the assigned duty, divided by 5. All other assignments are
given coefficient 0. The scaling factor 5 follows from the number of duties that
need to be assigned to this row (note that this number is known a priori, as
the basic schedules are considered input). The threshold value is the average
duty length measured over all duties, and the violation interval is [0,∞).

Roster constraints concerning solely a single row of the basic schedule are modeled
implicitly. That is, these roster constraints are incorporated in the penalties associ-
ated with the sequences, instead of explicitly modeled as a constraint in the model.
Note that this holds for both roster constraints depicted in Figure 2.7.

2.5.3 Notation

We are now ready to introduce the notation for the mathematical formulation. Let D
denote the set of duties, and let R denote the set of basic schedules. A basic schedule
r is defined by a set of cells Tr, where for each cell t ∈ Tr it is known which duties
can be assigned. An assignment of a duty d to a cell t in a basic schedule will be
denoted by the pair (t, d). We define nr as the total number of duties to be assigned
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to basic schedule r.

The set Kr denotes the set of rows for basic schedule r ∈ R, and the set K denotes
the set of all rows. We define the set Sk as the set of all roster sequences for row
k ∈ K. Each roster sequence can be seen as a sequence of assignments (t, d). We
define Sdk ⊆ Sk as the set of all roster sequences for row k that contain duty d (i..e,
the duty d appears in one of the assignments describing the roster sequence). Finally,
we define cks as the penalty associated with sequence s ∈ Sk.

The set of duty attributes, used to define the fairness of the constructed rosters,
is denoted by A. The non-negative parameter gad denotes the value of attribute a
for duty d. Each attribute has a lower bound la and an upper bound ua, which
are considered input. Furthermore, each attribute has an associated weight wa,
representing the relative importance of the different duty attributes when calculating
the fairness level. Finally, we introduce a budget parameter ζ for the fairness level,
used to compute the trade-off between fairness and attractiveness.

The set of roster constraints, used to define the attractiveness and feasibility of the
roster, is denoted by P . The coefficient for the assignment (t, d) for roster constraint
p is denoted by fptd. The threshold value for p is denoted by bp, and the violation
interval for p is denoted by ∆p. The penalty corresponding to roster constraint p
is denoted by cp. Let PK ⊆ P denote the set of roster constraints fully contained
in one of the rows k ∈ K, and let Pk denote those fully contained in row k. The
constraints in PK are exactly those that are modeled implicitly using the sequence
penalties. Hence, the penalty cks associated with sequence s ∈ Sk is the sum of all
violations in the sequence s, restricted to the roster constraints Pk. Note that the
roster constraints in P \ PK need to be modeled explicitly.

2.5.4 Mathematical Formulation

We now formalize the FCRP. We introduce the following decision variables.

• xks for all k ∈ K and s ∈ Sk. The binary variable xks takes value 1 if sequence
s is assigned to row k, and value 0 otherwise.

• δp for all p ∈ P \ PK . The variable δp models the violation of the roster
constraint p. The variable is restricted to the violation interval ∆p.

• za for all a ∈ A. The variable za expresses the maximum average value of duty
attribute a among all roster groups. This variable is used to determine the



32 Chapter 2

perceived fairness of the solution.

• va for all a ∈ A. Similar to za, the variable va models the minimum average
value among all roster groups with respect to attribute a.

The FCRP can be expressed as a mixed integer linear program as follows.

min
∑
k∈K

∑
s∈Sk

cksx
k
s +

∑
p∈P\PK

cpδp (2.9)

s.t.
∑
a∈A

wa (za − va) ≤ ζ (2.10)∑
s∈Sk

xks = 1 ∀k ∈ K (2.11)

∑
k∈K

∑
s∈Sd

k

xks = 1 ∀d ∈ D (2.12)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp ∀p ∈ P \ PK (2.13)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≤ nrza ∀a ∈ A, r ∈ R (2.14)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≥ nrva ∀a ∈ A, r ∈ R (2.15)

za ≤ ua ∀a ∈ A (2.16)

va ≥ la ∀a ∈ A (2.17)

xks ∈ B ∀k ∈ K, s ∈ Sk (2.18)

δp ∈ ∆p ∀p ∈ P \ PK (2.19)

va, za ∈ R+ ∀a ∈ A. (2.20)

The objective (2.9) expresses that we minimize the sum of the sequence penalties,
together with the cost of all explicitly modeled roster constraints. The fairness level
is modeled as a budget constraint using (2.10). As discussed in Section 2.2, the
perceived fairness is calculated as a weighted sum of the spread (i.e., the difference
between the maximum and minimum average values) of the duty attributes with
respect to the roster groups. By varying the budget parameter ζ, the entire trade-
off curve between fairness and attractiveness can be computed (see, e.g., Ehrgott
(2000) for an overview of bi-objective optimization techniques). Constraints (2.11)
and (2.12) assure that the duties are assigned correctly to the basic schedules. That
is, each row is assigned exactly one roster sequence, and each duty is assigned exactly
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once. Constraints (2.13) consider the roster constraints. Note that (2.13) assures that
δp takes the value of the constraint violation. Constraints (2.14) and (2.15) assure
that the variables va and za are set to the minimum and maximum value, respectively,
while (2.16) and (2.17) enforce the lower and upper bounds on the attribute values.
Finally, Constraints (2.18)-(2.20) express the domains of the decision variables.

2.6 Solution Approach

We develop an exact solution method for the FCRP based on Branch-Price-and-
Cut. In Branch-Price-and-Cut algorithms, the solution space is searched using a
Branch-and-Bound procedure, in which the linear relaxation is solved using column
generation in each node of the Branch-and-Bound tree. Furthermore, valid inequal-
ities (i.e., cuts) are added to strengthen the linear relaxation. The concept of column
generation has been applied succesfully to a large variety of problems (see e.g., De-
saulniers et al. (1997), Löbel (1998), Potthoff et al. (2010)). For detailed surveys
on column generation we refer to Barnhart et al. (1998), Lübbecke and Desrosiers
(2005), Desaulniers et al. (2006) and Lübbecke (2011). An extensive overview of
Branch-Price-and-Cut algorithms is given in Desrosiers and Lübbecke (2011).

The lay-out of this section is as follows. In Sections 2.6.1 and 2.6.2, we discuss the
master problem and the resulting pricing problems, respectively. In Section 2.6.3,
we discuss the branching strategy. We conclude in Section 2.6.4 with a discussion on
how we obtain all efficient solutions of the FCRP.

2.6.1 Master Problem

In Branch-Price-and-Cut algorithms the problem is decomposed in a master problem
and a set of pricing problems. The Master Problem is obtained from (2.9)–(2.20) by
relaxing the integrality condition for the xks variables. That is, Constraints (2.18)
are replaced with xks ≥ 0, for all k ∈ K and s ∈ Sk. Note that (2.11) assures that
xks ≤ 1. Because the number of sequences can be very large, we use column generation
to solve the Master Problem. This means that only a subset of the sequences is
considered instead of the entire set of sequences. As this might lead to suboptimal
solutions, profitable sequences are added based on their reduced cost. Deciding
whether such sequences exist is done in the pricing problems, where sequences with
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negative reduced cost are generated. The linear relaxation of (2.9)–(2.20) is tightened
by adding valid inequalities (see Appendix 2.B).

2.6.2 Pricing Problem

The pricing problems can be modeled as resource constrained shortest path problems
(RCSPP) with surplus variables on dedicated graphs (see e.g., Irnich and Desaulniers
(2005) for a detailed survey on this topic). For each row k ∈ K, we construct a
directed graph in which each vertex represents an assignment of a duty to a cell in
the basic schedule. An arc in the graph indicates a possible follow-up duty.

An example of such a graph is shown in Figure 2.8. Here we show the pricing graph
for the row depicted in Figure 2.7. Each vertex specifies a combination of a cell and
a duty. The duties are obtained from the roster in Figure 2.2. The cell on Monday
of type L, for example, can be assigned either duty d126 or d118. Clearly, each s− t
path in such a graph corresponds to a roster sequence.

Mon Tue Wed Thur Fri Sat Sun

s t

L
126

L
118

L
124

L
123

E
54

E
44

E
13

E
40

E
7

Figure 2.8: Example Pricing Graph.

The reduced cost of a sequence can be modeled using the arc set and the resource
constraints. The dual multipliers are readily incorporated in the arc costs (see Ap-
pendix 2.C). The difficulty lies in expressing the primal cost, that is, in expressing
the cost related to the different roster constraints that are implicitly modeled. This
is done using the resource constraints. Each roster constraint p relates to a resource
with consumption fptd at node (t, d) and consumption limit bp. The violation interval
∆p is modeled using the domain of the surplus variables. Here we use the fact that
each ∆p represents a closed interval on the real line. We note that binary constraints
(i.e., constraints involving two subsequent duties) are a special case, as they can be
directly incorporated into the arcs. An example of this is the ‘missing’ arc between
the duties d124 and d44 on Tuesday and Thursday, respectively. The time between
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duties d124 and d44 is insufficient for a proper rest day on Wednesday, hence no
sequence can have these two duties scheduled sequentially.

We solve the RCSPP using an enumerative depth first search approach, where we use
completion bounds (i.e., the remaining shortest path costs from the current node to
the sink) to prune provably suboptimal paths. Similar depth first search approaches
have been successfully applied to the RCSPP (see e.g., Beasley and Christofides
(1989), Grötschel et al. (2003), Dumitrescu and Boland (2003)). We note that this
approach closely resembles the well-known A* algorithm, introduced by Hart et al.
(1968).

2.6.3 Obtaining Integer Solutions

To obtain integer solutions we apply a bi-level branching strategy. In the first branch-
ing rule, we consider the assignment of duties to the basic schedules, i.e., pairs (r, d).
We branch if a duty is only partially assigned to a basic schedule. That is, we con-
struct a branch where the duty is assigned only to this schedule, and a branch where
the duty is excluded from this schedule. Note that partially assigning a duty to a
schedule is equivalent to assigning a duty to multiple schedules (a direct consequence
of (2.11) and (2.12)). If multiple branching possibilities are present, we branch on
the most fractional value.

The assignment of duties to the basic schedules is determined whenever no branching
opportunities of this form are available. It is possible, however, that the solution is
still fractional, since a duty could be assigned to multiple cells within one basic
schedule. The second branching rule therefore considers the assignment of duties to
cells, i.e., pairs (t, d). That is, we branch if a duty is only partially assigned to a
cell in the basic schedule. Also for the second branching rule we branch on the most
fractional value, whenever multiple branching possibilities are present. Note that no
branching opportunities exist only if each duty is assigned to a unique cell, and hence
an integer solution is found.

The branching rules are always executed in a sequential fashion. This means that
the second branching rule is applied only if there are no branching possibilities for
the first rule. Since the first branching rule divides the solution space more evenly
than the second, this sequential strategy leads to a more balanced search tree.
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2.6.4 Finding Pareto-optimal Solutions

We want to identify all Pareto-optimal solutions for the FCRP. A solution is Pareto-
optimal if there exists no solution that is better in all criteria. In the FCRP this
means that there can be no solution with higher attractiveness and higher fairness
level.

All Pareto-optimal solutions to a bi-objective optimization problem can be found by
imposing a bound on one objective, while optimizing the other. In the FCRP, this
bound is the desired fairness level ζ in (2.10). By varying ζ iteratively, we obtain all
Pareto-optimal solutions (up to a certain precision). That is, we solve the problem
for a sequence of strictly decreasing fairness levels, until a feasible solution can no
longer be found.

2.7 Case Study at NS

To show the practical benefits of the FCRP we apply our solution method to a set
of rostering instances of NS. The instances are based on roster groups of guards at
depot Utrecht, one of the major crew depots in the Netherlands. In Section 2.7.1,
we discuss our experimental set-up, and all attributes and roster constraints that are
taken into account. In Section 2.7.2, we present the result of our experiments. We
conclude in Section 2.7.3 with the practical insights obtained from the case study.

2.7.1 Rostering at Base Utrecht

Each rostering instance specifies a set of basic schedules and a set of duties. The
instances in our experiments are based on a set of roster groups and their corres-
ponding basic schedules. The duties are obtained from the original rosters, to assure
compatibility with the basic schedules. We consider three different types of duties:
early, late and night. These are denoted by E, L and N, respectively. Furthermore, a
day in the roster can be an official rest day (denoted by R), or an unofficial rest day.
For the latter, no constraints have to be taken into account. The basic schedules
specify one of these types for each day in the roster.

The roster groups are divided into three categories, based on their basic schedules.
The first category consists of groups performing solely early duties, the second cat-
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egory of groups performing solely late and night duties, and the third category of
groups performing all three types of duties. The first two instances consist of two
large groups of the first two categories, and a relatively small group of the third
category. The other two instances consist of one group of each category, each repres-
enting roughly the same number of employees. The details are shown in Table 2.1.
The group size refers to the number of employees in the group (i.e., the number of
rows that need to be rostered).

Table 2.1: Rostering Instances Base Utrecht.

Instance Groups Group sizes Duties E/L/N
U1 3 14/12/4 113 55/29/29
U2 3 12/12/4 115 58/33/24
U3 3 6/6/6 71 38/22/11
U4 3 8/6/6 69 37/17/15

NS considers a large variety of duty attributes and roster constraints, leading to a
complex rostering problem. A total of five duty attributes have to be taken into
account.

• Duty length. For each of the duties, the length is defined as the difference
between the start and end time of a duty.

• Percentage of type-A work. Trips with type-A work are desirable, and hence
this work needs to be fairly distributed. Generally, type-A work consists of
work on Intercity trains, which are trains that only stop at major stations.
This type of work mainly contains long trips.

• Percentage of aggression work. Certain trips have a higher chance of passen-
ger aggression (due to, e.g., passengers not having a ticket). Trips where such
situations frequently occur are undesirable and therefore need to be fairly dis-
tributed.

• Percentage of work on double decker trains. Work on double decker trains is
considered undesirable, as it is physically more demanding (due to the high
amount of stairs an employee has to climb during work on such a train). We
therefore want to distribute this type of work equally.

• RWD values. The Repetition Within Duty (RWD) values are defined as the
total number of routes divided by the total number of distinct routes in the
duty. From an employee point of view, variation is desirable (reflected by a
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low RWD value), and hence we want to balance the RWD values among the
groups.

Table 2.2: Specification Duty Attributes.

Attribute Av. U1 Av. U2 Av. U3 Av. U4 LB UB Weight
Duty length (hours) 7.97 7.97 7.89 7.98 - 8 30
Type-A 40.28 44.91 42.07 42.10 35 - 1
Aggression 14.08 15.17 12.02 9.40 - 18 1
Double Decker 34.36 34.79 35.24 38.54 - 40 1
RWD 2.06 2.09 2.05 2.12 - 2.5 25

Each attribute has a pre-specified lower or upper bound which should be respected
for each group (see Table 2.2). Furthermore, each attribute is given a weight to
model the relative contribution to the fairness measure. For example, a spread of
5% in aggression work and a spread of 10 minutes in duty length are penalized
equally. Table 2.2 also shows the average value for each of the instances, displaying
the tightness of the imposed bounds.

The roster constraints considered at NS can be roughly classified into two categories:
those concerning pairs of cells and those concerning entire rows.

• Rest Constraints. After completing a duty it is required that an employee has
a certain minimum time to rest. A rest time of 14 hours is required after a
night duty. For the other types of duties the required rest time is 12 hours.
Rest times shorter than 16 hours are undesirable, and are therefore penalized
with a penalty of 30. This penalty is independent of the shortage in rest time.

• Rest Day Constraints. If two duties have a rest day in between, there should be
at least 30 hours between the end of the first duty and the start of the second.
Furthermore, for each additional rest day that is between the duties, another
24 hours are required.

• Workload Constraints. We require that the total workload in one row should
not exceed 45 hours. Here, workload is measured as the difference between
start and end time (i.e., including the meal break). The workload is always
measured from Monday to Sunday (i.e., a ‘regular week’).

• Variation Constraints. It is considered desirable if e.g., aggression work is dis-
tributed evenly over the rows. Therefore, variation constraints penalize positive
deviations from the average (measured over all duties) for each of the duty at-
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tributes. Furthermore, we take duties with a duration longer than 9 hours and
a set of (un)desirable routes into account. This gives a total of 10 variation
constraints per row. Similar to the workload constraints, the variation is always
measured from Monday to Sunday.

By assigning roster sequences to the rows, we can model all workload and variation
constraints implicitly using the sequence penalties. Furthermore, most rest and rest
day constraints can also be modeled implicitly. The set of explicitly modeled roster
constraints consists of only those rest and rest day constraints spanning two rows
(e.g., constraints modeling the rest time from Sunday to Monday).

2.7.2 Computational Results

We solved each of the instances using the Branch-Price-and-Cut approach. We first
discuss the computation times for the different instances. Thereafter, we present
the Pareto-optimal curves, and we conclude with a detailed analysis of the found
solutions.

Computation Times

All experiments were done on a computer with a 1.6 GHz Intel Core i5 processor.
We used the LP solver embedded in CPLEX 12.7.1 to solve the master problems.
Recall from Section 2.6.4 that the Pareto-optimal curve is obtained by solving (2.9) –
(2.20) for different values of ζ. Hence, the overall computation time depends both on
the number of Pareto-optimal points found, and on the computation time per point.
Table 2.3 shows for each instance the number of Pareto-optimal points found, and
the average computation time per point (in minutes). In our experiments, we used a
step-size of 0.1 for iteratively updating the fairness level.

Table 2.3: Computation times per instance.

Instance Number of Points Average Time (min)
U1 23 14.6
U2 12 21.2
U3 17 7.6
U4 21 36.6
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As Table 2.3 shows, each of the Pareto-optimal curves could be determined in reas-
onable time. The Pareto-optimal curve for instance U4 took most time to compute
(about 13 hours in total), due to the relatively large number of points and high
average computation time. The other three Pareto-optimal curves were found in
substantially less time (at most 6 hours in total). From a practical point of view,
these computation times can be considered reasonable whenever optimality is re-
quired. Note, however, that when optimality is not a prerequisite, heuristic solution
approaches might be better suited, as we will further discuss in Chapter 3.

Pareto-optimal Curves

The Pareto-optimal curves for the four instances are depicted in Figure 2.9. From
hereon we refer to the objective value (i.e., the measure of perceived attractiveness)
as the attractiveness penalty and to ζ as the fairness penalty.
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Figure 2.9: Pareto curve for instances U1 (top left), U2 (top right), U3 (bottom left)
and U4 (bottom right).

Figure 2.9 shows that many Pareto-optimal solutions are lost in a sequential ap-
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proach. Note that a sequential approach, where perceived fairness is optimized first,
results (at best) in the solution represented by the leftmost point in the curve (those
highlighted in Figure 2.9). The set of Pareto-optimal points, however, covers a broad
spectrum of solutions, each of which might be optimal depending on the given pref-
erences. The curve of instance U1, for example, ranges from 1104 to 1175 (a relative
spread of about 6%) with respect to the attractiveness penalty and from 16 to 30 (a
relative spread of about 85%) with respect to the fairness penalty. Note that each
of the instances exhibits a clear price of fairness, in line with the results of Section
2.4. The differences in group size, however, does not seem to enlarge this loss of
attractiveness.

By computing a large set of ‘best’ solutions, the decision maker gets a comprehensive
image of the problem. In particular, it gives a better indication of the consequences
of managerial decisions, such as imposed fairness bounds. A striking example of
such a consequence is given by the two leftmost Pareto-optimal points in the curve of
instance U3, where a small decrease of the fairness penalty leads to a disproportionally
large increase of the attractiveness penalty. As mentioned above, this leftmost point
would be found using a sequential approach. It is clear that this solution (and hence
the sequential approach) is optimal only when fairness is extremely highly valued.

Trade-Off Analysis

The Pareto curves in Figure 2.9 exhibit a clear ‘tail-off’ effect. That is, decreasing the
fairness penalty close to the minimum leads to a disproportionally large increase in
the attractiveness penalty, and vice versa. To highlight this behavior, we standardize
each solution based on the attained minimum and maximum penalties. For example,
if some solution attains a fairness penalty of ζ, we compute the relative decrease of
ζ. That is, we compute the quantity

ζmax − ζ
ζmax − ζmin ∈ [0, 1], (2.21)

where ζmin and ζmax denote the lowest and highest observed fairness penalties, re-
spectively. Note that ζmin and ζmax correspond to the left- and rightmost points in
the curve. We transform the observed attractiveness penalties similarly. The result is
shown in Figure 2.10. The horizontal axis shows the relative decrease of the fairness
penalty and the vertical axis shows the relative increase of the attractiveness penalty.
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Figure 2.10: Relative Trade-Off between Fairness and Attractiveness.

The transformed curves clearly show an increasing rate (the gray line indicates an
identical growth rate). We see, for example, that 65% of the fairness gap, i.e., the
difference between the minimum and maximum, can be closed against a relative small
increase of the attractiveness penalty. This 65% decrease leads to a relative increase of
the attractiveness penalty of at most 41% (for instance U1) and sometimes even of as
little as 8% (for instance U4). These points are highlighted in Figure 2.10. Similarly,
we see that for almost all instances the first 25% can be closed at almost no additional
increase in attractiveness penalty. On the other hand, Figure 2.10 also shows that
the final improvements of the fairness penalty often come at a disproportionally large
increase of the attractiveness penalty.

Attractiveness Per Group

Using an integrated approach allows to analyze the change in attractiveness per group
for the different levels of fairness. This implies we can analyze the trade-off between
fairness and attractiveness on a local level, i.e., for each group separately, instead of
only on a global level, i.e., seeing the three groups as a whole. We compute for each
group the average incurred attractiveness penalty per row. The groups are classified
based on the types of duties they contain (recall the classification discussed in Section
2.7.1). The result is shown in Figure 2.11.
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Figure 2.11: Average attractiveness penalty per group for instances U1 (top left), U2
(top right), U3 (bottom left) and U4 (bottom right).

Figure 2.11 shows that solutions with a low fairness penalty might be perceived as
‘skewed’ with respect to the attractiveness penalty. When the attractiveness penalty
is averaged and decomposed per group, we see that the different types of groups
have, in general, a different attractiveness. This can be attributed to the different
duty types defining each group (e.g., rosters alternating between late and night duties
often have more rest time violations). When considering solutions with a low fairness
penalty, we see a clear increase in the average attractiveness penalty for groups of
the third category, and, for the equally sized instances, also for the groups of the
first category. On the other hand, we see that for the groups of the second category,
the average attractiveness penalty hardly increases, or even decreases. Especially for
groups of the third category, those most flexible with respect to the duty allocation,
we observe a disproportionally large increase.
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2.7.3 Managerial Insights

Our experiments indicate the necessity of a simultaneous optimization of fairness
and attractiveness. The sequential approach is inadequate for analyzing the trade-
off between fairness and attractiveness. By using an integrated approach, we could
analyze this trade-off in detail. The analysis in Section 2.7.2 led to the following
important (empirical) insights.

Firstly, decision makers should be careful not to ‘over-optimize’ fairness. The trade-
off analysis showed that tight fairness levels lead to a rapid decrease of the attractive-
ness of the rosters. In our experiments, we observed cases where an almost negligible
increase in fairness led to a major decrease in attractiveness. Hence, fully prioritiz-
ing fairness over attractiveness should be considered only when fairness is extremely
highly valued. This is line with the analytical results derived in Section 2.4.

Secondly, it is questionable whether a set of rosters with high perceived fairness will
be perceived as desirable by all employees. Our analysis showed that the decrease
in attractiveness is unevenly distributed over the different roster groups. That is,
for some groups the attractiveness of the roster deteriorates rapidly, while for other
groups the attractiveness of the roster might actually improve. This skewed distri-
bution of attractiveness is an implicit consequence of minimizing perceived fairness.
The decrease of attractiveness occurs most rapidly for those roster groups that are
willing to accept an irregular roster (i.e., those groups flexible with respect to the
work that can be assigned). A rapid decrease in attractiveness for these roster groups
is highly undesirable from a practical point of view, as the employees in these groups
already ‘accept’ a loss of attractiveness by working an irregular roster.

Our experiments show that the current practice should be revised. In particular,
the trade-off between fairness and attractiveness should be incorporated in the con-
struction of the rosters. Furthermore, the current metric for perceived fairness, as
discussed in Section 2.2, should be reconsidered. For example, the skewed distribu-
tion of attractiveness could be incorporated in a new fairness metric, or a different
fairness scheme (e.g., max-min fairness) could be used. Note, however, that such ad-
justments heavily depend on whether the ‘Sharing-Sweet-and-Sour’ rules capture the
true essence of fairness or not. Or, to put it differently, whether a skewed distribution
of attractiveness is considered unfair by the employees. Furthermore, adjustments
in the fairness metric might lead to less transparent allocation rules, compared to
the ‘Sharing-Sweet-and-Sour’ rules, which would be more difficult to communicate
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to the employees. In any case, adjustments in the fairness metric would have a great
impact in practice, as fairness plays a major role in the negotiations with the labor
unions.

2.8 Conclusion

In this chapter, we introduced the Fairness-oriented Crew Rostering Problem (FCRP).
In the FCRP, fair and attractive cyclic rosters have to be constructed. The goal of
the FCRP is to make an explicit trade-off between fairness and attractiveness. That
is, to present a set of solutions, where each solution is optimal for a different trade-off
between fairness and attractiveness.

We analyzed a class of resource allocation problems, in which the resource allocation
is based on approximate utility functions. We considered a fairness scheme for this
class, based on the ‘Sharing-Sweet-and-Sour’ rules, and we derived a tight upper
bound on the price of fairness for this scheme, which showed that the price of fairness
is highest for instances with a large number of groups, and instances with large
differences in group sizes.

Furthermore, we developed an exact Branch-Price-and-Cut solution method, based
on a novel mathematical formulation. By partitioning the days of a basic schedule in
weeks, and assigning sequences of duties to these weeks, we obtain a flexible model in
which different roster constraints can be easily incorporated in the sequence penalties.

We applied our solution approach to practical instances of NS, where we showed
that our integrated approach leads to a diverse set of solutions. The analysis of
these solutions led to two important insights. Firstly, decision makers should be
careful not to ‘over-optimize’ fairness. We observed that by loosening the fairness
requirements slightly, the attractiveness could be greatly improved, thereby showing
the possible suboptimality of a sequential approach. Secondly, we found that the
decrease in attractiveness caused by a tight fairness level is unevenly distributed over
the different roster groups.

Based on our findings we recommend to revise the current approach. The trade-off
between fairness and attractiveness should be incorporated in the construction of the
rosters. Both the theoretical and empirical results show the existence of a loss of
attractiveness due to fair allocations. Hence, by explicitly considering the trade-off
between fairness and attractiveness, a more comprehensive image of the problem can
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be obtained. Furthermore, it is recommended to consider additional properties (e.g.,
the distribution of attractiveness over the groups) when determining the fairness level
of a solution, and to explore different fairness schemes. Whether or not this will lead
to an improved allocation, however, depends on the preferences of the employees and
the value of transparent and simple allocation rules.

A promising avenue for further research would be to extend our approach to large
scale instances (e.g., containing hundreds of duties). Such instances should most
likely be solved using a heuristic approach, as the problems will become too difficult
to solve to optimality. From a theoretical point of view, exactness is necessary to
analyze the trade-off between fairness and attractiveness. From a practical point of
view, however, a set of ‘good’, not necessarily optimal, solutions can already improve
the decision process greatly.

Appendix

2.A Proofs Section 2.4

In this section, we give the proofs omitted in Section 2.4. In Section 2.A.1, we give
the proofs of Theorem 2.4.1 and Corollary 2.4.1 concerning the utilitarian and max-
main fairness allocations for an ARAP satisfying Assumptions 2.4.2 and 2.4.3. In
Section 2.4.2, we give the proof of Theorem 2.4.2 regarding the price of fairness of
the ’‘Sharing-Sweet-and-Sour’ fairness scheme.

2.A.1 Proof of Theorem 2.4.1 and Corollary 2.4.1

To prove Theorem 2.4.1, we first prove the following lemma.

Lemma 2.A.1. Consider a RAP satisfying Assumption 2.4.2, where the utility func-
tion of the i-th player is given by fi(xi) = f(xi), for some f : Rk+ → R+, which is
concave, bounded, and continuous over X. The resource allocation x̂ ∈ X satisfying

x̂i = γ

n
,

for all i = 1, . . . , n, maximizes the overall utility.
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Proof. Let x̄ ∈ X be an allocation maximizing utility, i.e., x̄ = arg maxx∈X
∑n
i=1 f(xi).

The existence of x̄ follows from the fact that X is compact (by Assumption 2.4.2),
and f continuous. Note that, by Assumption 2.4.2, the resource allocation x̂i can be
written as

x̂i = γ

n
=
∑n
j=1 x̄j

n
.

It holds that

n∑
i=1

f (x̂i) = nf
(γ
n

)
= nf

(
1
n

n∑
i=1

x̄i

)
≥ n

n∑
i=1

1
n
f (x̄i) =

n∑
i=1

f (x̄i) ,

where the inequality follows since f is concave. This, however, shows that x̂ maxim-
izes the overall utility. The result follows.

Theorem 2.4.1 can now be proven as follows.

Theorem 2.4.1. Consider an ARAP satisfying Assumptions 2.4.2 and 2.4.3. The
vector x̂ ∈ X with

x̂i
φi

= γ∑n
j=1 φj

, (2.4)

for all i = 1, . . . , n, is a utilitarian allocation regarding the approximate utilities
φif(xi/φi).

Proof. The problem of maximizing the utility can be written as

max
n∑
i=1

φif(xi/φi) (2.22)

s.t.
n∑
i=1

xi = γ (2.23)

xi ∈ Rk+ ∀i = 1, . . . , n. (2.24)
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Using the change of variable yi = xi/φi, this is equivalent to

max
n∑
i=1

φif(yi) (2.25)

s.t.
n∑
i=1

φiyi = γ (2.26)

yi ∈ Rk+ ∀i = 1, . . . , n. (2.27)

We now consider a relaxation of the above problem with m =
∑n
i=1 φi players.

Let zi denote the resource allocation of the i-th player in this new setting. The
corresponding problem reads as follows.

max
m∑
i=1

f(zi) (2.28)

s.t.
m∑
i=1

zi = γ (2.29)

zi ∈ Rk+ ∀i = 1, . . . ,m. (2.30)

Note that the above problem satisfies the assumptions of Lemma 2.A.1. It follows
that ẑi = γ/m = γ/

∑n
j=1 φj is an optimal solution for (2.28)–(2.30). Note that the

solution ŷi = γ/
∑n
j=1 φj is feasible for (2.25)–(2.27), and achieves the same objective

value. Since (2.28)–(2.30) is a relaxation of (2.25)–(2.27), ŷi must be optimal for
(2.25)–(2.27). The result follows.

It remains to prove Corollary 2.4.1.

Corollary 2.4.1. Consider an ARAP satisfying Assumptions 2.4.2 and 2.4.3. The
vector x̂ ∈ X satisfying (2.4) is a max-min fairness allocation regarding the non-
weighted approximate utilities f(xi/φi).

Proof. Suppose x̂ does not correspond to max-min fairness allocation. Since f(x̂i/φi) =
f(x̂j/φj), for all i, j, this implies that there exists an x̄ ∈ X such that

f(x̄i/φi) ≥ f(x̂i/φi),

for all i = 1, . . . , n, and, furthermore, that the inequality is strict for at least one i.
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This, however, implies that

n∑
i=1

φif(x̄i/φi) >
n∑
i=1

φif(x̂i/φi),

contradicting Theorem 2.4.1.

2.A.2 Proof of Theorem 2.4.2

Theorem 2.4.2 can be proven as follows.

Theorem 2.4.2. Let U be the utility set for a given RAP satisfying Assumptions
2.4.1 and 2.4.2, and let SS&S be the fairness scheme defined by (2.5). It holds that

POF
(
U, SS&S) ≤ 1− φ?∑n

i=1 φi
, (2.6)

with φ? = mini∈{1,...,n} φi. Furthermore, this bound is tight for all φ ∈ Nn+.

Proof. For notational convenience, define h(x) =
∑n
i=1 gi(xi), and Φ =

∑n
i=1 φi.

Let x̂ correspond to an allocation maximizing utility, and let x? be defined by x?i =
(φi/Φ)γ.

We consider the line from x̂, passing through x?. When x̂ = x? the price of fairness
equals zero, hence, we can assume, without loss of generality, that x̂ 6= x?. Let x̄
denote the last feasible allocation on this line, i.e., x̄ + δ(x? − x̂) is not feasible for
arbitrary small δ > 0. Consider π : [0, 1]→ R+, defined by

π(α) = h((1− α)x̄+ αx̂).

Note that π(0) = h(x̄), and π(1) = h(x̂). Furthermore, π(α?) = x? for some α? ∈
(0, 1). Since x̄+ δ(x̂− x?) is not feasible for any δ > 0, it must hold that x̄ij = 0 for
some i and j. We have

φiγj
Φ = x?ij = (1− α?)x̄ij + α?x̂ij = α?x̂ij .

Furthermore, since x̂ij ≤ γj , it follows that

α? ≥ φi
Φ ≥

φ?

Φ ,
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with φ? = mini∈{1,...,n} φi. By the concavity of π, we know that

π(α?) ≥ π(0) + α?(π(1)− π(0)) ≥ α?π(1) ≥ φ?π(1)
Φ ,

where the second inequality follows since 1− α? ≥ 0 and π(0) ≥ 0. It follows that

h(x̂)− h(x?)
h(x̂) = π(1)− π(α?)

π(1) ≤ π(1)− (φ?/Φ)π(1)
π(1) = 1− φ?

Φ .

It remains to show that the bound is tight for all φ ∈ Nn+. For n = 1 this is trivial
(note that there is only one feasible solution in this case). Consider some φ ∈ Nn+
with n ≥ 2. Assume, without loss of generality, that φ1 = φ?, and k = 1. Set
g1(x1) = x1 and gi(xi) = 0, for i ≥ 2. Clearly, the maximum achievable utility is γ in
this case, which is achieved by assigning the entire resource to the first player. The
fairness scheme SS&S, however, will lead to an overall utility of (φ1/Φ)γ = (φ?/Φ)γ,
which shows that (2.6) is tight.

2.B Valid Inequalities

The linear relaxation of (2.9)–(2.20) can be tightened by adding valid inequalities.
We consider the set of roster constraints P \ PK . Recall from Section 2.7 that in
our experiments the set P \PK contains the rest constraints (both the strict version
regarding the 12/14 hour rest period and the penalized version regarding the 16 hour
rest period) and rest day constraints involving more than one week. We derive a set
of valid inequalities to bound the penalty incurred from the rest constraints regarding
the 16 hour rest period. For each Q ⊆ R let PQ ⊆ P \ PK be the set of 16 hour rest
constraints related to the set of basic schedules Q. We derive a lower bound for the
incurred penalty by minimizing ∑

p∈PQ

cpδp, (2.31)

subject to (2.11)–(2.12) and∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp (2.32)
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for all p ∈ PQ. That is, we ignore the sequence penalties, and hence the roster
constraints PK , thereby greatly simplifying the problem. Many roster sequences can
be aggregated in the above problem, as the rest patterns in PQ depend solely on the
first and last duty scheduled in each sequence.

The above optimization problem can be solved ‘efficiently’ for practical instances
using a commercial solver. In our experiments, for example, the valid inequalities
could be obtained in only a fraction of the time needed to obtain the Pareto-optimal
curves, and they strengthened the formulation greatly: For instances U1 and U2, none
but a few Pareto-optimal points could be found within two hours without using the
valid inequalities. This threshold of two hours per point was set to avoid extremely
long computation times, and is about a factor 6 larger than the average computation
times for U1 and U2 reported in Table 2.3. For instances U3 and U4 the valid
inequalities did not lead to a significant improvement in average computation time.

We note that the above procedure leads to 2|R| − 1 valid inequalities, and hence
should only be applied when the number of basic schedules is relatively small. In
case of a large set of basic schedules, a more economical alternative is to derive the
above bound only for all basic schedules simultaneously (i.e., Q = R). Although
this can lead to a slightly weaker formulation, we observed that this valid inequality
still strengthened the formulation greatly. For instance U1 adding only the single
valid inequality performed equally well as adding all valid inequalities, whereas for
instance U2 it performed only a factor 1.3 worse on average compared to adding all
2|R| − 1 valid inequalities .

2.C Modeling Reduced Cost

In this section we show how to model the reduced cost of a sequence. We first
introduce the necessary notation. Let µk denote the dual variables corresponding
to (2.11), ηd those corresponding to (2.12) and σp those corresponding to (2.13).
Furthermore, let γar and θar denote the dual variables corresponding to (2.14) and
(2.15), respectively. The reduced cost c̄ks of sequence s ∈ Sk, with k ∈ Kr, is given
by

c̄ks = cks − µk −
∑

(t,d)∈s

ηd −
∑

p∈P\PK

∑
(t,d)∈s

fptdσp −
∑
a∈A

∑
(t,d)∈s

gad(γar − θar).
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Note that we can aggregate the dual variables on the vertex level and rewrite the
above expression as

c̄ks = cks − µk −
∑

(t,d)∈s

λktd,

where the aggregated dual variables λktd are defined as

λktd = ηd +
∑

p∈P\PK

fptdσp +
∑
a∈A

gad(γar − θar).
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A Three-Phase Heuristic for
Cyclic Crew Rostering with
Fairness Requirements∗

3.1 Introduction

The scheduling of personnel is one of the most challenging planning problems for a
public transport operator. This is partly due to the large-scale nature of the problem,
but also due to the two conflicting objectives: On the one hand, the operator must
minimize cost from an operational point of view, yet on the other hand the operator
must also maximize the quality of work from an employees’ point of view. The Neth-
erlands, for example, has a history of strikes from employees of Netherlands Railways
(NS), expressing their discontent regarding the scheduled work. Reoccurring themes
during these conflicts are, for example, the irregularity of scheduled work, and the
distribution of work among the different crew bases. Hence, it is clear that, in order
to avoid such conflicts, a public transport operator should incorporate the demands
of employees in the planning process.

The assignment of work to the employees is traditionally decomposed into crew
∗This chapter, up to minor modifications, is a direct copy of T. Breugem, C. Schulz, T. Schlechte,

and R. Borndörfer (2019): A Three-Phase Heuristic for Cyclic Crew Rostering with Fairness Re-
quirements.
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scheduling and crew rostering. In the former, the duties (i.e., working days) are
constructed, and, in the latter, these duties are assigned to the employees. The focus
in crew rostering lies on perceived fairness and perceived attractiveness, leading to
a bi-objective decision problem. This problem was formalized in Chapter 2 as the
Fairness-oriented Crew Rostering Problem (FCRP). Roughly speaking, allocations
are perceived fair whenever each crew member performs similar work (measured over
a given number of attributes). Perceived attractiveness, on the other hand, focuses
on the structure of the rosters, taking, for example, the workload in each week and
the rest time between consecutive working days into account. Although both ob-
jectives have overlapping components, there is a clear trade-off, as shown in Chapter
2.

It is evident that perceived fairness and attractiveness of rosters are far more am-
biguous concepts than, for example, the cost of a rolling stock schedule. As a result,
the crew rostering problem is generally solved multiple times for varying parameter
settings, thereby steering towards a desired solution. This implies that, even dur-
ing the tactical planning phase, it is desirable that high quality solutions can be
obtained quickly. Furthermore, exact methods can be intractable for some of the in-
stances encountered in practice: The exact approach developed in Chapter 2 is able
to solve instances of about three roster groups and 100 duties (obtained from crew
base Utrecht) in at most a few hours, but fails to obtain good solutions for instances
of, say, six groups and about 200 duties in reasonable time. The latter is the size of
crew base Amersfoort, where NS conducted a pilot study regarding decision support
for crew rostering in the beginning of 2018. The pilot sparked interest and enthu-
siasm for decision support, but also highlighted the need for a heuristic algorithm
for the larger instances, and is therefore a driving force behind the research in this
chapter.

In this chapter, we consider a variant of the FCRP, which we will call the Cyclic Crew
Rostering Problem with Fairness Requirements (CCRP-FR). This problem deviates
from the FCRP by assuming a fixed, a priori known, set of fairness levels for which
rosters must be constructed. This differs from the FCRP, where we aim at finding
the entire trade-off curve and hence determining the relevant fairness levels is part of
the solution process. In practice, the former setting is often encountered, as planners
generally have some fairness levels (e.g., high, medium, and low fairness) in mind for
which they want to construct rosters. One key difference with the FCRP is that the
solution with maximum fairness does not necessarily have to be computed, which
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can be time consuming for large instances.

The main contribution of this chapter is a three-phase heuristic for the CCRP-FR,
which combines the strengths of the exact approach for the FCRP developed in
Chapter 2 with a large-scale neighborhood search algorithm. The design of the
heuristic assures that good solutions for all fairness levels are obtained quickly, and
can still be further improved if additional running time is available. We evaluate the
performance of the proposed solution approach using real-world instances from NS.
In particular, we show that the three-phase heuristic finds close to optimal solutions
for most instances, and achieves a major improvement (up to 40%) over the current
(sequential) approach.

The remainder of this chapter is organized as follows. In Section 3.2 we discuss the
CCRP-FR in detail, and in Section 3.3, we give an overview of related work. In
Section 3.4 we discuss the row-based formulation, followed by a detailed description
of the three-phase heuristic in Section 3.5. Section 3.6 evaluates the performance of
the solution method on practical instances from NS, and the chapter is concluded in
Section 3.7.

3.2 Cyclic Crew Rostering with Fairness Require-
ments

The goal of crew rostering is to construct rosters for the employees whilst taking both
perceived fairness and perceived attractiveness into account. The crew is partitioned
into roster groups, and each of these groups has to be assigned a roster. Figure
3.1 shows an example of two possible rosters, one for group A, consisting of three
employees, and one for group B, consisting of four employees.

The roster groups operate in cyclic rosters, i.e., the rosters are executed by multiple
employees in a periodic fashion. These rosters are constructed for a period of one
year, and the work for this period is assumed to be cyclic. In other words, Monday
the 22th of April is identical to Monday the 29th of April. Each roster has an
underlying structure, known as the basic schedule. The basic schedule specifies the
type of work of each day (e.g., a late duty or day-off). Each basic schedule consists of
cells (i.e., elements to which duties must be assigned), grouped into rows (i.e., weeks
of work) and columns (i.e., generic weekdays). The duty types, as specified in the
basic schedules, for both rosters in Figure 3.1 is shown at the top left of the cells,
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Figure 3.1: Example of two rosters for roster group A, consisting of three employees,
and B, consisting of four employees. The duty types are indicated by the types
(Early, Late, Night, and Rest) above the cells, and the numbers indicate the assigned
duties.

and the numbers indicate the assigned duties. Here, the basic schedule of group B,
for example, specifies that the first row starts with a late duty (L), followed by a
day-off (R), and then again a late duty. Similar to Chapter 2, we assume the basic
schedules to be input to the problem.

The crew rostering phase consists of allocating the duties, i.e., days of work, to
the basic schedules of the different roster groups. Note that, due the the cyclic
nature, also the duties are generic, i.e., the duties are specified on the weekday level.
Consider, for example, duty 112, scheduled on Monday in the first row of the roster
for group B, as shown in Figure 3.1. The cyclicity of the roster implies that this
duty is executed by the first employee of the group in the first week, by the fourth
employee in the second week, and by the third employee in the third week. This
process is also known as rolling out the roster. Note that the work for an employee of
group B repeats itself every four weeks and for an employee of group A every three
weeks, since the rosters have has four and three rows, respectively.

The perceived fairness and perceived attractiveness both depend on the way the du-
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ties are allocated to the cells of the basic schedules. The perceived fairness relates
to the distribution of work among the roster groups (e.g., one roster group should
not have much nicer work compared to another roster group), and the perceived at-
tractiveness relates to the structure of these rosters (e.g., sufficient rest time, average
workload).

The perceived fairness of the rosters is based on different characteristics of the duties.
Since every duty represents a work day, some can be considered more desirable than
others. Duties with many tasks on out-dated rolling stock, for example, are generally
considered undesirable. These characteristics are referred to as duty attributes. The
perceived fairness is measured by the spread (i.e., the difference between the maximal
and minimal average value of the duties in the roster) over the groups for the different
duty attributes. The smaller this spread, the higher the perceived fairness.

The perceived attractiveness considers the structural characteristics of the rosters,
and is defined by so-called roster constraints, which forbid or penalize assignments
of duties. Well-known examples of roster constraints are rest constraints, enforcing
a certain minimum time to rest between consecutive working days, and workload
constraints, enforcing a maximum amount of work within a week. The smaller the
penalty incurred from the roster constraints, the higher the perceived attractiveness.

Improving both the perceived fairness and perceived attractiveness is not always
possible, despite the fact that both metrics aim at improving the quality of the
scheduled work. This difference is best illustrated with a simple example, based on
the rosters of Figure 3.1. Suppose the current average duty length is 7 hours and 50
minutes for group A, and 7 hours and 45 minutes for group B. Consider the Monday
duties 110 and 112, assigned to groups A and B, respectively. Duty 110 starts at
13:15 and ends at 21:15, hence has a length of 8 hours, and duty 112 starts at 16:30
and ends at 00:10, having a length of 7 hours and 40 minutes. By swapping duties 110
and 112 we would reduce the spread in average duty length, and hence improve the
perceived fairness. This swap, however, also implies that the rest period on Tuesday
in row B1 becomes shorter, which makes the roster possibly less attractive.

The CCRP-FR can now be stated as follows: Given as input the basic schedules and
duties, and a set of fairness levels, determine attractive rosters for each fairness level.
That is, determine for each fairness level a roster for each group that minimizes the
penalties incurred from the roster constraints, whilst enforcing the desired fairness
level.
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3.3 Related Work

Crew planning is a widely studied problem in the literature, dating back as far as
Dantzig (1954). The applications range from health care (e.g., nurse rostering) to
transportation (e.g., airline, railway, and bus planning), and the solution methodo-
logy covers well-known exact and heuristic methods, such as branch-and-price, sim-
ulated annealing, and tabu search. In this section we focus mainly on crew planning
within the transportation sector: We refer to Ernst et al. (2004) and Van den Bergh
et al. (2013) for more general overviews.

Crew planning is commonly decomposed into two sequential planning phases. In
the first phase, known as the crew scheduling or crew pairing problem, the days
of work (i.e., duties or pairings) are constructed. This phase mainly focuses on
operational cost (i.e., the number of necessary crew members), together with other
key factors, such as the fairness of the work allocation and the constraints resulting
from the collective labor agreements. The crew scheduling problem is a well-studied
problem in the literature (see, for example, Desrochers and Soumis (1989), Hoffman
and Padberg (1993), Grötschel et al. (2003), Abbink et al. (2005), among others),
and has been considered in numerous variants, such as rescheduling whenever the
underlying tasks are modified (e.g., Lettovskỳ et al. (2000), Potthoff et al. (2010))
and in conjuction with other planning problems, such as aircraft routing and vehicle
scheduling (e.g., Cordeau et al. (2001), Huisman et al. (2005a)).

The second planning phase, known as crew rostering, consists of combining the du-
ties (or pairings) into rosters, which are sequences of duties (or pairings) satisfying
numerous labor constraints. Typical constraints consider, for example, days off, rest
times, variation of work, and personal preferences. Rosters are generally classified
as cyclic, i.e., multiple employees working the same roster, and acyclic, i.e., each
individual employee working his or her own roster. The latter type is common in
the healthcare sector and airline industry (see, for example, Kohl and Karisch (2004)
and De Causmaecker and Vanden Berghe (2011), and references therein), whereas the
former type is often used in railway operations and mass transit (see Huisman et al.
(2005b), Caprara et al. (2007)). Cyclic crew rostering is well-studied in the literature
and a variety of formulations have been proposed to model the problem, including a
generalized assignment formulation (e.g., Hartog et al. (2009)), a multi-commodity
flow formulation (e.g., Caprara et al. (1997), Xie and Suhl (2015), Borndörfer et al.
(2015)), and a set covering or set partitioning formulation (e.g., Caprara et al. (1997),
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Freling et al. (2004), Borndörfer et al. (2015)). The integration of both crew schedul-
ing and rostering has been considered in Mesquita et al. (2013) andBorndorfer2017
which both propose a solution method based on Benders decomposition. Note that
most of aforementioned work focuses on exact methods or heuristics based on math-
ematical programming techniques, such as column generation. For large-scale and
highly complex rostering problems, heuristic methods are sometimes better suited.
We refer to Van den Bergh et al. (2013), Table 13, for a detailed overview of solution
approaches. In this paper, we build upon the variable-depth neighborhood search
heuristic proposed in Borndörfer et al. (2015).

The incorporation of fairness measures in combinatorial optimization problems is, to
the best of our knowledge, a relatively young field of research. The fairness of utility
allocations, however, has a long history in the economic literature, dating back to
the work on bargaining problems by Nash (1950). Recent work in the field of Op-
erations Research has focused on the trade-off between efficiency (e.g., minimizing
cost) and fairness (e.g., maximizing the lowest derived utility). This work includes,
among others, the work of Bertsimas et al. (2012) and Bertsimas and Gupta (2015)
in the context of air traffic flow management, Bertsimas et al. (2013) on organ al-
location, and, in Chapter 2, on the trade-off between fairness and attractiveness in
crew rostering.

The three-phase heuristic extends the exact branch-price-and-cut approach of Chapter
2 to a solution approach for large-scale instances. We showed in Chapter 2 that the
exact method is able to solve practically sized instances in reasonable time. For some
of the large instances encountered in practice, however, these computation times are
considered too high, and quickly found high-quality solutions, although possibly sub-
optimal, are preferred. We therefore develop a heuristic taking the exact method
as basis, thereby inheriting the strong points of this method, while avoiding excess-
ive computation times. This chapter aims at bridging the gap between the exact
method developed in Chapter 2 and the current sequential practice, where first the
duties are assigned to the roster groups, and then the rosters per group are optimized
separately.

3.4 Mathematical Formulation

In this section we discuss the mathematical formulation underlying the heuristic. We
consider the row-based formulation introduced in Chapter 2 for the FCRP, in which
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a variable represents the simultaneous assignment of multiple duties to all cells in a
row of the basic schedules. The main benefit of this formulation is that all weekly
roster constraints, such as weekly variation and maximum workload constraints, can
be modeled implicitly in the definition of the variables. In Section 3.4.1, we introduce
the necessary notation and terminology, and in Section 3.4.2, we present the row-
based formulation.

3.4.1 Notation and Terminology

The row-based formulation models the assignment of duties to the cells by means of
roster sequences, which specify a simultaneous assignment of duties to a row. In the
case of Figure 3.1, for example, a roster sequence for row A1 has to specify a duty
for all three cells (recall that rest days are assumed fixed). In this specific roster, the
selected roster sequence specifies the assignment of duty 105 for Wednesday, 111 for
Thursday, and 123 for Friday.

Let D denote the set of duties, and let R denote the set of basic schedules. Each
basic schedule r is defined by a set of cells Tr, and the set of all cells is denoted by T .
An assignment of a duty d to a cell t in a basic schedule will be denoted by the pair
(t, d). We define nr as the total number of duties to be assigned to basic schedule r.
Let K denote the set of all rows, and Kr denote the set of rows for basic schedule
r ∈ R. We define Sk as the set of all roster sequences for row k ∈ K, where each
roster sequence is formally defined as a sequence of assignments (t, d) for the cells in
k. The parameter hkds indicates whether sequence s ∈ Sk contains duty d.

The row-based formulation models the assignment of duties to the cells using the
decision variables xks , for all k ∈ K and s ∈ Sk, indicating whether roster sequence
s ∈ Sk is assigned to row k. The perceived fairness and perceived attractiveness are
modeled as follows.

Perceived Fairness

The perceived fairness is expressed in terms of the maximum and minimum average
values of different duty attributes (e.g., duty length) among the roster groups. Let
A denote the set of duty attributes, and let gad denote the value of attribute a ∈ A
for duty d ∈ D. Each attribute has a specified lower bound `a and upper bound ua,
representing the minimum and maximum allowed average values for a basic schedule.
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In case of the duty length, for example, one could enforce that no roster group
works more than 8 hours on average. Besides these bounds, each duty attribute has
an associated weight wa, representing the relative importance of the different duty
attributes when calculating the perceived fairness.

The calculation of the perceived fairness is based on the variables va and za, rep-
resenting the minimum and maximum average value of duty attribute a among all
roster groups, respectively. These variables are linked to the xks variables by means
of the constraints∑

k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≤ nrza ∀a ∈ A, r ∈ R (3.1)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≥ nrva ∀a ∈ A, r ∈ R, (3.2)

assuring that va and za attain the minimum and maximum average value for each
duty attribute. Given the values va and za, the fairness level is calculated as∑

a∈A
wa(za − va), (3.3)

and a fairness budget ζ is enforced by assuring that (3.3) does not exceed ζ.

Perceived Attractiveness

Each roster constraint penalizes, or forbids, certain combinations of assignments of
duties to the cells of the basic schedules. Let P denote the set of roster constraints and
let fptd denote the coefficient for assigning duty d to cell t for roster constraint p ∈ P .
For any given assignment of duties to the cells, the violation of the roster constraint
is given by the sum of these coefficients minus some allowed threshold value bp, and
this violation is restricted to the interval ∆p = [0,mp]. The interval ∆p = [0, 1], for
example, would allow a violation of at most one. Each roster constraint p ∈ P can
be written as ∑

k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp, (3.4)

where δp ∈ ∆p represents the violation. The perceived attractiveness is maximized
by minimizing the sum of roster constraint violations cpδp, where the cost coefficients
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cp regulate the relative importance of the different roster constraints. The row-based
formulation allows every roster constraint that is contained in a row, i.e., it only
has non-zero coefficients fptd for the cells in one row, to be modeled implicitly. Let
PK ⊆ P denote the set of roster constraints that are contained in the rows k ∈ K
(and can therefore be modeled implicitly), and let cks denote the cost associated with
sequence s ∈ Sk, that is, cks is the sum of all roster constraint violations in the
sequence s.

3.4.2 Row-Based Formulation

The concepts introduced in Section 3.4.1 can be integrated to obtain the row-based
formulation for the CCRP-FR, similar to the FCRP formulation introduced in Chapter
2. For a given fairness budget ζ, the model reads as follows.

min
∑
k∈K

∑
s∈Sk

cksx
k
s +

∑
p∈P\PK

cpδp (3.5)

s.t.
∑
a∈A

wa (za − va) ≤ ζ (3.6)∑
s∈Sk

xks = 1 ∀k ∈ K (3.7)

∑
k∈K

∑
s∈Sk

hkdsx
k
s = 1 ∀d ∈ D (3.8)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp ∀p ∈ P \ PK (3.9)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≤ nrza ∀a ∈ A, r ∈ R (3.10)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≥ nrva ∀a ∈ A, r ∈ R (3.11)

za ≤ ua ∀a ∈ A (3.12)

va ≥ `a ∀a ∈ A (3.13)

xks ∈ B ∀k ∈ K, s ∈ Sk (3.14)

δp ∈ ∆p ∀p ∈ P \ PK (3.15)

va, za ∈ R ∀a ∈ A. (3.16)
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The objective (3.5) expresses that we minimize the penalties incurred from the roster
constraints, partly expressed by the roster sequence costs and partly expressed by
the cost of the explicitly modeled roster constraints. The fairness budget is enforced
by (3.6). Constraints (3.7) and (3.8) assure that the duties are assigned correctly
to the basic schedules: Each row is assigned exactly one roster sequence, and each
duty appears in exactly one roster sequence. Constraints (3.9) model the roster
constraint violations, as discussed in Section 3.4.1. Furthermore, Constraints (3.10)
and (3.11) assure that the variables va and za are set to the minimum and maximum
value, respectively, while (3.12) and (3.13) enforce the lower and upper bounds on
the attribute values. Finally, Constraints (3.14)–(3.16) express the domains of the
decision variables.

3.5 Three-Phase Heuristic

In this section we present the three-phase heuristic. We first give a general overview
of the heuristic and discuss the key components. We then discuss the three different
phases separately: In Section 3.5.1, we discuss the first phase of the heuristic, in which
a feasible solution is obtained using a sequential decomposition, and in Sections 3.5.2,
and 3.5.3, we discuss the paiwise and global improvements phases, respectively.

Recall that for the CCRP-FR the set of fairness levels is considered input. That
is, the goal is to determine a solution maximizing attractiveness for a given set of
fairness levels, represented by the ordered fairness budgets ζ1 < . . . < ζn. In this
case, ζ1 corresponds to the highest fairness level (i.e., smallest budget), and ζn to the
lowest fairness level (i.e., largest budget). For the sake of explanation, we will often
consider the three fairness levels high, medium, and low, but note that the approach
does not rely on any assumption regarding the number of fairness levels, nor the size
of their corresponding budgets.

The three-phase heuristic aims at quickly finding high-quality solutions for each fair-
ness level. Figure 3.2 schematically visualizes the algorithm. First, we obtain an
initial allocation of the duties to the basic schedules for the highest fairness level,
i.e., the lowest fairness budget. This is done by solving a mixed-integer linear pro-
gram. The roster per basic schedule, given the allocation of the duties, is then
optimized using the exact branch-price-and-cut approach developed in Chapter 2.

The second and third phase of the algorithm both aim at finding profitable re-
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Figure 3.2: Schematic visualization of the three-phase heuristic. For illustrative pur-
poses, three fairness levels (high, medium, and low) are highlighted. The algorithm
starts by finding a feasible solution for the tightest fairness level using a sequential
approach (Phase 1). This solution is taken as starting point of a pairwise improve-
ment phase (Phase 2), where we obtain a feasible solution for each fairness level.
Finally, the separate solutions are further improved in a global improvement step
(Phase 3).

allocations of duties among the roster groups. In the second phase, we look for
pairwise improvements, i.e., we try to find a profitable re-allocation of duties between
pairs of roster groups. This is done by solving a reduced problem, based on the linear
relaxation of (3.5)–(3.16). The key aim of the second phase is to quickly find good
solutions for each fairness level, which is achieved by using the found solutions for
high levels as starting point for the lower levels.

In the third and final phase of the heuristic we invoke a more time-consuming large-
scale neighborhood search algorithm to further improve the solutions. Note that
the solutions found in the third phase are not used as starting solutions for the
second phase. This assures that, even upon early termination, the algorithm returns
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a solution for each fairness level, thereby not having to wait for the third, most time
consuming, phase to finish. Furthermore, this explicit decoupling would also allow
the third phase to be executed in parallel.

3.5.1 Phase 1: Sequential Decomposition

In the first phase of the algorithm we consider a natural, yet heuristic, decomposition:
First, a fair and feasible allocation of the duties to the roster groups is determined,
and, secondly, the roster per group is optimized given the allocated duties. This
sequential decomposition closely resembles the current practice. The solution found
in this phase can therefore be considered as a well-motivated benchmark solution.
The allocation of the duties to the groups is obtained by solving a feasibility problem.
We solve this problem using a cell-based formulation: Let the binary variable πtd, for
all t ∈ T and d ∈ D indicate whether duty d is assigned to cell t, and let Dt ⊆ D

denote the subset of duties compatible with cell t, i.e., those duties for which the
weekday and duty type match. Similarly, let Td ⊆ T denote the cells to which duty
d can be assigned. We obtain a feasible allocation by solving the following system of
inequalities. ∑

a∈A
wa(za − va) ≤ ζ (3.17)∑

d∈Dt

πtd = 1 ∀t ∈ T (3.18)

∑
t∈Td

πtd = 1 ∀d ∈ D (3.19)

∑
t∈T

∑
d∈D

fptdπtd ≤ bp +mp ∀p ∈ P (3.20)∑
t∈Tr

∑
d∈D

gadπtd ≤ nrza ∀a ∈ A, r ∈ R (3.21)

∑
t∈Tr

∑
d∈D

gadπtd ≥ nrva ∀a ∈ A, r ∈ R (3.22)

za ≤ ua ∀a ∈ A (3.23)

va ≥ `a ∀a ∈ A (3.24)

πtd ∈ B ∀t ∈ T, d ∈ D (3.25)

va, za ∈ R ∀a ∈ A. (3.26)
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Constraints (3.18) and (3.19) assure each cell is assigned exactly one duty and (3.20)
guarantees the feasibility with respect to the roster constraints. Note that, compared
to (3.4), we set δp equal to the upper bound mp. The remaining constraints model
the fairness budget, as discussed in Section 3.4.1. The model (3.17) – (3.26) without
fairness constraints is similar to the assignment model proposed in Hartog et al.
(2009) for cyclic crew rostering.

Given a feasible allocation, the roster for each group is optimized. This sequential
decomposition greatly simplifies the problem, as it eliminates the connection between
fairness and attractiveness: For a known allocation of duties to the roster groups,
the fairness constraints are either satisfied or not, and hence the problem decomposes
into a set of (simpler) cyclic crew rostering problems, one for each roster group. For
practical roster group sizes, these problems can be solved efficiently using the branch-
price-and-cut approach proposed in Chapter 2.

3.5.2 Phase 2: Pairwise Improvement

In the second phase of the algorithm we obtain a feasible solution for each fairness
budget. First we improve the solution obtained in Phase 1 to obtain a solution for ζ1,
and then we proceed in an iterative fashion: The solution for the (i+ 1)-th fairness
budget ζi+1, is obtained by searching a neighborhood around the solution for the i-th
fairness budget ζi, i.e., we exploit the increase of the fairness budget to find profitable
re-allocations of duties.

We search for a profitable re-allocation of duties between pairs of roster groups. Note
that profitable re-allocations might exist since we increase the fairness budget, hence
allocations previously not feasible become feasible. We restrict the re-allocation to
pairs of roster groups, to assure that the running time scales well with the instance
size. The pairs of roster groups are ordered such that the small groups are considered
first. To illustrate this, consider four roster groups A, B, C, and D, of 8, 9, 10, and
12 employees, respectively. We first look for a profitable re-allocation between A
and B, then between A and C, then A and D, then between B and C, then B and
D, and finally between C and D, each time updating the rosters when a profitable
re-allocation has been found. Hence, given k groups, we check k(k− 1)/2 pairs, after
which the improvement step terminates.

The re-allocation is determined by solving the row-based formulation for a reduced
set of roster sequences, where the reduction is based on the solution to the linear
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relaxation: Consider a given feasible integer solution x̂ and an optimal (fractional)
solution of the linear relaxation x̄. For each cell t ∈ T , we allow only a subset D̄t ⊆ Dt

of duties to be assigned. The set D̄t is initialized by the duty assigned to t in the
solution x̂, to assure the integer solution remains feasible, and is then enriched based
on x̄: For each k ∈ K and t ∈ k, we enlarge D̄t by adding the duties d ∈ Dt for which∑

s∈Sk:
s3(t,d)

x̄ks > 0,

i.e., we add those duties to D̄t that have a non-zero coefficient for t in x̄. Figure 3.3
illustrates this reduction. Generally, not too many duties are selected this way.

Mon Tue Wed Thur Fri Sat Sun

44 R 52 119 R 64 38

Mon Tue Wed Thur Fri Sat Sun

44 R 58 101 R 64 38

Figure 3.3: An example of the problem reduction. Suppose the shown roster se-
quences are assigned positive values in x̄ for some given row. The allowed duties
obtained from x̄ are given by D̄Mon = {44}, D̄Wed = {52, 58}, D̄Thur = {101, 119},
D̄Sat = {64}, and D̄Sun = {38}. In this example, two additional roster sequences will
be generated leading to a total of four roster sequences.

The reduced set of roster sequences S̄k ⊆ Sk for each row k ∈ K, consists of exactly
those roster sequences assigning only duties in D̄t to each t ∈ k. This set is determined
by complete enumeration. The resulting reduced model is solved using a commercial
solver to obtain a possible improved allocation of the duties. In this phase of the
heuristic, we also solve the linear relaxation of (3.5)– (3.16) for all roster groups
simultaneously to obtain a lower bound on the optimal solution value.

3.5.3 Phase 3: Global Improvement

In the third and final step of the algorithm, each of the solutions is further improved
using a sophisticated local search algorithm. In this phase of the heuristic we aim at
finding improving duty exchanges between all roster groups (hence, the name global
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improvement), as opposed to Phase 2, where we only consider pairs of roster groups.
This is done using local search.

The proposed local search algorithm is based on variable-depth neighborhood search
(VDNS), a neighborhood search technique belonging to the family of so-called very
large-scale neighborhood search algorithms (see e.g., Ahuja et al. (2002), Pisinger and
Ropke (2010) for a detailed overview). The key idea behind VDNS is to (heuristically)
explore a large neighborhood by constructing a chain of moves, with each move
belonging to a smaller neighborhood. In this way, a large part of the solution space
is searched, including moves involving a large number of elements, whilst avoiding
excessive computation times. This simple yet successful idea dates back to Lin and
Kernighan (1973), who used it to construct an efficient heuristic for the Traveling
Salesman Problem (TSP). The concept of VNDS has been applied to a wide range
of difficult combinatorial optimization problems ever since.

To apply VDNS one first needs to define a parametrized neighborhood Nk, satisfying

N1 ⊆ . . . ⊆ Ni ⊆ . . . ⊆ Nn.

Typical examples of such neighborhoods are the k-permutation neighorhood, i.e., per-
muting k elements of the solution, or the k-arc exchange neighborhood considered in
Lin and Kernighan (1973). The key idea is to first pick a suitably sized neighborhood
Ni, large enough to escape local optima and small enough to be searched efficiently,
and heuristically explore Nn by chaining together moves in the smaller neighborhood
Ni. The chain is constructed by making a profitable move in Ni, fixing the involved
elements, and repeating this until no more profitable moves exist. As noted in John-
son and McGeoch (1997), this chaining of moves can be seen as a special type of tabu
search, using a flexibly sized tabu list. Figure 3.4 gives a schematic visualization of
VDNS.

Crucial for VDNS to work is a suitably picked neighborhood. In particular, the
neighborhood should (i) be able to escape local optima, (ii) be searchable in reas-
onable time, and (iii) guarantee that the solution remains feasible, or at least can
be easily made feasible. The latter depends heavily on the structure of the underly-
ing problem. In case of a fixed basic schedule, for example, duties cannot be freely
exchanged (e.g., a late duty on Monday cannot be exchanged with an early duty on
Monday nor a late duty on Tuesday). We therefore propose two neighborhoods for
the VDNS algorithm, based on two different duty exchange operations: vertical and
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Nn

Ni+1

Ni

Figure 3.4: Schematic visualization of VDNS. The parametrized neighborhood Nk
is heuristically searched (indicated by the dashed area) by chaining Ni moves. The
resulting move can be part of Ni, Ni+1, or even Nn, implying that the ‘depth’ of the
move is not fixed.

horizontal duty exchanges.

Vertical k-exchanges are exchanges between k duties of the same type and in the
same column, i.e., they are vertically aligned. This assures that the involved duties
can always be exchanged without violating the basic schedule, i.e., the structure of
the solution is not affected by a vertical exchange. The feasibility with respect to the
roster constraints can be readily checked when performing an exchange, hence the
feasibility of the solution can always be assured. Note that the vertical k-exchange
neighborhood can be searched in O

(
|D|k

)
time. Figure 3.5a gives an example of a

vertical 3-exchange. We will denote the vertical k-exchange neighborhood by Vk.

Horizontal k-exchanges are a more involved type of exchange, affecting duties of
different types and in different columns. The horizontal exchange neighborhood aims
at complementing the vertical exchange neighborhood, which can get stuck in local
optima due to the restriction to one single column. Formally, a horizontal k-exchange,
for k even, is a sequence of k/2 vertical 2-exchanges, where each 2-exchange shares
at least one row with its predecessor. Figure 3.5b gives an example of a horizontal 4-
exchange. By considering a sequence of multiple vertical 2-exchanges we allow duties
of different weekdays and types to be affected within a single exchange, i.e., one
exchange can involve multiple duties in one row. Furthermore, we limit the search
time by only considering sequences where consecutive exchanges share a row: It is
not difficult to show that the horizontal k-exchange neighborhood can be searched in
O
(
|D|k/2+1) time. We will denote the horizontal k-exchange neighborhood by Hk.

The proposed VDNS algorithm combines chains of horizontal 4- and vertical 3-
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Mon Tue Wed Thur Fri Sat Sun

44 R 52 119 R 64 38

R R 105 111 123 R R

118 107 115 R 108 R 106

126 124 R 13 54 40 R

(a) State 1: vertical 3-exchange involving Monday

Mon Tue Wed Thur Fri Sat Sun

118 R 52 119 R 64 38

R R 105 111 123 R R

126 107 115 R 108 R 106

44 124 R 13 54 40 R

(b) State 2: horizontal 4-exchange involving Wednesday and Friday

Mon Tue Wed Thur Fri Sat Sun

118 R 52 119 R 64 38

R R 115 111 108 R R

126 107 105 R 123 R 106

44 124 R 13 54 40 R

(c) State 3: final roster

Figure 3.5: Example of horizontal and vertical exchanges. First, a vertical 3-exchange
is performed on the the Monday duties 44, 118 and 126. Then, a horizontal 4-
exchange is performed on the Wednesday duties 105 and 115, and the Friday duties
108 and 123.

exchanges, searchable in O
(
|D|3

)
time, with horizontal 6- and vertical 4-exchanges,

searchable in O
(
|D|4

)
time. This is done similar to the Dynamic Depth-EXchange

(DEX) algorithm, introduced in Borndörfer et al. (2015): We combineH4+V3 chains,
i.e., chains of horizontal 4- and vertical 3-exchanges, with single H6 + V4 moves to
escape local optima. These neighborhoods are large enough to escape local optima,
and small enough to be considered efficient.

The final VDNS algorithm is shown in Figure 3.6. Starting from an initial solution,
we construct improving H4 + V3 chains. Here we allow for some small deterioration
in the chaining process, to add more flexibility to the search. Once the chaining
procedure finishes, i.e., the best H4 + V3 move among the non-fixed duties leads to
too much of a cost increase, the solution is updated and all duties are removed from
the set of fixed duties. If an improving chain was found, we again search for an
improving chain for the updated solution. Otherwise, we try to escape the current
local optimum by using one (strictly profitable) H6 + V4 move. If this succeeds, we
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repeat the chaining procedure for the updated solution. Otherwise the algorithm
terminates and the final solution is found.

Initial solution x Current solution x

Return x

H4 + V3-chain

Find best H4 + V3 move,
allow small deterioration

Update x, fix
involved duties

empty fixed duty list,
chain is improving?

Find strict improving H6 + V4 move

no

yes

no

yes

no

yes

Figure 3.6: Schematic visualization of the VDNS algorithm. An initial solution
is improved using H4 + V3 chains. If no improving chain can be found, a single
H6 +V4 move is considered. In case no profitable H6 +V4 move exists, the algorithm
terminates. Otherwise, the algorithm continues the search for improvements using
H4 + V3 chains.

3.6 Computational Experiments

To evaluate the performance of the heuristic, we apply our solution approach to dif-
ferent instances based on data from NS. In Section 3.6.1 we discuss the experimental
set-up and in Section 3.6.2 we show the computational results.

3.6.1 Experimental Set-Up

We consider a total of 10 instances. The first four instances are those considered
in Chapter 2, and can be used to validate the performance of the heuristic, as the
optimal solutions are known for these instances. For the remaining six (larger) in-
stances, no optimal solutions are known.

The instances each consist of basic schedules and duties that need to be assigned to
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these schedules. The basic schedules specify a type, i.e., a duty type or a day off, for
each cell. The considered duty types are early, late, and night. Based on the types of
the duties that need to be assigned, each roster group can be (roughly) categorized
in one of three categories: early, late-night, and mixed (i.e., all three types). We refer
to these categories as E, LN, and M, respectively.

Duties Employees
E L N Total E LN M Nr Groups

1 55 29 29 113 14 12 4 3
2 58 33 24 115 12 12 4 3
3 38 22 11 71 6 6 6 3
4 37 17 15 69 6 8 6 3
5 74 62 55 191 12 12/12 12 4
6 88 36 31 155 14 8 12/6 4
7 86 36 37 159 12/6 12 12 4
8 74 30 16 120 6/6 8 12 4
9 126 70 54 250 14/6 12/8 12/12 6
10 142 63 61 266 12/12 12/8 12/12 6

Table 3.1: Characteristics of the instances. For each instance, the number of duties
of type early (E), late (L), and night (N) is shown, together with the total number
of duties, and the number of employees of each category early (E), late-night (LN),
and mixed (M). Finally, the number of roster groups per instance is shown.

For each instance, Table 3.1 shows the number of duties of each type, and the size
of the groups per category (i.e., the entry 12/8 for LN means the instance contains
one LN group of 12 employees and one LN group of 8 employees). The first four
instances all consist of three groups, one of each type, of varying sizes. The second
four instances all consist of four groups of varying type and varying size. The fifth
instance is the largest among these four, with approximately 190 duties, whereas the
eighth instance is the smallest, with roughly 120 duties. The final two instances both
consist of six groups, with two groups of each type. The total number of duties for
both instances is roughly 250. The size of these instances corresponds to the size of
the pilot study mentioned in Section 3.1.

The perceived fairness is based on five different duty attributes. These include three
attributes concerning the scheduled work: the percentages of high quality work (e.g.,
Intercity work), aggression work (e.g., trips where passengers are less likely to have
a ticket, and hence might become aggressive), and double decker work (as work on
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double decker trains is physically more demanding). Furthermore, there are two
attributes regarding the entire duty: the duty length, and the repetition within duty
(as duties with many of the same trips are repetitive, which is considered undesirable).

The perceived attractiveness is determined by four types of roster constraints. These
types can be divided into two classes. The first class contains ‘binary’ roster con-
straints, i.e., roster constraints linking exactly two cells in the basic schedule. This
class contains the so-called rest time end rest day constraints: It is required that an
employee has a minimum rest time after each duty. After a night duty this rest time
should be 14 hours and after any other type of duty it should be 12 hours. Further-
more, rest times shorter than 16 hours are penalized. In addition, the length of each
scheduled rest period has to be sufficient. This implies that there is a minimal time
enforced between duties scheduled before and after rest days. The enforced rest time
is 6 hours plus 24 hours for each rest day. The second class of roster constraints con-
sists of ‘row-based’ roster constraints. This class contains workload constraints, i.e.,
the total workload in a row is not allowed to exceed 45 hours, and a large collection
of variation constraints. This latter type of constraint aims at balancing different
duty attributes (e.g., duty length, percentage double decker work) equally over the
rows, which is achieved by penalizing positive deviations from the average (measured
over all duties) for each row in the roster. In total we consider variation constraints
for 9 different attributes. Note that the stronger bound obtained from the row-based
formulaton (compared to the cell-based formulation) results from capturing the row-
based roster constraints directly in the roster sequence costs.

3.6.2 Computational Results

We evaluated the heuristic solution method on each of the ten instances using different
fairness budgets. The cell-based formulation used in the first phase is solved using
CPLEX 12.7.1 (from hereon simply referred to as CPLEX), with a time limit of 30
minutes, i.e., whenever no feasible allocation is found within 30 minutes the fairness
budget is considered infeasible. The optimization problem per roster group, when
a feasible allocation is found, is solved to optimality using the branch-price-and-cut
approach developed in Chapter 2. For the pairwise improvement step in the second
phase, we allow a solving time of two minutes per pair. The linear relaxation of the
row-based formulation is solved using the column generation approach proposed in
Chapter 2, and the reduced problem is again solved using CPLEX.
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The results for the first four instances are shown in Table 3.2. For each instance,
we consider five different fairness levels: extreme, high, moderate, low, and poor.
The corresponding fairness budgets are obtained as follows. We first determine the
exact trade-off curve between perceived fairness and attractiveness, using the branch-
price-and-cut algorithm of Chapter 2. We then pick the fairness budgets for each level
based on the quantiles of the trade-off curve: extreme corresponds to the leftmost
(i.e., fairest) point, high to the 10% quantile, moderate to the 25% quantile, low to
the 50% quantile, and, finally, poor to the 75% quantile of the curve. In this way, we
assure that the fairness levels cover the entire spectrum of possible solutions.

Fairness Phase 1 Phase 2 Phase 3 Optimal Root Gain (%) Gap (%)

1

Extreme 1175.8 1175.8 1175.8 1175.8 1155.6 0.0 0.0
High 1172.6 1172.6 1169.2 1133.4 0.3 0.3
Moderate 1172.3 1172.3 1164.2 1128.5 0.3 0.7
Low 1172.3 1165.8 1133.8 1115.4 0.8 2.7
Poor 1143.1 1142.7 1120.8 1104.8 2.8 1.9

2

Extreme 1288.0 1288.0 1288.0 1288.0 1172.3 0.0 0.0
High 1288.0 1248.6 1216.4 1158.3 3.1 2.6
Moderate 1257.3 1226.3 1192.2 1149.3 4.8 2.8
Low 1257.3 1210.2 1186.1 1135.8 6.0 2.0
Poor 1204.5 1196.7 1177.8 1126.6 7.1 1.6

3

Extreme 979.3 979.3 979.3 979.3 800.9 0.0 0.0
High 979.3 979.3 853.8 793.4 0.0 12.8
Moderate 859.0 859.0 830.3 788.4 12.3 3.3
Low 802.4 802.4 794.0 781.5 18.1 1.0
Poor 791.3 787.5 787.5 777.6 19.6 0.0

4

Extreme 910.5 910.5 910.5 910.5 776.7 0.0 0.0
High 872.1 872.1 847.2 767.3 4.2 2.9
Moderate 872.1 872.1 827.7 761.3 4.2 5.1
Low 808.4 808.4 788.0 746.8 11.2 2.5
Poor 774.2 774.2 774.2 742.7 15.0 0.0

Table 3.2: Results for the first four instances for five different fairness levels. For
each instance and each fairness level, we show the objective values, i.e., perceived
attractiveness penalty, obtained in the different phases of the heuristic, the optimal
solution value, the root bound, the gain compared to the benchmark solution (i.e.,
Phase 1), and the gap with the optimal solution.

Table 3.2 shows that the heuristic finds high-quality, close to optimal, solutions for
all but a few instances. For the extreme fairness level, the solution found in the first
phase coincides with the optimal solution for all four instances. As Table 3.2 shows,
the major improvement is often achieved in the second phase of the algorithm, i.e.,
the pairwise improvement phase. The third phase generally improves only slightly
upon this solution. There are, however, also some cases (e.g., instance 2) in which
the third phase greatly improves upon the second phase. Note that for most of the
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instances, there is a substantial integrality gap.

The computation times for each instance and each fairness level are shown in Table
3.3. The overall computation times are decomposed per fairness level and phase of
the algorithm. Furthermore, we show the total computation times for the solutions
for each fairness level found in Phases 2 and 3: The sequential nature of Phase 2
implies that solutions for low fairness levels are found only after the solutions for the
higher fairness levels are already computed. The total computation times take these
additional computations into account.

Fairness Phase 1 Phase 2 Total Phase 2 Phase 3 Total Phase 3 Optimal

1

Extreme 21 25 46 171 217 99
High 13 59 172 231 979
Moderate 28 87 168 255 1102
Low 25 112 191 303 507
Poor 15 127 193 320 1009

2

Extreme 83 77 160 132 292 479
High 77 237 172 409 460
Moderate 76 313 174 487 533
Low 77 390 163 553 721
Poor 35 425 172 597 2769

3

Extreme 0 1 1 24 25 2315
High 1 2 24 26 1093
Moderate 0 2 26 28 686
Low 0 2 25 27 50
Poor 0 2 24 26 28

4

Extreme 2 3 5 23 28 5346
High 3 8 23 31 2498
Moderate 1 9 23 32 5044
Low 0 9 25 34 1306
Poor 0 9 25 34 629

Table 3.3: Computation times for the first four instances for five different fairness
levels. For each instance and each fairness level, the computation times for each
phase are shown (in seconds). Furthermore, we show the total computation time
for Phase 2 and 3, since Phase 2 is solved sequentially, and hence the computation
times are cumulative. Finally, the computation times of the branch-price-and-cut
algorithm are shown.

Table 3.3 shows that in almost all cases the computation time of the heuristic is an
order of magnitude smaller than the time necessary for the exact approach. Only for
a few fairness levels, the computation time of the branch-price-and-cut algorithm is
comparable with those of the heuristic. For instances 3 and 4, we observe that the
heuristic only needs half a minute, wheres the exact approach can take up to more
than one hour. Finally, Table 3.3 shows that the time necessary for the pairwise
improvement step in Phase 2, is substantially smaller than the time necessary for
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Phase 3.

For instances 5 to 10, computing the exact trade-off curve is computationally in-
tractable. We therefore solve each instance for four fairness levels, and compare with
the lower bound based on the linear relaxation of the row-based formulation. We
consider the fairness levels extreme, high, moderate, and low. These fairness levels
correspond to the a priori determined fairness budgets 2, 3, 5 and 10. To intuitively
understand and relate the chosen fairness budgets, consider that, for groups of about
10 employees, a two unit difference in fairness budget could imply that one group is
assigned one full Intercity duty less than the other groups, or has to work about half
an hour longer in one row of the schedule compared to the other groups. From a
practical point of view, such differences are substantial and undesirable, also because
these differences persist throughout the entire year. The results are shown in Table
3.4.

Fairness Phase 1 Phase 2 Phase 3 Root Gain (%) Gap (%)

5

Extreme 2041.5 2041.5 2039.5 1542.5 0.1 24.4
High 1780.2 1778.2 1529.0 12.9 14.0
Moderate 1668.0 1630.5 1514.5 20.1 7.1
Low 1546.2 1544.1 1491.8 24.4 3.4

6

Extreme 1811.7 1651.6 1650.4 1296.4 8.9 21.4
High 1513.2 1512.0 1291.5 16.5 14.6
Moderate 1412.4 1411.1 1282.3 22.1 9.1
Low 1358.2 1356.9 1265.7 25.1 6.7

7

Extreme 1956.3 1559.0 1557.8 1328.4 20.4 14.7
High 1510.4 1503.7 1318.0 23.1 12.3
Moderate 1469.5 1465.1 1299.2 25.1 11.3
Low 1412.1 1410.7 1262.5 27.9 10.5

8 Moderate 1502.0 1397.4 1396.9 1120.4 7.0 19.8
Low 1292.7 1207.9 1097.8 19.6 9.1

9 Moderate 2877.0 2252.1 2249.2 1774.0 21.8 21.1
Low 2194.0 2182.3 1768.2 24.1 19.0

10 Moderate 3009.0 1863.7 1859.2 1526.0 38.2 17.9
Low 1759.6 1759.6 1486.5 41.5 15.5

Table 3.4: Results for instances 5 to 10. Each instance is solved for four different
fairness levels: extreme, high, moderate, and low. For each instance and each fairness
level, we show the objectives obtained in the different phases of the heuristic, the gain
compared to the benchmark solution (i.e., Phase 1), and the gap with the root bound
obtained from the row-based formulation. Omitted rows indicate that no feasible
allocation could be found within the time limit of 30 minutes.

Table 3.4 shows that the heuristic increases the attractiveness greatly: For 12 out
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of 18 instances, the improvement was more than 20%, and only for one instance the
improvement was not substantial. The improvement for the largest two instances
is especially large. Furthermore, the largest gains are obtained for the less strict
fairness levels. This is intuitive, as the focus on fairness is less, and hence the loss of
not taking attractiveness into account when allocating the duties over the groups will
be larger. Note that a major part of the improvement is in the pairwise improvement
phase, i.e., the second phase, and only a small further improvement is obtained in the
third phase. For some instances, however, the third phase allows for a substantial
improvement (e.g., for instance 8). The gap with the root bound indicates that
the found solutions are of high quality, although in some cases a substantial gap is
still present. We note, however, that a substantial integrality gap can be expected,
especially for tight fairness budgets, as was also noted in Table 3.2.

The computation times for the second set of instances are shown in Table 3.5. Similar
to Table 3.3, we show the computation times per fairness level and phase of the
algorithm, together with the total computation times for Phases 2 and 3.

Fairness Phase 1 Phase 2 Total Phase 2 Phase 3 Total Phase 3

5

Extreme 167 301 468 1020 1488
High 214 682 1079 1761
Moderate 25 707 1232 1939
Low 15 722 1068 1790

6

Extreme 56 201 257 731 988
High 47 304 767 1071
Moderate 11 315 740 1055
Low 8 323 815 1138

7

Extreme 512 92 604 695 1299
High 11 615 728 1343
Moderate 30 645 871 1516
Low 8 653 746 1399

8 Moderate 7 46 53 309 362
Low 4 57 361 418

9 Moderate 23 328 351 4594 4945
Low 26 377 5452 5829

10 Moderate 127 58 185 6335 6520
Low 38 223 5546 5769

Table 3.5: Computation times for the instances 5 to 10, for the four different fairness
levels. For each instance and each fairness level, the computation times for each
phase are shown (in seconds). Furthermore, we show the total computation time for
the solutions found in Phase 2 and 3, to account for the sequential approach used in
Phase 2. Omitted rows indicate that no feasible allocation could be found within the
time limit of 30 minutes.
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The running times shown in Table 3.5 can be considered well-suited for practice: The
second phase has a running time of a few minutes, the same order of magnitude as the
first phase, and the third phase stays within two hours for all instances. Note that,
for instances 8, 9, and 10, the running time for Phase 1 does not include the time for
fairness levels Extreme and High, for which no solution could be found within the
time limit of half an hour.

Summarizing, our experiments show that the heuristic approach complements the
exact branch-and-price method developed in Chapter 2. The algorithm is able to
find close-to-optimal solutions for the first set of instances, and greatly improves
upon the sequential approach for the second set of instances. Furthermore, a major
part of this improvement is due to the pairwise improvement in the second phase
of the algorithm, which runs orders of magnitude faster than the branch-and-price
approach. The third phase is more time consuming, but can realize a substantial
improvement.

3.7 Conclusion

In this chapter, we proposed a heuristic method for the Cyclic Crew Rostering Prob-
lem with Fairness Requirements (CCRP-FR), a variant of the Fairness-oriented Crew
Rostering Problem (FCRP), introduced in Chapter 2. In this problem, attractive
rosters have to be constructed for a fixed, a priori known, set of fairness levels. The
development of the heuristic solution approach is motivated by practice: The crew
rostering problem is generally solved multiple times for varying parameter settings,
implying that, even during the tactical planning phase, it is desirable that high qual-
ity solutions can be obtained quickly. Also, the underlying complexity of the problem
implies that exact methods are incapable of coping with some of the large instances
encountered in practice.

The developed three-phase heuristic combines the strengths of the exact apprach for
the FCRP developed in Chapter 2 with a large-scale neighborhood search algorithm.
The design of the heuristic assures that good solutions for all fairness levels are
obtained quickly, and can still be further improved if additional running time is
available.

We evaluated the heuristic on real-world data from NS. We showed that the heuristic
finds close to optimal solutions for many of the considered instances. Furthermore,
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the computation times are generally an order of magnitude smaller than the time
necessary for the branch-price-and-cut approach. In particular, the computational
results show that the heuristic is able to quickly find major improvements upon the
sequential approach: For most instances the heuristic is able to reduce the attract-
iveness penalty by at least 20% in just a few minutes. Furthermore, the heuristic
also provides a lower bound which gives an estimate of the solution quality. This
bound indicates that the heuristic finds high-quality solutions, also for the instances
for which no optimal solution is known. The running time of the heuristic can be
considered well-suited for practice, even for the largest instances: The second phase
has a running time of a few minutes, similar to the first phase, and the third phase
stays within two hours for all instances.





Chapter 4

Analyzing a Family of
Formulations for Cyclic Crew
Rostering∗

4.1 Introduction

The Fairness-oriented Crew Rostering Problem (FCRP) and the Cyclic Crew Ros-
tering Problem with Fairness Requirements (CCRP-FR), introduced in Chapters 2
and 3, are both extensions of the Cyclic Crew Rostering Problem (CCRP). Hence,
tight formulations for the CCRP are crucial for the development of efficient solution
methods for both the FCRP and the CCRP-FR. In this chapter we provide an in-
depth analysis of different formulations for the CCRP and, in doing so, we show that
the row-based formulations of Chapters 2 and 3 are the best-suited formulations for
the roster constraints at Netherlands Railways (NS).

The CCRP in itself is well-studied in the Operations Research literature, with most
applications focusing on railway and mass transit transportation (see, e.g., Huisman
et al. (2005b), Caprara et al. (2007), and Abbink et al. (2018)). By focusing on the
attractiveness of the rosters, the operator tries to incorporate the demands of the

∗This chapter is partially based on T. Breugem, T. Dollevoet, and D. Huisman (2018): Analyzing
a Family of Formulations for Cyclic Crew Rostering.
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employees in the planning process. The possible (practical) benefits from this are
apparent from Abbink et al. (2005), which discuss how incorporating attractiveness
in crew planning resolved conflicts between the labor unions and NS, and Borndörfer
et al. (2017) which mentions the importance of attractive work for bus drivers at BVG
(Berlin’s public transport company): The bus drivers at BVG have an average age of
around 50 years. The focus on attractiveness, in this case, can be a key instrument
for recruiting new (younger) drivers, as the possibility for higher salaries is generally
limited.

Models for the CCRP generally belong to one of three categories: generalized as-
signment, multi-commodity flow, and set partitioning models. Caprara et al. (1997)
and Borndörfer et al. (2015) consider both a multi-commodity flow model and a set
partitioning model for crew rostering. Furthermore, both argue which formulation is
more suitable, given the constraint set: Caprara et al. (1997) stress that flow-based
formulations are well-suited for problems where the main focus is on the follow-up
of duties, whereas a set partitioning formulation is better suited for problems where
the feasibility and cost depend on the overall duty sequence. Similarly, Borndörfer
et al. (2015) note that the set partitioning formulation is preferred when many diffi-
cult roster constraints have to be taken into account. Sodhi and Norris (2004) and
Hartog et al. (2009) propose an assignment model with side constraints. They solve
the problem using a two-phase decomposition, in which first the ‘skeleton’ of the
roster is optimized (e.g., days-off are determined), and then the duties are assigned.
Xie and Suhl (2015) propose a multi-commodity flow formulation for both cyclic and
acyclic crew rostering, and apply both models to practical instances from a German
bus company. Finally, Mesquita et al. (2015) considers both assignment and multi-
commodity flow models for the bus driver rostering problem with day-off patterns,
and provide theoretical results regarding the relative strength of the models.

In this chapter, we provide an in-depth analysis of modeling techniques for the CCRP.
We propose a family of formulations, and derive analytical results regarding the
relative strength of the proposed formulations. The family of formulations can be
seen as a generalization of the typical assignment and set partitioning formulations,
and is motivated by the poor performance of assignment formulations on difficult
instances. Furthermore, we discuss modeling techniques and provide tightness results
for an important class of roster constraints. Finally, we adapt the branch-price-and-
cut approach of Chapter 2 to the family of formulations, and show the benefit of a
suitably picked formulation using practical instances from NS.
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The remainder of this chapter is organized as follows. In Section 4.2, we discuss the
general modeling framework for the CCRP. The family of formulations is presented
in Section 4.3, and, in Section 4.4, we derive analytical results regarding the tightness
of the different formulations. Finally, we discuss the branch-and-price approach in
Section 4.5, and apply this approach to practical instances of NS in Section 4.6. The
chapter is concluded in Section 4.7.

4.2 Modeling the Cyclic Crew Rostering Problem

In the CCRP, cyclic rosters have to be constructed for groups of employees. Each
cyclic roster consists of rows (i.e., generic work weeks), columns (i.e., weekdays),
and cells (i.e., the intersection of a row and a column). The roster consists of two
components: the type specification of each cell (e.g., an early, late or night duty, or
a day-off), known as the basic schedule, and an allocation of the duties to the cells.
Similar to Chapters 2 and 3, we assume the basic schedules to be given (see, e.g.,
Hartog et al. (2009) for a discussion on the construction of basic schedules).

Two important aspects have to be taken into account when constructing the rosters.
Firstly, the roster should be feasible with respect to the labor regulations. For ex-
ample, there should be sufficient rest time between consecutive duties, and the total
amount of work in a row (i.e., in a week of work) cannot be too large. Secondly, the
roster should be perceived attractive by the employees. Short, although legal, rest
times, for example, make the roster unattractive, as employees prefer a proper rest
period between two duties. The feasibility and perceived attractiveness of a roster
are expressed using roster constraints, which are (linear) constraints depending on
the assigned duties: Feasibility (e.g., minimum rest times, maximum workload) is
modeled using hard constraints, whereas attractiveness (e.g., undesirable rest times,
variation of work) is modeled using soft constraints, thereby penalizing unattract-
ive assignments of duties. Figure 4.1 shows a cyclic roster for four employees, and
highlights a few roster constraints. The first roster constraint, for example, requires
that a scheduled rest period (here scheduled on Wednesday), is sufficiently long. In
other words, the difference between the end of duty 124 on Tuesday and the start
of duty 54 on Thursday should be sufficiently large. The second constraint specifies
the minimum time between consecutive duties, assuring that the crew members can
have a sufficient rest. Finally, the third constraint considers the work scheduled in
an entire row, and could, for example, enforce a maximum workload over a working
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week.

Mon Tue Wed Thur Fri Sat Sun

4

3

2

1
L
126

L
124

R E
54

E
13

E
40

R

R R N
105

N
111

L
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R R

L
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N
107

N
115

R N
108

L
121

N
103

N
112

L
123

R E
44

R E
7

E
25

1

2

3

Figure 4.1: Example of different roster constraints. The first roster constraint re-
quires that a scheduled rest period is sufficiently long and the second constraint spe-
cifies the minimum time between consecutive duties. The third constraint enforces a
maximum workload over a working week.

To obtain a strong formulation for the CCRP, it is important to analyze the types of
roster constraints that are present. That is, many roster constraints have a similar
structure which should be taken into account when modeling the problem. In Figure
4.1, for example, the first two roster constraints can be classified as linking constraints,
i.e., those linking exactly two cells in the basic schedule (note that the rest days
are assumed fixed), whereas the third constraint can be classified as a row-based
constraint. Given such a classification, an efficient modeling of the constraints can
be determined, and a strong formulation can be obtained.

In the remainder of this section we discuss the modeling of roster constraints in detail:
In Section 4.2.1, we discuss modeling techniques and tightness results for linking
constraints, and, in Section 4.2.2, we propose a general framework, that allows to
model many practical roster constraints, and which generalizes the framework for
roster constraints posed in Chapter 2.

4.2.1 Modeling Linking Constraints

Linking constraints often occur in crew rostering problems, hence a strong formula-
tion for such constraints can lead to major efficiency gains. In this section we analyze
the polyhedron resulting from an ‘isolated’ linking constraint. We assume that the
linking constraints are binary, i.e., the constraint is either satisfied or not, and hence
that the penalty incurred is independent of the size of the violation.

Consider a linking constraint between two cells t1 and t2. Let D and F denote the
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respective sets of feasible duties for these cells. Furthermore, let E ⊆ D × F denote
the violation set for the linking constraint, i.e., all pairs (d, f) ∈ D × F such that
assigning d to t1 and f to t2 violates the constraint. The linking constraint can be
naturally modeled as a bipartite graph. Consider the seven duties depicted in Table
4.1, and suppose we require a 12 hour rest between two consecutive duties. The
corresponding bipartite graph is shown in Figure 4.2. In this graph, the vertex sets
represent the sets of feasible duties D and F , and the violation set is represented by
the edges in the graph.

Duty Cell Start End

d1 t1 14:00 22:10
d2 t1 14:30 22:00
d3 t1 13:00 21:00
d4 t1 12:00 20:00

f1 t2 07:00 14:30
f2 t2 08:00 15:30
f3 t2 09:15 16:00

Table 4.1: Seven possible duties for two consecutive cells.

d1

d2

d3

d4

f1

f2

f3

Figure 4.2: Visualization of a linking constraint between cells t1 and t2. The con-
straint is represented as a bipartite graph, where the vertices represent the duties D
(left) and the duties F (right). An edge in the graph indicates that a combination of
duties (as represented by the vertices) violates the linking constraint.

Let δ ∈ B represent the violation of the linking constraint, and define the decision
variables πt1d, for d ∈ D, and πt2f , for f ∈ F , indicating whether duty d, respectively
f , is assigned to cell t1, respectively t2. The linking constraint is readily expressed
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by the following system of equations.∑
d∈D

πt1d = 1 (4.1)∑
f∈F

πt2f = 1 (4.2)

πt1d + πt2f ≤ 1 + δ ∀(d, f) ∈ E (4.3)

δ, πt1d, πt2f ∈ B ∀d ∈ D, f ∈ F. (4.4)

Constraints (4.1) and (4.2) state that exactly one duty should be assigned to both
cells and Constraints (4.3) assure that the constraint violation is modeled correctly.

Note that (4.1)–(4.4) is a relatively weak formulation, as a single constraint is intro-
duced for each possible violation. To obtain a stronger formulation, these constraints
can be aggregated. One way of doing this is based on the duties in D: Let Fd ⊆ F

denote all duties incident with d, i.e., Fd contains all f ∈ F for which (d, f) ∈ E.
Constraints (4.3) can be replaced by

πt1d +
∑
f∈Fd

πt2f ≤ 1 + δ ∀d ∈ D. (4.5)

We will refer to (4.5) as flow-based constraints, as each single constraint sums over
the out-going arcs of a single d ∈ D (Figure 4.3a visualizes such a constraint). This
type of aggregation has been previously used in Hartog et al. (2009) and in Chapters
2 and 3. The correctness of (4.5) is readily seen, as each arc (i.e., violation) appears
in exactly one constraint. That is, each combination d ∈ D and f ∈ F such that
(d, f) ∈ E appears in exactly one constraint, and hence is penalized if both duties
are selected.

Another way of aggregating (4.3), is based on bicliques in the graph-representation.
This type of modelling has been considered in Ernst et al. (2001) and Mesquita et al.
(2015). To the best of our knowledge, however, no theoretical results (i.e., regarding
the size and strength of these formulations) have been provided.

To formulate the clique-based constraints, we introduce the following additional nota-
tion. For a given d ∈ D, let Dd ⊆ D denote all d′ ∈ D for which Fd ⊆ Fd′ , i.e., Dd

contains those duties inD connected with at least all duties d is connected with. Note
that it always holds that d ∈ Dd. In the case of Figure 4.3, we have, for example,
Dd3 = {d1, d2, d3}, since d1 and d2 are also connected with f1 and f2, and thus, with
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d1

d2

d3

d4

f1

f2

f3

(a) Flow-based constraint

d1

d2

d3

d4

f1

f2

f3

(b) Clique-based constraint

Figure 4.3: Example strengthened linking constraints. The dashed edges indicate
the variables included in the constraint (either flow- or clique-based) for duty d3.

all neighbors of d3. In the case of rest time constraints, Dd3 boils down to exactly
those duties in D that end at the same time or later than d3. The clique-based
constraints now read as follows.∑

d′∈Dd

πt1d′ +
∑
f∈Fd

πt2f ≤ 1 + δ ∀d ∈ D. (4.6)

The clique-based constraints are illustrated in Figure 4.3b. Note that replacing (4.3)
by (4.6) is allowed since, by definition of Dd and Fd, it holds that (d, f) ∈ E for all
d′ ∈ Dd and f ∈ Fd. Furthermore, every violation appears in at least one constraint,
since d ∈ Dd.

By definition, the clique-based constraints are at least as strong as the flow-based
constraints. Assuming the violation set is of a particular structure, it can even be
shown that the clique-based constraints give rise to a polyhedron with the integrality
property.

Theorem 4.2.1. Assume the violation set E is such that, for every d, d′ ∈ D, either
Fd ⊆ Fd′ or Fd ⊇ Fd′ . Then, the coefficient matrix obtained from (4.1), (4.2), and
(4.6) is totally unimodular.

Proof. We prove total unimodularity by showing that the coefficient matrix (up to
multiplication of columns with -1) has the consecutive ones property: The rows can
be permuted such that each column consists of a sequence of consecutive ones, and
zeros otherwise. Note that the assumption implies that we can construct an order
d1, . . . , dn of the duties in D such that Fdi ⊇ Fdj whenever i < j. Note that, by
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definition, this implies that Ddi
⊆ Ddj

whenever i < j.

We now arrange the rows as follows: the first row corresponds to (4.2), the (i+ 1)-th
row corresponds to (4.6) for di, and the last row corresponds to (4.1). Figure 4.4
shows the resulting coefficient matrix for the graph shown in Figure 4.2.

d1 d2 d3 d4 f1 f2 f3 δ


0 0 0 0 1 1 1 0 F
1 1 0 0 1 1 1 -1 d1
1 1 0 0 1 1 1 -1 d2
1 1 1 0 1 1 0 -1 d3
1 1 1 1 1 0 0 -1 d4
1 1 1 1 0 0 0 0 D

Figure 4.4: The rearranged coefficient matrix resulting from the clique-based con-
straints for the graph shown in Figure 4.2. For each column the corresponding
variable is indicated. Furthermore, for each row the constraint is specified: The rows
specify the assignment constraints for D and F , respectively, and the clique-based
constraint for each di.

It is readily seen that the resulting coefficient matrix satisfies the consecutive ones
property. To see this, we note that for any d ∈ D, if d ∈ Ddi , then d ∈ Ddj with j > i.
Similarly, for f ∈ F , if f ∈ Fdi , then f ∈ Fdj with j < i. The result follows.

The assumption underlying Theorem 4.2.1 holds for many practical linking con-
straints, such as rest time and rest day constraints. Note that these constraints de-
pend solely on the start and end time of the duties, hence we have Fd ⊆ Fd′ whenever
d ends before d′, and vice versa. For these constraints, the clique-based constraints
provide a strong formulation, and improve over the flow-based constraints.

4.2.2 General Modeling Framework

We now discuss a general modeling framework for roster constraints, which is a
generalization of the framework posed in Chapters 2 and 3. This generalization is
necessary to accommodate the biclique-constraints discussed in Section 4.2.1.

Let D denote the set of duties, T the set of cells, and let Dt denote the duties that
can be assigned to cell t ∈ T . Let Q denote the set of roster constraints. Each roster
constraint q is modeled using a set of linear constraints p ∈ Pq (this generalizes the
framework posed in Chapters 2 and 3, where each roster constraint is assumed to be
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modeled using a single linear constraint). Each linear constraint p ∈ Pq is specified
by a coefficient for each assignment of a duty to a cell in the basic schedule, and a
scalar called the threshold value. The coefficient for the assignment (t, d) for linear
constraint p is denoted by fptd and the threshold value for p is denoted by bp.

Let δq denote the violation of roster constraint q, and let cq be the corresponding
penalty variable. The roster constraints enforce that if the sum of coefficients of
assigned duties exceeds the threshold value for one of the linear constraints, then
the difference between the sum and the threshold value is penalized and lies within
the violation interval, given by ∆q = [0, uq]. In other words, the roster constraint is
modeled by enforcing each linear constraint p ∈ Pq:∑

t∈T

∑
d∈Dt

fptdπtd ≤ bp + δq, (4.7)

and assuring δq ∈ ∆q. Note that (4.7) assures that δq is equal tot the maximum
violation, calculated over all p ∈ Pq. It is readily seen that both the flow- and clique-
based linking constraints fit this framework, and that also many other constraints,
such as workload and variation constraints, can be modeled in this fashion.

4.3 Family of Mathematical Formulations

In this section we propose a family of mathematical formulations for the CCRP. In
Section 4.3.1, we define the concept of clusters and roster sequences, and we conclude
with a family of mathematical formulations for the CCRP in Section 4.3.2.

4.3.1 Clusters and Roster Sequences

The family of formulations is based on different partitions of the basic schedule. That
is, we develop a mathematical formulation under the assumption that each basic
schedule is partitioned into disjoint subsets, which we call clusters. This partition
will be referred to as a clustering for the respective basic schedule, and should be
picked a priori solving the model.

The formulation will have a different structure for each possible clustering, giving rise
to the family of formulations. Figure 4.5 gives an example of two possible clusterings
for a basic schedule of four rows. In the cell clustering each cluster contains exactly
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one of the cells in the basic schedule. The row clustering, on the other hand, assigns
all cells in the same row (i.e., Monday to Sunday) to the same cluster. Note that
many more clusterings are possible. One could, for example, also consider a ‘weekend’
clustering, in which each cluster relates to either Friday to Monday (the ‘weekend’
days), or Tuesday to Thursday (the ‘week’ days). Such a clustering can be a good
choice when, e.g., the rest time over the weekend is of utmost importance. Generally,
cells in a cluster do not need to be consecutive.

Mon Tue Wed Thur Fri Sat Sun

N N R N L L R

R N N N L R R

N N N R N R N

N R E L L R R

Cluster clustering

Mon Tue Wed Thur Fri Sat Sun

N N R N L L R

R N N N L R R

N N N R N R N

N R E L L R R

Row clustering

Figure 4.5: Example of different clusterings. Each highlighted area represents a
cluster.

Each cluster is assigned a number of duties simultaneously. Each possible assignment
of duties to a cluster is called a roster sequence. Formally, a roster sequence specifies
a duty or rest day for each cell in the cluster, such that the assignment is compatible
with the basic schedule, and such that no duty is assigned twice (within the same
cluster).

To illustrate the use of roster sequences, consider the cluster depicted in Figure 4.6,
together with two possible roster sequences. Note that the roster sequences contain
different duties (indicated by the numbers). In this case the second roster sequence
has a shorter rest period than the first roster sequence (as duty 124 ends later than
duty 126, and duty 58 starts earlier than duty 54), which might be considered un-
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Tue Wed Thur Fri

L R R E

Cluster

Tue Wed Thur Fri

126 R R 54

Roster Sequence 1

Tue Wed Thur Fri

124 R R 58

Roster Sequence 2

Figure 4.6: Cluster from Tuesday to Friday, together with two possible roster se-
quences.

desirable.

The goal of a clustering is to model constraints implicitly using the roster sequences.
That is, ideally each constraint considers the cells in solely one of the clusters, and
can therefore be taken care of when generating the roster sequences. As an example,
consider a constraint in which an employee can have only a maximum amount of
work per row. In this case, the row clustering of Figure 4.5 allows to model these
constraints implicitly using the roster sequences (i.e., a roster sequence is feasible
only if it does not exceed the maximum working time). On the other hand, for the
cell clustering these constraints have to be modeled explicitly in the mathematical
formulation.

4.3.2 Mathematical Formulation

We are now ready to formalize the family of formulations. The set K denotes the set
of all clusters (note that these are determined a priori formulating the mathematical
model). We define the set Sk as the set of all roster sequences for cluster k ∈ K.
Each roster sequence can be seen as a sequence of assignments (t, d). The parameter
hkds indicates whether roster sequence s ∈ Sk contains duty d (i.e., duty d appears in
one of the assignments describing the roster sequence s). Finally, we define cks as the
penalty associated with roster sequence s ∈ Sk for cluster k ∈ K.
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Let Qk ⊆ Q denote the set of roster constraints fully contained in cluster k ∈ K, and
define QK =

⋃
k∈K Qk. The constraints in QK are exactly those that are modeled

implicitly using the roster sequences. The penalty cks associated with roster sequence
s ∈ Sk is the sum of all violations in the roster sequence s, restricted to the roster
constraints Qk. Note that the roster constraints in Q \ QK need to be modeled
explicitly.

The CCRP, given a clustering K, can now be formulated as follows. We introduce
the following decision variables.

• xks , for all k ∈ K and s ∈ Sk. The binary variable xks indicates whether roster
sequence s ∈ Sk is assigned to cluster k ∈ K.

• δq, for each q ∈ Q \ QK . The variable δq ∈ ∆q, expresses the violation of the
roster constraint q ∈ Q \QK .

The formulation now reads as follows.

min
∑
k∈K

∑
s∈Sk

cksx
k
s +

∑
q∈Q\QK

cqδq (4.8)

s.t.
∑
s∈Sk

xks = 1 ∀k ∈ K (4.9)

∑
k∈K

∑
s∈Sk

hkdsx
k
s = 1 ∀d ∈ D (4.10)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δq ∀q ∈ Q \QK , p ∈ Pq (4.11)

xks ∈ B ∀k ∈ K, s ∈ Sk (4.12)

δq ∈ ∆q ∀q ∈ Q \QK . (4.13)

The Objective (4.8) expresses that we minimize the sum of the roster sequence costs,
together with the cost of all explicitly modeled roster constraints. Constraints (4.9)
and (4.10) assure that the duties are assigned correctly to the basic schedules. That
is, each cluster is assigned exactly one roster sequence, and each duty is assigned
exactly once to a cell in the basic schedule. Constraints (4.11) represent the roster
constraints that are modeled explicitly. Finally, Constraints (4.12) and (4.13) specify
the domains of the decision variables. The family of formulations for the CCRP is
now obtained by taking (4.8)–(4.13) for all possible clusterings K.
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4.4 Theoretical Comparison Clusterings

Intuitively, the implicit modeling of the roster constraint violations leads to a tighter
linear relaxation. In this section, we prove this rigorously. From hereon, we consider
two clusterings K and L such that QK ⊇ QL. An example of such clusterings is
given in Figure 4.5, where K and L are the row and cell clustering, respectively.
Let Sk, for all k ∈ K, and G`, for all ` ∈ L, denote the respective sets of roster
sequences for both clusters. For notational convenience, define Ω as the set of all
feasible assignments (t, d), with t ∈ T and d ∈ D, of duties to the cells in the basic
schedule. Furthermore, we define the operator [·]+ as [a]+ = max{0, a}. Throughout
this section, a solution refers to a solution to the linear relaxation.

We first prove the following lemma. Intuitively, this lemma states that, given a
solution for K, we can construct a solution for L such that each duty is assigned to
the same cell in both solutions.

Lemma 4.4.1. Let x̄ be a solution for clustering K. There exists a feasible solution
z̄ for clustering L, such that∑

k∈K

∑
s∈Sk:
s3(t,d)

x̄ks =
∑
`∈L

∑
q∈G`:
q3(t,d)

z̄`g (4.14)

for each (t, d) ∈ Ω.

Proof. We consider an auxiliary clustering O, defined as the largest clustering which
is fully contained in both K and L (see Figure 4.7). Formally, O is uniquely defined
by taking all non-empty subsets k ∩ `, for all k ∈ K and ` ∈ L. Let R denote the set
of feasible roster sequences for this clustering, and let Ro denote the feasible roster
sequences for o ∈ O.

K :

L :

O :

R N N R N N N

R N N R N N N

R N N R N N N

Figure 4.7: Example of the clustering O, which is the largest clustering contained in
both K and L.
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Since each cluster o ∈ O is fully contained in some k ∈ K, we can readily obtain a
solution ȳ for O satisfying ∑

k∈K

∑
s∈Sk:
s3(t,d)

x̄ks =
∑
o∈O

∑
r∈Ro:
r3(t,d)

ȳor (4.15)

by splitting up each roster sequence for K into smaller roster sequences for O. Fur-
thermore, since each o ∈ O is also fully contained in some ` ∈ L, we can obtain a
solution z̄ satisfying ∑

`∈L

∑
q∈G`:
g3(t,d)

z̄`g =
∑
o∈O

∑
r∈Ro:
r3(t,d)

ȳor (4.16)

by greedily constructing roster sequences for L given those for O. To be more precise,
let O` ⊆ O denote the clusters contained in ` ∈ L. For each ` ∈ L, we pick the roster
sequence r with smallest non-zero value ȳor , say v, over all clusters in O`. This roster
sequence is then combined with a roster sequence for each of the other clusters in
O`, to obtain a roster sequence g for cluster `. We set z̄`g = v, reduce ȳor for all
involved roster sequences by v, and repeat the procedure until all roster sequences
are assigned.

It follows that we can construct a solution z̄ that satisfies (4.14). It remains to show
that a solution constructed in this fashion is feasible with respect to the roster con-
straints. By combining (4.11) and (4.14), and doing some algebraic manipulations,
it can be shown that z̄ is feasible with respect to Q \QL (see Appendix 4.A).

To show that z̄ is feasible with respect to the roster constraints in QL we make the
following crucial observation: Since QK ⊇ QL it must hold that QO ⊇ QL, and hence
QO = QL. Suppose that this would not be true, then there must be a roster constraint
q ∈ QL and linear constraint p ∈ Pq with non-zero coefficient fptd for multiple clusters
in O. By definition of O, however, this would imply that QL \QK 6= ∅, as O is the
largest clustering contained in both K and L. This contradicts the assumption that
QK ⊇ QL. Hence, if the constructed solution ȳ is feasible with respect to QO, then a
solution z̄ created by combining these roster sequences must be feasible with respect
to QL. The feasibility of ȳ with respect to QO, however, follows directly from the
feasibility of x̄, since QO ⊆ QK . This concludes the proof.

It is important to note that Lemma 4.4.1 does not hold in the other direction. That
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is, given a solution z̄ it is not always possible to construct a solution x̄ satisfying
(4.14). We are now able to prove the following theorem.

Theorem 4.4.1. Let K and L be two clusterings such that QK ⊇ QL. Furthermore,
let vK denote the optimal value of the LP relaxation using clustering K, and define
vL similarly. Let x̄ be an optimal solution corresponding to vK . It holds that

vK ≥ vL +
∑

q∈QK\QL

cqφq(x̄),

where the non-negative coefficients φq(x̄) are given by

φq(x̄) =
∑
k∈K

∑
s∈Sk

x̄ks ·max
p∈Pq

 ∑
(t,d)∈s

fptd − bp

+

−max
p∈Pq

∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd

− bp
+

.

Proof. Let z̄ be a feasible solution for clustering L satisfying (4.14), obtained using
the construction heuristic described in the proof of Lemma 4.4.1. Note that z̄ is feas-
ible for L and hence the objective value of z̄ is an upper bound for vL. Furthermore,
note that, by the construction of z̄, the cost incurred for the roster constraints QL is
identical for x̄ and z̄. As a consequence, the difference in objective value between x̄
and z̄ is exactly the penalty incurred by the roster constraints in QK \QL. Hence, the
difference in the penalty incurred by these constraints is a lower bound on vK − vL.

First, consider the solution x̄. Recall that the constraint violations for each pattern
q ∈ QK \QL are modeled implicitly in the roster sequence cost for clustering K. The
penalty incurred from roster constraint q ∈ QK \QL is therefore given by

cq
∑
k∈K

∑
s∈Sk

x̄ks ·max
p∈Pq

 ∑
(t,d)∈s

fptd − bp

+

.

Next, consider the solution z̄. Note that for L the constraint violations for all q ∈
QK \QL are modeled explicitly using (4.11). Hence, the penalty incurred from roster
constraint q ∈ QK \QL is given by

cq max
p∈Pq

∑
`∈L

∑
g∈G`

z̄`g

 ∑
(t,d)∈g

fptd

− bp
+

.
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Using that ∑
`∈L

∑
g∈G`

∑
(t,d)∈g

fptdz̄
`
g =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx̄
k
s ,

(see (4.17) in Appendix 4.A), it follows that the difference in incurred penalty is
given by

cq
∑
k∈K

∑
s∈Sk

x̄ks ·max
p∈Pq

 ∑
(t,d)∈s

fptd − bp

+

− cq max
p∈Pq

∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd

− bp
+

.

The result now follows from summing over all q ∈ QK \QL.

The value φq(x̄) represents the error incurred from modeling roster constraint q
explicitly (note that φq(x̄) is zero if x̄ is integer), opposed to modeling it implicitly
(i.e., correctly). Theorem 4.4.1 can be used as a guideline to pick the ‘ideal’ set of
clusters. In particular, the proof of Theorem 4.4.1 leads to the following two key
insights. First, it shows that switching from clustering L to K with K coarser than
L, i.e, every ` ∈ L is a subset of some k ∈ K, but PK = PL is never beneficial,
i.e., will not increase the LP bound. This implies that the roster constraints should
be explicitly considered when enlarging the cluster size. Secondly, it shows that
switching from L to K is likely to be beneficial whenever PK \ PL contains ‘weak’
roster constraints, where the weakness is represented by the value of cqφq(x̄). Note
that, although this value is not known a priori, it is often possible to estimate these
values based on, e.g., passed experience or expert knowledge.

The above insights are illustrated in the following example. Consider the three
clusterings depicted in Figure 4.8, each partitioning the cells of the basic schedule
differently. The first and second clustering are similar to the clusterings of Figure
4.5, and the third clustering partitions the cells based on the rest days, i.e., a new
cluster starts after each rest period. Note that for this clustering the last cell of the
second row is part of the first cluster. Consider a roster constraint with regard to the
duty length, and assume that all duties have a length of 8 hours, except for one of the
Monday duties, which has a length of 9.5 hours. We consider two cases. In the first
case, the constraint specifies that the average duty length over the week is penalized
whenever it exceeds 8 hours and 10 minutes. Note that in this case it is optimal
to assign the long duty to the first row, and incur a penalty of 8 minutes (since
the average duty length in the first row will be 8 hours and 18 minutes). Consider
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Mon Tue Wed Thur Fri Sat Sun

N N R N N R N

N R E L R R L

Cell clustering

Mon Tue Wed Thur Fri Sat Sun

N N R N N R N

N R E L R R L

Row clustering

Mon Tue Wed Thur Fri Sat Sun

N N R N N R N

N R E L R R L

Rest period clustering

Figure 4.8: Three possible clusterings for a basic schedule of two rows. Depending
on the roster constraints, one of the clusterings is preferred over the others.

now the LP relaxation of the three clusterings. For the row-based clustering this
constraint is implicit, and hence it is readily seen that the LP value will equal the
optimal solution. For the two other formulations, however, the constraint is explicit,
and by assigning the long duty to the first row with value 5/9 and to the second row
with value 4/9 a penalty can be avoided. In this case the strength of the row-based
formulation is expected given the second insight, and the lack of gain in LP bound
between the cell and rest period formulation is evident from the first insight.

The second case considers the same set-up, but the roster constraint now specifies
that the average duty length between rest periods (instead of the rows) is penalized
whenever it exceeds 8 hours and 20 minutes. Note that in this case it is still optimal
to assign the long duty to the first row, and incur a penalty of 10 minutes (since
the average duty length over the first three duties will be 8 hours and 30 minutes).
Consider now the LP relaxation of the three clusterings. For the rest period clustering
this constraint is implicit, and hence it is readily seen that the LP value will equal the
optimal solution. For the two other formulations, however, the constraint is explicit,
and by assigning the long duty to the first row with value 6/9 and to the second row
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with value 3/9 a penalty can be avoided. In this case the strength of the formulation
resulting from the rest period clustering is expected given the second insight, and
the lack of gain in LP bound between the cell and row-based formulation is evident
from the first insight.

4.5 Branch-and-Price Framework

We adapt the branch-price-and-cut framework of Chapter 2 to develop a branch-and-
price approach for the CCRP formulation (4.8)–(4.13). We purposely omit the ‘cuts’,
i.e., the valid inequalities proposed in Chapter 2, as, depending on the clustering,
obtaining these cuts can be as difficult as the original problem.

The master problem is obtained from (4.8)–(4.13) by relaxing the integrality con-
straints on the xks variables. The reduced cost γks of a roster sequence s ∈ Sk, for a
given cluster k ∈ K can be expressed as follows. Let µk denote the dual variables
corresponding to (4.9), φd those corresponding to (4.10), and θqp those corresponding
to (4.11). The reduced cost γks can now be expressed as

γks = cks − µk −
∑
d∈D

hkdsφd −
∑

q∈Q\QK

∑
p∈Pq

∑
(t,d)∈s

fptdθqp.

The pricing problem for each k ∈ K can be modeled as discussed in Chapter 2:
For each k ∈ K, the pricing problem can be modeled as a resource constrained
shortest path problem (RCSPP) with surplus variables on a directed layered graph
Gk = (Vk, Ak), where each vertex corresponds to an assignment (t, d) of a duty to a
cell in k and each arc corresponds to a feasible follow-up of two assignments. Note
that the implicit roster constraint penalties have to be taken into account slightly
different compared to Chapter 2: for each q ∈ QK , we take the maximum over all
p ∈ Pq.

Similar to Chapter 2, we first branch on the assignment of the duties to the roster
groups. If this is not possible, we branch based on the assignments of the duties
to the cells. That is, we branch if some duty is assigned to multiple cells in the
basic schedule. By first branching on the roster groups, we obtain a more balanced
branching tree. Whenever multiple branching decisions exist, we branch on the
one with the most fractional value. Note that whenever no branching decisions are
present, each duty is assigned to exactly one cell, and hence an integer solution is
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found.

We consider two different node selection strategies. The first node selection strategy
is based on the lowest bound, to improve the best-known (i.e., highest) lower bound
as quickly as possible. For large instances concerning possibly many roster groups
this strategy might not be well-suited as it may not lead to an integer solution
in reasonable time. We therefore also consider a (heuristic) branching procedure
in which we aim at quickly diving towards a good feasible solution by fixing the
assignments of all duties to roster groups that exceed a certain threshold value.

4.6 Computational Experiments

In this section we discuss the computational results. We first discuss the experimental
set-up in Section 4.6.1. That is, we discuss the roster constraints that are taken into
account, and the different instances considered. We then present the computational
results in Section 4.6.2.

4.6.1 Experimental Set-Up

We apply our solution approach to different instances based on data from NS. For
each instance, the basic schedule specifies the days off. Furthermore, for each duty
that is to be scheduled a type is given. The considered types are Early, Late, and
Night. The type of each duty is based on the start time of the duty. The following
roster constraints are taking into account.

• Rest Time. After completing a duty it is required that an employee has a
certain minimum time to rest. After a night duty this rest time should be
at least 14 hours, otherwise it should be at least 12 hours. Furthermore, we
penalize rest times shorter than 16 hours with a penalty of 30.

• Rest Day. When rest days are scheduled in the roster, the length of the rest
period has to be sufficient. This implies that there is a minimal time enforced
between duties scheduled before and after the rest days. The enforced rest time
is 6 hours plus 24 hours for each rest day.

• Red Weekend. At least once every three rows of the roster there should be a
weekend which has a consecutive period of 60 hours off. These so-called red
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weekends can be determined given the basic schedule. The 60 hour rest period
can then be enforced using the roster constraints.

• Workload. The total workload in a row is not allowed to exceed 45 hours. Here,
the workload of a duty is the difference between the start and end time (i.e.,
including the meal break).

• Variation. The variation constraints assure that the different attributes of
work (e.g., duty length, percentage double decker work) are divided equally
over the rows. These constraints penalize a positive deviation from the average
(measured over all duties) for each row in the roster. In total we consider 10
different variation constraints.

We consider a total of 10 different instances: four ‘small’ instances of 12 employees
and roughly 50 duties, four ‘medium’ instances of 24 employees and roughly 100
duties, and two ’large’ instances of about 50 employees and 200 duties. Each of the
instances is obtained by combining multiple roster groups as operated at NS. The
properties of the instances are summarized in Table 4.2.

Groups Employees Early Late Night Total
1 1 12 23 11 15 49
2 1 12 21 12 16 49
3 1 12 49 0 1 50
4 1 12 49 0 1 50
5 2 24 21 36 35 92
6 2 24 23 35 37 95
7 2 26 101 0 2 103
8 2 24 97 0 2 99
9 4 54 118 47 52 217
10 4 50 198 0 4 202

Table 4.2: Characteristics of the instances. For each instance the number of groups
and number of employees (i.e., the number of rows) is specified, along with the
number of Early, Late, and Night duties, and the total number of duties.

The instances can be categorized into one of two categories. The instances 1, 2, 5,
6, and 9 represent instances in which all three duty types have to be scheduled. For
the other instances the duties consist almost exclusively of early duties. The former
category of instances provide more structure compared to the latter ones, since (i)
less roster sequences are possible (as the duties are divided over different types), and
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(ii) the rest time and rest day constraints are expected to be more important for these
instances (i.e., if all duties start early, the chance of having a rest time violation is
small). The second category is therefore expected to be more difficult to solve if the
formulation is not chosen carefully.

4.6.2 Computational Results

In this section the computational results are discussed in detail. We first compare the
performance of different clusterings and evaluate the modeling of linking constraints,
and we conclude by comparing the Branch-and-Price approach with a commercial
solver. All experiments are done on a computer with a 1.6 GHz Intel Core i5 pro-
cessor. We use the LP solver embedded in CPLEX 12.7.1 (simply referred to as
CPLEX from hereon) to solve the master problems.

Comparison Root Bounds

To illustrate the effect of different clusterings (for the given constraints) and the
modeling of linking constraints, we solve the root node relaxation for four clusterings
and both the flow- and clique-based linking constraints. We consider clusterings
where each cluster contains a single cell, three cells, six cells, and seven cells (i.e., a
cluster per row). We denote these clusterings by C1, C3, C6, and C7, respectively.
Each clustering leads to a different formulation. In particular, the clustering C1

results in the assignment formulation proposed in Hartog et al. (2009), and the
clustering C7 leads to the row-based formulation used in Chapters 2 and 3.

Table 4.3 shows for each clustering and each instance, the root bound for the flow-
and clique-based constraints, together with the percentage of constraints that can be
modeled implicitly (the non-zero percentage for C1 and instance 6 is due to one row
in which only one duty has to be assigned). The results in Table 4.3 are in line with
Theorem 4.4.1. That is, there is a clear relation between the percentage of implicit
constraints and the bound obtained from the linear relaxation. The benefit of a
suitable clustering is most apparent for the instances with mostly early duties (i.e.,
instances 3, 4, 7, 8, and 10). For these instances the main challenge is to capture
the cost incurred from the variation constraints, which only clustering C7 is able to
do. Furthermore, we see that the clique-based linking constraints improve the root
bound substantially for the mixed instances (i.e., those with relative many rest time
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1 2 3 4 5 6 7 8 9 10

C1

Flow 558.0 654.4 192.4 274.0 671.3 618.3 181.0 250.4 916.9 221.4
Clique 570.1 681.8 192.8 286.5 833.1 843.1 302.8 345.9 1213.2 330.5
Impl. (%) 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0

C3

Flow 569.3 660.9 192.5 289.5 762.6 800.5 196.7 297.9 1103.7 251.9
Clique 571.4 687.4 192.8 299.6 850.0 889.8 309.6 370.6 1245.8 351.4
Impl. (%) 29.1 20.2 31.6 38.2 37.7 39.7 42.4 50.7 48.6 53.6

C6

Flow 581.3 705.5 206.4 313.5 834.1 825.8 256.9 340.4 1192.6 301.5
Clique 584.1 705.8 206.4 318.0 875.3 914.8 335.7 396.9 1278.6 390.6
Impl. (%) 49.3 59.0 49.3 59.4 61.3 56.0 64.5 68.0 67.6 73.4

C7

Flow 609.8 713.8 280.0 370.2 873.4 943.2 447.8 523.4 1312.7 598.0
Clique 609.8 713.8 280.0 370.2 942.7 1004.0 447.8 523.4 1435.0 598.0
Impl. (%) 98.0 94.7 94.5 98.6 92.3 93.2 91.4 94.6 93.8 92.0

Table 4.3: Comparison of different clusterings and the modeling of linking con-
straints. For each clustering and each instance, the root bound for the flow- and
clique-based constraints are shown, together with the percentage of constraints that
can be modeled implicitly.

violations). If we consider C7, for example, we see that these constraints substantially
improve the root bound for almost all instances with mixed duty types, namely for
instances 5,6, and 9. Only for the smaller mixed instances 1 and 2 no improvement is
found. Note that this improvement is expected for the mixed instances, as opposed
to the non-mixed instances, where rest time violations hardly occur.

Comparison Cell- and Row-based Formulation

We compare the performance of the Branch-and-Price approach for the row-based
formulation (i.e., the formulation resulting from C7) with CPLEX for the cell-based
formulation (i.e., the formulation resulting from C1). The Branch-and-Price approach
is also considered in a heuristic setting, by aggressively fixing the assignments of
duties to the basic schedules (as discussed in Section 4.5). Here we use a threshold
of 0.8, i.e., if a duty is assigned to a basic schedule with a value more than 0.8, this
assignment is fixed in the remainder of the Branch-and-Bound tree.

The results for the different instances are shown in Table 4.4. For each method and
each instance, Table 4.4 shows the root bound resulting from the used clustering,
the best obtained lower bound for each method, the objective value of the best
found solution, the gap with respect to the best-known lower bound, and the overall
computation time ( limited to at most one hour). Bold entries indicate the best found
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solutions among all methods, and omitted entries imply that no solution was found
within the set time limit. Note that the Branch-and-Price approach with aggressive
fixing does not improve the root bound throughout the process, as no backtracking
is considered for the fixed variables.

1 2 3 4 5 6 7 8 9 10

CPLEX

Root Bound 570.1 681.8 192.8 286.5 833.1 843.1 302.8 345.9 1213.2 330.5
Best Bound 609.8 713.8 283.5 373.9 950.2 1008.4 325.4 401.7 1344.5 353.9
Best Solution 609.8 713.8 283.5 373.9 950.2 1008.4 503.6 545.9 1584.6 961.5
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 10.6 3.8 9.4 37.8
Time (s) 1 1 2093 1519 87 93 3600 3600 3600 3600

B&P

Root Bound 609.8 713.8 280.0 370.2 942.7 1004.0 447.8 523.4 1435.0 598.0
Best Bound 609.8 713.8 283.5 373.9 950.2 1008.4 450.0 525.1 1436.3 598.3
Best Solution 609.8 713.8 283.5 373.9 950.2 1008.4 - - - -
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 - - - -
Time (s) 1 1 7 13 20 23 3600 3600 3600 3600

B&P-FIX

Root Bound 609.8 713.8 280.0 370.2 942.7 1004.0 447.8 523.4 1435.0 598.0
Best Bound 609.8 713.8 280.0 370.2 942.7 1004.0 447.8 523.4 1435.0 598.0
Best Solution 609.8 713.8 283.5 373.9 950.9 1013.7 465.3 544.2 1476.5 677.5
Gap (%) 0.0 0.0 0.0 0.0 0.1 0.5 3.3 3.5 2.7 11.7
Time (s) 1 1 7 13 14 7 124 30 602 1674

Table 4.4: Comparison of CPLEX, Branch-and-Price (B&P), and Branch-and-Price
with heuristic fixing (B&P-FIX). For each method and each instance, the root bound,
best bound obtained after termination, the best found solution, the gap with the best
known bound, and the overall computation time is shown. Each run is limited to at
most one hour. Bold entries indicate the best found solutions among all methods,
and omitted entries imply that no solution was found within the set time limit.

Table 4.4 shows that the Branch-and-Price approach outperforms CPLEX for the
smaller instances consisting of mainly early duties. Both approaches quickly solve
instances 1 and 2, but the Branch-and-Price approach is much more efficient for the
difficult instances 3 and 4. This can be attributed to the strong linear relaxation
obtained using clustering C7. Both instance 5 and 6 could be solved to optimality
within the set time limit using the Branch-and-Price approach and CPLEX. We see
that CPLEX is about a factor four slower for these instances, but the differences do
not seem substantial.

The benefit of the row-based formulation is again clearly visible when we consider
the final four instances, which are considered the most difficult to solve. For these
instances the (exact) branch-and-price approach stagnates, and CPLEX is not able
to obtain a proper gap within the time limit. The branch-and-price approach with
aggressive fixing, on the other hand, is generally able to obtain a good solution
for each of the instances and substantially improves upon the solution found using
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CPLEX: Both the found lower and upper bound are better than those found with
CPLEX.

Summarizing, the column generation approach allows to efficiently obtain good solu-
tions to each of the ten instances. The smaller instances can be solved to optimality
using the exact branch-and-price approach, and for the larger instances a good feas-
ible solution can be obtained using the heuristic variant.

4.7 Conclusion

In this chapter, we analyzed formulations for the Cyclic Crew Rostering problem
(CCRP), in which attractive cyclic rosters have to be constructed for groups of em-
ployees. We proposed a family of formulations, motivated by the poor performance of
traditional assignment models for difficult instances. Each formulation has a different
structure, which implies that a suitable variant can be picked for a given problem
instance. We derived analytical results regarding the relative strength of the differ-
ent formulations, which can be used as a guideline to pick a suitable formulation
for a given problem instance. Furthermore, we discussed modeling techniques and
provided tightness results for linking constraints, a frequently occurring class of roster
constraints.

We developed a branch-and-price approach to solve the CCRP, suitable for each
formulation in the family. The pricing of columns in this approach is done by solving
a resource constrained shortest path problem (RCSPP) with surplus variables. To
cope with large instances, we proposed a heuristic branching strategy, which dives
towards an integer solution by fixing the allocation of duties to the roster groups.

We applied both the exact and heuristic branch-and-price approach to practical in-
stances from NS. Our experiments showed the importance of picking a suitable formu-
lation for a given problem instance. In particular, we show that a suitable formulation
is better able to capture the penalty incurred from the roster constraints. Further-
more, we showed that the clique-based modeling of linking constraints improves the
root bound substantially.

We showed that branch-and-price approach outperforms a commercial solver using
the traditional assignment model. For the small instances the exact approach is much
faster in finding an optimal solution. For the large instances, the branch-and-price
approach combined with the heuristic branching framework greatly outperforms the
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solutions found with the assignment model, both in terms of the lower bound and
the found feasible solution. The experiments also showed that the performance of
the different methods depends on the structure of the problem instances, which is in
line with the derived analytical results.

Appendix

4.A Remainder Proof Lemma 4.4.1

To complete the proof of Lemma 4.4.1 it remains to show that z̄ is feasible for the
roster constraints in Q \ QL. Consider some q ∈ Q \ QL and fixed p ∈ Pq. Recall
that up is the upper bound of the violation interval ∆p. Using (4.14) we have∑

`∈L

∑
g∈G`
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fptdz̄
`
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Hence, for q ∈ Q \QK and p ∈ Pq, the feasibility of x̄ implies that∑
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Next, consider some q ∈ QK \QL and p ∈ Pq. Since q ∈ QK , there is a cluster k′ ∈ K
such that the coefficients fptd are non-zero only for this cluster. It follows that∑
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where (4.19c) follows from (4.9). Using the feasibility of the roster sequence s, we
have

∑
s∈Sk′

x̄k
′

s

 ∑
(t,d)∈s

fptd − bp

 ≤ ∑
s∈Sk′

x̄k
′

s up (4.20a)

= up, (4.20b)

were (4.20b) follows from (4.9). It follows that z̄ is feasible for all q ∈ QK \QL, and
thus for all q ∈ Q \QL.



Chapter 5

A Column Generation
Approach for the Integrated
Crew Re-Planning Problem

5.1 Introduction

Large maintenance and construction projects are crucial for heavily used railway
networks to cope with the ever increasing demand. In 2019, for example, there were
around 150 planned maintenance activities for the Dutch railway network that led
to rerouting and/or the necessity of buses as alternative mode of transport∗. These
activities are inconvenient for the passengers and have a large impact on the crew
schedules: Many crew members traverse large parts of the railway network, and
hence their duties (i.e., days of work) become infeasible due to the maintenance
activities. As a result, the crew schedule needs to be updated, preferably with as few
modifications as possible.

The crew duties have to satisfy numerous rules, expressing, for example, a maximum
on the length of the duty or the occurrence of a proper meal break. At NS, it is
also required that each duty starts and ends at the same crew base. Figure 5.1 gives
an example of a duty, passing the major stations The Hague (Gvc), Utrecht (Ut),

∗source (in Dutch): https://www.ns.nl/reisinformatie/werk-aan-het-spoor.
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and Zwolle (Zl). Note that the duty starts and ends at The Hague. Furthermore,
a proper meal break of half an hour (indicated by a star) is specified, and the duty
does not exceed 9.5 hours (which is the maximum length for duties starting after 6
in the morning).

Gvc

Gd

Rtd

Wd Ut
Apn

Ledn Zl

Gn

6:00 8:00 10:00 12:00 14:00 16:00
?

UtGvc Gvc Ut Zl Ut Gvc

Figure 5.1: Schematic visualization of a part of the Dutch railway network and an
example of a duty traversing this network for an employee based at The Hague (Gvc).
Each block represents a trip. For each trip the departure station (top left) and/or
arrival station (top right) are shown. The star indicates a meal break. The dashed
line indicates scheduled maintenance between the two stations.

Besides rules on the duty level, the scheduled duties should also satisfy complex
global rules related to the distribution of work among the crew bases. These rules,
known as the ‘Sharing-Sweet-and-Sour’ rules (see Abbink et al. (2005)), assure that
each crew base gets roughly the same type of work, i.e., the work allocation is fair.
This implies, for example, that the duties for each crew base have roughly the same
average length and the same percentage of work on high-quality rolling stock. These
rules also include spatial variations: Trips marked as attractive are divided equally
over all crew bases, to the extent to which this is possible. As a result, the ‘Sharing-
Sweet-and-Sour’ rules ‘enforce’ that a crew member traverses different parts of the
railway network within each duty. Hence, maintenance activities in a single part of
the railway network can affect many different duties.

The impact of maintenance activities on the duties can be illustrated using the fol-
lowing example. Suppose that a maintenance activity is scheduled between Gouda
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(Gd) and Woerden (Wd), as indicated by the dashed line in Figure 5.1. This implies
that the duty shown in Figure 5.1 is no longer valid, due to the trips between The
Hague and Utrecht being canceled (as a result of the maintenance activities). As a
consequence, the trip between Utrecht and Zwolle, originally covered by this duty,
now has to be covered by a different (or even an additional) duty.

The problem of re-scheduling the crew has been formalized as the Crew Re-Scheduling
Problem (CRSP) in Huisman (2007). The CRSP differs from the traditional Crew
Scheduling Problem (CSP) in the sense that the operational costs are of much less
importance, a consequence of the fact that the original duties, and hence the amount
of crew needed, are input to the CRSP. Instead, the CRSP aims at finding new duties
for the already scheduled crew members such that all tasks are covered. If necessary,
additional duties can be scheduled (i.e., an additional crew member will be asked to
work) but this should be avoided whenever possible.

The newly constructed duties should assure that the roster of each employee (see
Chapter 2) remains feasible, implying that additional rules, such as a maximal work-
load and a minimum rest time between duties, have to be taken into account. In
the current practice, the feasibility of the new rosters is ‘assured’ by allowing the
new duties to deviate only slightly from the original ones: At NS, for example, the
newly constructed duties are not allowed to start more than half an hour earlier than
the original duties, or end more than half an hour later. We refer to this as day-by-
day re-scheduling, as it allows the re-scheduling problem to be solved for each day
separately.

It is clear that day-by-day re-scheduling limits the possible new duties that can be
assigned, and hence a possible better solution, feasible with respect to the roster rules,
might not be found. In the Integrated Crew Re-Planning Problem (ICRPP) we aim
at capturing exactly this flexibility in start and end times: The ICRPP considers
the re-scheduling of crew for multiple days simultaneously, thereby allowing more
flexibility in the re-scheduling. The ICRPP further complicates the CRSP due to (i)
the size of the problem, as multiple days need to be re-scheduled at once, and (ii)
the possibility of larger shifts in start and end time, implying that the feasibility of
the rosters should be taken into account explicitly.

The contribution of this chapter is twofold. Firstly, we propose a mathematical
formulation for the ICRPP and develop a column generation approach to solve the
problem. Secondly, we apply our solution approach to practical instances from NS,
and show the benefit of integrating the re-scheduling process. In particular, we show
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that the additional flexibility in the start and end times of the re-scheduled duties
allows for a reduction in the number of additional duties compared to the day-by-day
approach.

The remainder of this chapter is organized as follows. In Section 5.2, we formalize the
ICRPP and, in Section 5.3, we discuss related work. We then propose a mathematical
formulation for the ICRPP in Section 5.4, and propose a column generation based
solution approach in Section 5.5. In Section 5.6, we show the benefit of the newly
developed solution approach using practical instances from NS, and we conclude the
chapter in Section 5.7.

5.2 Problem Description

The timetable and the rolling stock schedule together specify the work for a given
planning day. The scheduled work is represented by tasks (i.e., indivisible blocks of
work). Different types of tasks exist, such as driving and passenger tasks (i.e., riding
a train as a passenger), but also operational tasks such as shunting and deadheading
are specified in the plan. Certain tasks must always be covered (e.g., trip tasks,
shunting tasks) to assure a correct execution of the plan, whereas other tasks are
optional tasks (e.g., passenger tasks, taxi trips), and are solely added to the plan for
additional flexibility.

In the crew planning phase, the planned tasks are assigned to the employees in
the form of duties, i.e., sequences of tasks. Each duty has to satisfy certain rules,
relating to the transfer times between tasks, the possibility of a meal break, the
duration of the duty, among other things. These constraints follow from labor laws
and the collective labor agreement. Furthermore, each duty should start and end at
the same crew base. The duties are assigned to the crew members in the form of
rosters: The roster of each employee specifies which duties to perform on which day.
Furthermore, the roster specifies on which days the employee has a day-off. Similar to
the duties, the rosters should satisfy numerous rules as agreed upon in the collective
labor agreement. Typical roster rules include a minimum rest time between duties,
a maximum workload over the week, and a sufficient number of days-off. We refer to
Abbink et al. (2005), Hartog et al. (2009), and the previous chapters for an overview
of the duty and roster rules at NS.

In crew re-planning the original duties and rosters are replaced by alternative duties
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and rosters, such that all tasks are covered in the disrupted situation. This implies
that, after re-planning, each employee is assigned an alternative roster consisting
of alternative duties. The alternative duties and rosters have to satisfy a number
of rules, yet the rules in re-planning are generally less stringent than the rules for
the initial planning phase. The ‘Sharing-Sweet-and-Sour’ rules, for example, are not
explicitly taken into account in the re-planning process. The rules for the alternative
duties are as follows.

• Connection Times. Between every two scheduled tasks there should be a suf-
ficient connection time. This connection time depends on whether or not both
tasks are on the same rolling stock unit. Furthermore, possible travel time
(e.g., due to a passenger task) should be taken into account.

• Duty Length. A duty is not allowed to exceed a certain length. This maximum
length depends on the start and end time of the duty. The duty length rules
are specified by a start and/or end interval, and a maximum length for duties
within these intervals.

• Meal Break. Each duty should allow for a proper meal break after a given
amount of time. The meal break should always take place at one of the dedic-
ated train stations, generally the larger stations containing a canteen.

• Route and Rolling Stock Knowledge. A crew member is only allowed to perform
a certain trip if he or she has sufficient route knowledge. This knowledge is
generally regional, i.e., it is assumed to be equal for all crew belonging to the
same crew base.

Furthermore, the alternative rosters have to satisfy the following roster rules.

• Rest Time. After completing a duty it is required that an employee has a
certain minimum time to rest. This implies that there should be a minimum
amount of time between the end of a duty and the start of the duty on the next
day.

• Workload. The total workload of a roster is not allowed to exceed a given
maximum value. This maximum value depends on the work scheduled in the
original roster: Ideally, the workload in the alternative roster should not deviate
too much from the workload in the original roster.

Finally, each alternative duty has an associated cost. This cost can be decomposed
into two parts: a fixed cost and a cost based on each connection (i.e., follow-up of
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two tasks). The fixed costs regulate the trade-off between different types of duties.
Scheduling an additional alternative duty (i.e., an additional crew member has to
perform it) is associated with a high fixed cost, as such a solution is costly and
should be avoided. On the other hand, it is desirable to give some employees a day-
off if possible, as the maintenance activities often mean that less tasks have to be
covered. Hence, empty duties (i.e., duties without any tasks) are associated with a
low fixed cost. Furthermore, there are costs associated with the connections, related
to, for example, the actual cost of the connection (e.g., the cost of a taxi trip).

The alternative rosters are linked to the original rosters by means of time windows,
specifying for each alternative duty an interval in which the start and end time of
the duty must lie. The main purpose of the time windows is to assure that the newly
constructed rosters remain feasible with the work scheduled outside of the re-planning
period. At NS, for example, during re-planning a shift of at most half an hour in
start and end time is always considered feasible with respect to the roster rules. As
a result, the start and the end of the alternative roster can be at most half an hour
earlier (respectively, later) than the original roster. Within each roster, however, the
time windows can be loosened, by taking the roster rules into account explicitly. This
is illustrated in Table 5.1, where we compare the time windows for the day-by-day
approach with a fully integrated approach (i.e., allowing arbitrary shifts in start and
end times). By varying the maximum allowed shift, one can analyze the trade-off
between the number of necessary duties and the deviation from the original schedule.

Original Day-By-Day Integrated

Day 1 12:30 - 21:00 12:00 - 21:30 12:00 - 08:30
Day 2 11:15 - 20:30 10:45 - 21:00 04:00 - 21:00

Table 5.1: Allowed start and end times for a re-scheduling period of two days. At
NS, duties start after 04:00 and end the latest at 08:30 the next day. The column
Original shows the originally planned start and end time of each duty, i.e., the interval
in which the duty is scheduled. The column Day-by-Day shows the resulting interval
according to the day-by-day approach, i.e., the interval is extended by half an hour
on both sides. The column Integrated shows the possible additional flexibility: The
first duty is allowed to end at any time before 08:30 the next day, and, similarly, the
second duty can start already as early as 04:00. In this case, the rest time between
the two duties should be explicitly enforced.

The Integrated Crew Re-Planning Problem (abbreviated ICRPP) can now be stated
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as follows: Given the original rosters, and the new set of tasks, determine an altern-
ative roster (consisting of alternative duties) for each employee such that all tasks
are covered. When necessary, additional duties can be scheduled, but at a high cost.
The new rosters should be feasible with respect to the duty and roster constraints,
and the alternative duties should respect the given time windows. The ICRPP aims
at capturing the additional flexibility in the start and end times of the alternat-
ive duties, by having much looser requirements on the time windows compared to
day-by-day rescheduling.

5.3 Literature Review

Crew planning is a well-established field of research in the Operations Research lit-
erature. In railway and mass transit optimization, the planning problem is generally
decomposed into crew scheduling and crew rostering: Both crew scheduling (see,
for example, Desrochers and Soumis (1989), Hoffman and Padberg (1993), Kroon
and Fischetti (2001), Grötschel et al. (2003), and Abbink et al. (2005)) and crew
rostering (see, e.g., Sodhi and Norris (2004), Hartog et al. (2009), Mesquita et al.
(2013), and Borndörfer et al. (2015)) are well-studied problems. We refer to Kohl
and Karisch (2004), Huisman et al. (2005b), Caprara et al. (2007), Abbink et al.
(2018), and Heil et al. (2019) for general overviews of crew planning in railway and
airline optimization.

Only little research considers the integration of crew scheduling and rostering in pub-
lic transport. Ernst et al. (2001) propose an integrated model able to construct both
cyclic and acyclic rosters. The solution approach relies on the complete enumeration
of all possible duties for each day. As noted by the authors, this is tractable for
the considered sparse railway network in Australia, but for larger railway networks
(e.g., the Dutch railway network) approaches such as column generation should be
considered to deal with the large number of possible duties. Mesquita et al. (2013)
integrate the construction of the vehicle and duty schedules with crew rostering, and
propose a Benders decomposition approach to solve the resulting problem. The bene-
fit of the approach is shown using practical instances based on the urban bus systems
of Lisbon and Porto. Finally, Borndörfer et al. (2017) consider the integration of crew
scheduling and rostering. The proposed mathematical formulation links the duties
and rosters through duty templates: coarse representations of duties expressing only
the key characteristics (see Borndörfer et al. (2013)). By picking suitable templates,
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the number of linking constraints can be reduced drastically. The resulting model
is solved using Benders decomposition, and it is shown that substantially improved
rosters can be constructed without increasing the costs of the duty scheduling phase.

Railway re-scheduling and recovery has received considerable attention in recent
years. We refer to Cacchiani et al. (2014) for a detailed overview. Huisman (2007)
considers re-scheduling due to planned maintenance, similar to this work. Rezanova
and Ryan (2010), Potthoff et al. (2010), and Sato and Fukumura (2012), on the other
hand, focus on operational re-scheduling (or recovery), i.e., the re-scheduling of per-
sonnel during operations. Note that additional difficulties arise in this case, as crew
members might already have started their duties at the moment of re-scheduling.
Another key difference is the time available for re-scheduling: The re-scheduling due
to planned maintenance is generally done numerous days in advance, and hence al-
lows for multiple hours of computation time, whereas in operational re-scheduling
the new duties should be obtained in a few minutes (or even seconds). Integrated
approaches are proposed in Walker et al. (2005) and Veelenturf et al. (2012), where
(part of) the timetable can be modified when re-scheduling. Finally, Veelenturf et
al. (2014) propose a quasi-robust approach towards re-scheduling to cope with the
uncertain length of the disruption period. The proposed formulation assures that a
percentage of the re-scheduled duties should be recoverable. As a result, a subset of
tasks is guaranteed to be covered for every disruption scenario.

Research regarding re-scheduling in the field of airline optimization precedes railway
re-scheduling by numerous years (see, for example, Stojković et al. (1998), Lettovskỳ
et al. (2000), Stojković and Soumis (2001), Petersen et al. (2012), among others).
Clausen et al. (2010) gives a detailed overview of disruption management in airline
optimization. The focus in airline recovery is generally on the operational plan-
ning phase, i.e., only short computation times are allowed. It is important to note
that the railway and airline re-scheduling problem fundamentally differ: The rail-
way re-scheduling problem deals with a single day in which many duties are to be
re-scheduled, whereas the airline re-scheduling deals with pairings (i.e., a sequence
of duties spanning multiple days), implying that multiple days are to be taken into
account. In airline optimization, the duties can generally be enumerated (see, e.g.,
Lavoie et al. (1988), Stojković et al. (1998)), implying that all rules related to the
duties can be taken care of implicitly. The pairings should, however, satisfy numer-
ous rules regarding, e.g., rest times, making the problem more closely related to the
crew rostering problem.



Chapter 5 115

In this chapter, we add to the literature by integrating railway crew scheduling and
rostering in the re-planning phase, i.e., we simultaneously re-schedule the duties for
multiple days, thereby taking the feasibility of the individual rosters into account.
This problem extends the work on re-scheduling in railway optimization, where tra-
ditionally only one day is considered. Furthermore, it differs from current research on
the integration of crew scheduling and rostering, as the original duties are considered
input (similar to the way crew re-scheduling differs from crew scheduling). The res-
ulting problem resembles the re-scheduling of crew pairings in airline optimization,
yet differs fundamentally in the sense that the number of possible duties per day is
huge, and hence a different solution approach is necessary.

5.4 Mathematical Formulation

We propose to formulate the ICRPP on the duty level, i.e., we propose a formulation
in which each variable indicates whether a possible alternative duty is selected or
not. This implies that the duty constraints are readily taken care of in the variable
definitions (that is, only feasible duties are considered). The roster constraints, on
the other hand, need to be modeled explicitly.

Let R denote the set of original rosters (one for each employee) and let T denote the
set of days in the re-planning period. The set Kt, for all t ∈ T , denotes the set of
tasks that need to be covered on day T . The set of alternative duties for day t ∈ T
is denoted by ∆t, and the set of duties that can be assigned to roster r on day t is
given by ∆r

t ⊆ ∆t. The set ∆r
t directly incorporates the specified time window and

restrictions due to route knowledge. The binary parameter aδtk indicates whether the
duty δ ∈ ∆t covers task k ∈ Kt. The cost of assigning duty δ ∈ ∆r

t to roster r ∈ R
is given by cδrt and the cost of selecting δ ∈ ∆t as additional duty is given by fδt .

The rest time constraints are modeled using violation graphs, as previously proposed
in Chapter 4. Let N denote the nights in the re-planning period, i.e., the transitions
between two consecutive days in T . For each roster r ∈ R and each night n ∈ N we
consider a bipartite graph where each edge represents a rest time violation between
an end task at the beginning of n and a start task at the end of n. Figure 5.2 shows
the violation graph for three possible end tasks A1, A2, and A3, and three possible
start tasks B1, B2, and B3 for a given roster r. In this case, ending with A1 is
incompatible with starting with B1 or B2, and ending with A2 is incompatible with
starting with B1.
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Figure 5.2: Example of clique-constraints, defined on the rest time violation graph.
The dashed arcs indicate the maximal bicliques corresponding to the constraint: The
first maximal biclique involves tasks A1, A2, and B1, and the second maximal biclique
involves tasks A1, B1, and B2.

The rest time constraints for roster r ∈ R and night n ∈ N are obtained from the set
of maximal bicliques (i.e., maximal complete bipartite subgraphs) in the violation
graph, denoted by Qrn. Figure 5.2 depicts the two maximal bicliques in a violation
graph. It has been shown in Chapter 4 that the size of Qrn is bounded by the
number of nodes in the violation graph. Furthermore, it has been shown that the
biclique-based constraints lead to the strongest possible formulation for the rest time
constraints. We introduce the binary parameter oδqrnt, indicating whether the begin or
end task of duty δ ∈ ∆r

t is part of the biclique q ∈ Qrn. In the first maximal biclique
in Figure 5.2, for example, the parameter will equal 1 for all duties on the first day
ending with either task A1 or A2 and all duties on the second day starting with B1.
Note that, by definition, the parameter oδqrnt is zero whenever t is not starting (or
ending) before (or after) night n.

To model the workload constraints, let `δrt denote the length of duty δ ∈ ∆r
t and let

wr denote the maximum workload for roster R over the re-planning period T . We
introduce the following decision variables.

• xδrt for all r ∈ R, t ∈ T , and δ ∈ ∆r
t . The binary decision variables xδrt indicate

whether duty δ ∈ ∆r
t is assigned to roster R.

• yδt for all t ∈ T and δ ∈ ∆t. The binary decision variables yδt indicate whether
duty δ ∈ ∆t is scheduled as additional duty.
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The ICRPP can now be formulated as follows.

min
∑
r∈R

∑
t∈T

∑
δ∈∆r

t

cδrtx
δ
rt +

∑
t∈T

∑
δ∈∆t

fδt y
δ
t (5.1)

s.t.
∑
r∈R

∑
δ∈∆r

t

aδtkx
δ
rt +

∑
δ∈∆t

aδtky
δ
t ≥ 1 ∀t ∈ T, k ∈ Kt (5.2)

∑
δ∈∆r

t

xδrt = 1 ∀r ∈ R, t ∈ T (5.3)

∑
t∈T

∑
δ∈∆r

t

oδqrntx
δ
rt ≤ 1 ∀r ∈ R,n ∈ N, q ∈ Qrn (5.4)

∑
t∈T

∑
δ∈∆r

t

`δrtx
δ
rt ≤ wr ∀r ∈ R (5.5)

xδrt ∈ B ∀r ∈ R, t ∈ T, δ ∈ ∆r
t (5.6)

yδt ∈ B ∀t ∈ T, δ ∈ ∆t. (5.7)

The Objective (5.1) expresses that we minimize the cost of the selected duties, con-
sisting of the cost of the duties assigned to the rosters and the cost of the additional
duties. Constraints (5.2) and (5.3) assure that each task is covered and that each
roster is assigned exactly one duty for each day, respectively. Constraints (5.4) and
(5.5) represent the roster constraints: (5.4) assure the minimum rest time is respec-
ted, and (5.5) enforce a maximum workload for each roster. Finally, the domains of
the decision variables are specified in (5.6) and (5.7).

5.5 Solution Approach

We propose a column generation approach to solve the ICRPP. This type of approach
has been succesfully applied to similar crew re-scheduling problems in railway optim-
ization (see, for example, Huisman (2007) and Potthoff et al. (2010)), and is generally
considered a state-of-the-art solution approach (for detailed surveys, see Barnhart et
al. (1998), Lübbecke and Desrosiers (2005), Desaulniers et al. (2006) and Lübbecke
(2011)). The main idea behind column generation is to solve a linear program with a
huge amount of columns (i.e., variables) by only considering a subset of all possible
columns. In each iteration, it is checked if possible profitable, i.e., negative reduced
cost, columns are present among the columns not yet included. If this is the case,
the procedure continues. Otherwise, the found solution is optimal, and the algorithm
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terminates.

We propose a solution method in which we iteratively select alternative rosters for
the crew members. The algorithm continues until all employees are assigned an al-
ternative roster, and, when necessary, selects additional duties to cover the remaining
tasks. To select good alternative rosters, we base the selection of alternative rosters
on the solution to the linear relaxation of (5.1)–(5.7). In particular, we select the
alternative rosters that appear in the solution with a high (fractional) value. The
linear relaxation is solved using column generation.

The remainder of this section is structured as follows. In Section 5.5.1 we give a
global overview of the iterative selection procedure, and in Section 5.5.2, we discuss
the selection procedure for alternative rosters in detail. Then, in Section 5.5.3, we
discuss the pricing problem for alternative duties, which underlies the column gener-
ation algorithm. We conclude in Section 5.5.4 with an overview of the acceleration
strategies used to speed-up the column generation procedure.

5.5.1 Iterative Selection Procedure

We obtain an integer solution for the ICRPP by iteratively selecting an alternative
roster for one of the crew members. This type of approach is generally referred to as
a diving heuristic, i.e., a depth-first search heuristic in the branching tree (see, for
example, Joncour et al. (2010), and references therein). The iterative procedure is
schematically visualized in Figure 5.3.

The selection procedure consists of two phases: Firstly, alternative rosters are selected
for the crew members, and, secondly, additional duties are selected to cover possibly
still uncovered tasks. The main motivation of selecting complete rosters, as opposed
to separate duties, is to assure feasibility with respect to the roster rules. Note that
the roster rules do not apply to the additional duties. Each time an alternative roster
or additional duty is selected, the set of still available rosters (i.e., crew members)
and uncovered tasks is updated. Once all tasks are covered, the algorithm terminates
and the found solution is returned.

As is common for diving heuristics, both the alternative rosters and additional duties
are selected based on the highest value rule, i.e., all rosters or duties with integer value
are selected, together with one roster or duty assigned the highest (non-integer) value
in the fractional solution (the latter assuring that the solution to the linear relaxation
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Figure 5.3: Iterative selection procedure for the ICRPP, consisting of two phases:
Firstly, alternative rosters are selected for the crew members, and, secondly, addi-
tional duties are selected to cover possibly still uncovered tasks.

changes). Whereas defining the highest value is trivial for the additional duties (i.e.,
the value is directly obtained from the corresponding variable), this is not the case
for the alternative rosters. In Section 5.5.2 we discuss the selection of alternative
rosters in more detail.

5.5.2 Selecting Alternative Rosters

The roster rules imply that an arbitrary selection of alternative duties for an original
roster can lead to infeasible solutions. Consider, for example, the fractional solution
depicted in Table 5.2. In this specific example, selecting one duty per day, based on
the highest value rule, will lead to an infeasibility: Selecting duties 2 and 3 will lead
to an alternative roster which violates the minimum rest time of 12 hours. Note that
the fractional solution does satisfy (5.4).

To assure the feasibility of the constructed rosters, even when multiple alternative
duties are selected in each iteration, we directly select all alternative duties for a
single roster, thereby taking the roster constraints directly into account. Consider
again the example of Table 5.2. The duties give rise to five alternative rosters:
{1, 3}, {1, 4}, {1, 5}, {2, 4}, and {2, 5}. Note that the roster {2, 3} is not considered



120 Chapter 5

Day Start End Value

1 1 12:00 20:00 0.4
2 1 12:30 21:00 0.6

3 2 08:00 16:00 0.4
4 2 09:00 17:00 0.3
5 2 09:00 17:30 0.3

Table 5.2: Example of a fractional solution for a given original roster. Each row
indicates an alternative duty, and specifies the start and end time, and the (fractional)
solution value.

here, as it violates the rest time constraint. The highest value rule is applied by taking
the minimum over all assigned alternative duties. That is, the value corresponding
to, for example, roster {1, 3} equals min{0.4, 0.4} = 0.4, and the value corresponding
to roster {2, 4} equals min{0.6, 0.3} = 0.3. In this specific example, the highest value
rule would select roster {1, 3}. For each original roster, the alternative roster with
highest value can be determined and the alternative with overall highest value can
be added to the solution.

The above procedure can be formalized as follows. Let (x, y) be a solution to the
linear relaxation of (5.1)–(5.7). Given x, we determine the feasible alternative rosters
Pr(x) for each r ∈ R, consisting only of alternative duties with a non-zero solution
value. This set is determined by complete enumeration. For an alternative roster
ρr ∈ Pr(x), let ρrt ∈ ∆r

t denote the alternative duty assigned to day t ∈ T . The
value π(x, ρr) for each ρr ∈ Pr(x) is defined as

π(x, ρr) = min
t∈T
{xρrt

rt } ,

i.e., the value of the alternative roster is based on the minimum taken over all as-
signed alternative duties. In each iteration, we determine for each original roster
r ∈ R a candidate ρ?r maximizing π(x, ρr) and add all alternative rosters ρ?r for
which π(x, ρ?r) = 1 to the solution, together with the alternative roster with highest
non-integer value (i.e., the highest value below 1). The involved original rosters and
tasks are removed from the pool of available original rosters and uncovered tasks,
respectively, and the algorithm continues.
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5.5.3 Pricing Problem

The pricing of alternative and additional duties can be modeled as a series of Resource
Constrained Shortest Path Problems (RCSPPs) on suitably defined graphs. Let B
denote the set of crew bases. For every day t ∈ T and crew base b ∈ B, we consider
a dedicated digraph Gbt = (V bt , Abt), referred to as a pricing graph, where the nodes
correspond to the tasks in Kt and the arcs represent feasible connections between
tasks. The graph contains an additional source and sink node, representing the
departure and arrival at the crew base.

s t

1

2

3

4

5

6

8

7

9

Figure 5.4: Pricing graph for alternative and additional duties. Each node corres-
ponds to a task and each arc represents a feasible connection between two tasks. In
this graph, a total of nine tasks are shown. Each path from the source s to the sink
t corresponds to a possible duty.

Figure 5.4 gives a stylized example of a pricing graph. Note that any passenger tasks
and taxi trips can be directly incorporated in the arc set. Furthermore, the route
knowledge is readily incorporated by adding a node to the graph only for those tasks
compatible with crew base b. Finally, the travel times from and to the crew base can
be set accordingly using the source and sink arcs.

Let Rb denote the original rosters corresponding to base b ∈ B. For each base b ∈ B
and day t ∈ T , we solve a pricing problem for each original roster r ∈ Rb to price
out any negative reduced cost alternative duties for r on day t, and, furthermore,
we solve one pricing problem to price out negative reduced cost additional duties for
base b on day t. Note that the time window specified for original roster r ∈ Rb on
day t ∈ T can be easily incorporated in the pricing graph Gbt by discarding all tasks
which cannot be covered within the specified time interval.

The reduced cost of the alternative and additional duties can be expressed as follows.
Let λtk denote that dual variables corresponding to the coverage constraints (5.2),
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µrt to the assignment constraints (5.3), γqrn to the rest time constraints (5.4), and,
finally, φr to the workload constraints (5.5). The reduced cost of xδrt is given by

cδrt −
∑
k∈Kt

λtka
δ
tk − µrt −

∑
n∈N

∑
q∈Qr

n

γqrno
δq
rnt − φr`δrt, (5.8)

and the reduced cost of yδt by

fδt −
∑
k∈Kt

λtka
δ
tk. (5.9)

As discussed in Section 5.2, the costs cδrt and fδt consist of a fixed cost and a cost per
connection, and can therefore readily be modeled using the arc costs. As a result,
the reduced cost can be modeled using appropriate arc costs, as well: The dual
variables regarding the coverage constraints can be modeled as arcs costs using the
incoming arcs of each task. Furthermore, the assignment constraint duals can be
incorporated in the arc costs of arcs leaving the source. For the rest time constraints,
we observe that membership of a biclique in the violation graph depends only on
the start and end times of the alternative duty: The duals corresponding to the rest
time constraints can therefore be readily modeled using arc costs on the arcs leaving
and entering the source and sink, respectively. Finally, the length of the alternative
duty decomposes over the length of the visited arcs and nodes, and hence can also
be modeled using the arc costs.

The duty length and meal break rules are incorporated in the pricing problem in a
similar way as proposed in Huisman (2007). Recall that the duty length rules are
expressed by a start and/or end interval, and a maximum length, e.g., a duty length
rule could specify that a duty starting between 05:00 and 06:00 or ending between
02:30 and 08:30 can have a length of at most 8.5 hours, or could specify that a duty
starting after 06:00 and ending before 02:30 the next day can have a length of 9.5
hours. All these rules together can be captured by a suitably picked maximum ending
time for each possible start task (see Figure 5.5). Hence, the pricing problem, given
a pricing graph (either for an alternative or an additional duty), can be modeled as
a RCSPP for each start task, with a resource related to the meal break constraint.

Solving the RCSPP for each possible start node allows to incorporate the duty length
constraint. This is done as follows: Given a start task s, we enforce the maximum
duty length constraint by allowing only those end tasks e such that the duty start-
ing with s and ending with e respects the maximum duty length constraint. This
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Figure 5.5: Duty length function, mapping each start time to the maximum end time.
Duties starting between 04:00 and 05:00 are at most 7 hours, those starting between
05:00 and 06:00 at most 8.5 hours, and those starting after 06:00 at most 9.5 hours.
Furthermore, duties ending after 02:30 in the night cannot exceed 8.5 hours.

procedure is illustrated in Figure 5.6. For task s1, starting at 05:15, we remove end
tasks e3, e4, and e5 from the set of possible end task, as the length of the resulting
duty would be too long. For start task s2 all the end tasks except e5 are feasible.

We solve the RCSPP using a labeling algorithm incorporating completion bounds
(similar to Chapter 2): lower bounds on the minimum cost of completing a path to
the sink node. The underestimation follows from the fact that the lower bounds are
based on the shortest path costs, i.e., the meal break constraint is not taken into
account. We solve the RCSPP heuristically by using Breadth First Search (BFS),
thereby limiting the label set to at most k labels, based on the lowest estimated cost
(i.e., the lowest lower bound). Note that this labeling strategy considers at least the
k shortest paths in the graph, which, as argued in Huisman (2007), are often feasible
for the meal break constraint and hence represent the set of most negative reduced
columns. Whenever optimality is required, we switch to a Depth First Search (DFS)
procedure (to limit the size of the label set), and terminate whenever either the
k most negative reduced cost paths are found, or we prove that no more negative
reduced cost paths are present.

5.5.4 Acceleration Strategies

The performance of column generation based algorithms depends heavily on the
strategy for pricing negative reduced columns and the precise interaction between the
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Figure 5.6: Two pricing problems resulting from the start tasks s1 and s2. For a
given start task s, the duty length constraint is enforced by removing all start tasks
before s and all end tasks e such that the time between s and e violates the duty
length constraint.

master and pricing problems. This led to the development of acceleration strategies:
strategies, often specified for classes of problems, to improve the column generation
procedure (see e.g., Desaulniers et al. (2002) for a detailed overview). We consider
three acceleration strategies for the ICRPP, generally referred to as pre-processing
(i.e., reducing the number or size of the RCSPPs that need to be solved), partial
pricing (i.e., solving only a subset of pricing problems) and the enforcement of task-
disjoint columns.

Pre-Processing Start Tasks

Firstly, we limit the number of RCSPPs to be solved for a given pricing graph, by
avoiding all ‘redundant’ start tasks, i.e., by avoiding all start tasks which can be
skipped without losing optimality. This can be done as follows. Firstly, we note that
all tasks leading to the same start time can be aggregated into one pricing problem:
Since the decomposition per start task functions to model the duty length constraint,
this can be done while still assuring exactness of the pricing problem. Secondly, we
note that, in a similar fashion, any two start tasks leading to the same set of end tasks
can be aggregated into one pricing problem. Here, the possible end tasks depend on
(i) the duty length constraint and (ii) the specified time window. Given these two
rules, the possible start tasks can be aggregated into pricing problems using a simple
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greedy procedure. In Section 5.6, we show that this pre-processing framework greatly
reduces the number of possible start tasks per pricing graph, and hence the number
of RCSPP that need to be solved.

Partial Pricing of Alternative Duties

Secondly, we consider a partial pricing strategy for the alternative duties: For each
original duty, we order the set of possible start tasks randomly, and restrict the
generation of alternative duties to only those pricing problems corresponding to one
of the n first tasks in this list, where n is an a priori set control parameter. Recall
that, when solving the pricing problem for start task s, we also allow start tasks
starting later than s, i.e., in Figure 5.6 task s2 is allowed as start task when pricing
for task s1. This implies that many start tasks are considered even if we price
only for a small amount of start tasks, a desirable property when applying partial
pricing. Note, however, that the duties generated for the additional start tasks will
be shorter than technically possible (since the duty length constraint is based on an
earlier start task), hence, it is still necessary to price for all start tasks to assure no
negative reduced columns exist.

The partial pricing strategy is applied in two ways: heuristically and exact. In
heuristic partial pricing, we stop solving pricing problems after the first n start tasks
have been considered. The found negative reduced cost columns are returned, and the
column generation algorithm continues. The advantage of heuristic partial pricing is
that it allows easy control of the time spent on pricing in each iteration. The major
downside, however, is that possibly not all negative reduced cost columns are found,
i.e., the linear relaxation will most likely not be solved to optimality. Exact partial
pricing aims at avoiding the latter: Whenever no negative reduced cost columns
are found using heuristic partial pricing, we continue iterating through the list of
possible start tasks for each of the original duties, until either the complete list has
been considered, or a column with negative reduced cost has been found. This assures
that the linear relaxation will be solved to optimality. In heuristic partial pricing, we
solve the RCSPP using the heuristic approach (as discussed in Section 5.5.3), wheres
in exact partial pricing we also switch to the exact approach for the RCSPP.

In the iterative selection procedure we apply both heuristic and exact partial pricing
to efficiently solve the ICRPP: Exact partial pricing is applied in the root node, to
obtain a good initial solution and valid lower bound, and heuristic partial pricing is
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used in the remaining nodes of the tree, i.e., each time we select an alternative roster
and the linear relaxation is resolved. This avoids that we spend much time on exact
partial pricing throughout the diving procedure.

Selecting Task-Disjoint Columns

The third and final acceleration strategy focuses on the structure of the column pool.
For the ICRPP, and other set-covering type of problems, an optimal solution will
most likely have columns with little overlap, i.e., the columns have little tasks in
common. By enforcing the returned columns to have little overlap (referred to as
being task-disjont in Desaulniers et al. (2002)), the column pool will have an ‘optimal’
structure, without flooding the master problem with a huge number of columns. The
level of overlap allowed controls the trade-off between the number of columns in the
column pool and the maximum overlap among columns.

Given a set of negative reduced columns, a close to task-disjoint subset is picked as
follows. For any two columns x1 and x2 a similarity score can be computed based on
the tasks covered: The similarity score of column x1 with column x2 is defined as the
number of tasks covered by both columns divided by the total number of tasks covered
by x1. The higher this score, the more x1 is similar to (or contained in) x2. Given
the generated columns and an a priori set similarity threshold, we greedily obtain a
subset of columns based on most negative cost, whilst assuring that the similarity
score with the already selected columns does not exceed the similarity threshold.
Note that this procedure assures that the column with most negative reduced cost is
always selected. The resulting subset of columns will have little overlap.

5.6 Computational Experiments

To illustrate the benefit of the integrated approach, we apply our solution approach
to practical instances from NS. In Section 5.6.1, we give a detailed description of
the case study. In Sections 5.6.2 and 5.6.3 we analyze the computation results: In
Section 5.6.2 we analyze the effect of the acceleration strategies discussed in Section
5.5.4 and in Section 5.6.3 we discuss the results of the iterative selection procedure
proposed in Section 5.5.2.
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5.6.1 Case Study

We consider the re-scheduling of crew over a weekend (i.e., Saturday and Sunday),
in April 2019, when large-scale maintenance was scheduled around station Leiden
(Ledn). The situation is depicted in Figure 5.7. We construct different instances
based on the crew bases Amsterdam (Asd), Lelystad (Lls), The Hague (Gvc), and
Rotterdam (Rtd), four major crew bases for which many original rosters became
infeasible due to the maintenance activities.

Lls

Asd

Ledn
Gvc

Rtd

Figure 5.7: Case study considering scheduled maintenance at Leiden (Ledn), shown
together with the crew bases located at The Hague (Gvc), Rotterdam (Rtd), Ams-
terdam (Asd), and Lelystad (Lls). The black lines show the lines operated by NS.

We construct four re-planning instances, each corresponding to a re-planning problem
for three of the four crew bases. The characteristics of the four instances are shown in
Table 5.3. The original duties and updated timetable are obtained from the second
Saturday in April 2019, a day in which the planned timetable was substantially
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altered: About 20 duties became infeasible at each of the four crew bases. We extend
this to data to the whole weekend by assuming the timetable and original duties for
Sunday to be the same. For each instance, we aim at covering all tasks in the (now
infeasible) original duties which are still in the plan. The result are four challenging
instances, where more than 500 tasks per day are to be covered. Furthermore, to
assure sufficient flexibility, the remaining tasks are also added to the problem. This
implies that for each of the four instances, there are 2519 possible tasks (i.e., tasks
that are not necessarily to be covered but can be used as passenger tasks) and 87514
possible connections per day.

Instance Bases Rosters Tasks To Cover Per Day Tasks Per Day Connections Per Day
1 3 75 649 2519 87514
2 3 64 539 2519 87514
3 3 81 713 2519 87514
4 3 74 640 2519 87514

Table 5.3: Description of the four re-planning instances. For each instance, the
number of involved crew bases and rosters (i.e., employees) is shown. Furthermore,
the total number of tasks and possible connections per day are shown, together with
the number of tasks per day that need to be covered.

We construct original rosters covering all of the original duties. When constructing
the rosters, we assume that each employee works both days in the weekend. The
rosters are obtained by solving a stylized rostering problem, where we minimize the
occurrence of short rest times and high workload, while assuring that the roster rules
(as discussed in Section 5.2) are satisfied. Furthermore, we assure that each roster
remains feasible whenever a duty is shifted by at most half an hour.

5.6.2 Analysis of Acceleration Strategies

The acceleration strategies discussed in Section 5.5.4 aim at (substantially) improving
the time spent in the column generation algorithm. In this section, we discuss the gain
from pre-processing the possible start tasks for each original duty, and we analyze the
effect of the three control parameters: the number of paths returned per RCSPP, the
similarity threshold, and the percentage of pricing problems solved in each iteration.

Table 5.4 shows the effect of the pre-processing discussed in Section 5.5.4, i.e., the
removal of all pricing problems corresponding to ‘redundant’ start tasks. For each
instance and each maximum allowed shift, Table 5.4 shows the average number of
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considered start tasks (averaged over all original duties), and hence RCSPPs to be
solved, without pre-processing (Original) and the average number of start tasks with
pre-processing, i.e., the average number of non-redundant start tasks (Reduced).

Instance 1 Instance 2 Instance 3 Instance 4
Shift Original Reduced Original Reduced Original Reduced Original Reduced
00:30 822.1 9.5 551.3 7.4 701.2 8.3 754.3 8.9
01:00 836.5 13.0 562.2 9.3 713.2 11.5 766.3 12.3
02:00 862.7 21.2 582.3 14.0 735.0 18.8 786.7 20.3
05:00 928.8 44.5 633.8 27.4 790.2 39.5 836.4 42.4

Table 5.4: The effect of pre-processing the possible start tasks. For each instance and
each shift, the average number of considered start tasks (averaged over the original
duties) before and after pre-processing are shown (indicated by Original and Reduced,
respectively).

The benefit of pre-processing is clearly visible from Table 5.4. For all instances and
all shift sizes, the reduction greatly reduces the number of start tasks: The reduction
ranges from about 95% to 99%. Hence, the number of pricing problems can be
reduced by more than a factor 20 if the start tasks are checked for redundancy a
prori starting the column generation procedure. For the larger shifts, the number
of original start tasks (and the number of start tasks after pre-processing) increases,
as expected. As can be seen from Table 5.4, the effectiveness of the pre-processing
slowly decreases when the shift size increases (from about 99% to 95%), which can
most likely be explained by the fact that redundancy of a start task is less likely when
many different start and end tasks (and hence start and end times) are possible.

We analyze the effect of the different acceleration strategies by considering the solu-
tion time for the linear relaxation for different parameter configurations. We consider
returning 10, 100, and 250 columns for each RCSPP, a similarity threshold of 25%,
50%, and 100% and the percentage of pricing problems to be solved in partial pricing
to be either 10%, 25%, 50%, or 100%. Furthermore, we average the results over three
runs, each using a different random seed. This leads to 432 experiments in total. For
each individual run, we limit the maximum computation time to 6 hours. Whenever
a run exceeds 6 hours, it is not taken into account when computing the average. The
results are visualized in Figure 5.8. For completeness, the full computational results
are given in Appendix 5.A.

Figure 5.8a clearly highlights the benefit of partial pricing: The shortest average
computation times are all achieved for partial pricing parameters of 10% and 25%,
and there seems to be a clear increasing relation between the percentage of pricing
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(a) Results grouped based on the percentage of pricing problems solved in partial pricing.
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Figure 5.8: For each combination of parameters, the average computation time in
minutes and the average number of iterations are shown, taken over the four shift
lengths (00:30, 01:00, 02:00, and 05:00) and three random seeds. Each subfigure
groups the results based on one of the parameters. Filled markers indicate parameters
settings for which some runs were not finished within the 6 hour time limit.
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problems solved in each iteration and the average computation time. The gain of
using task-disjointness to select columns for the master problem is also visible in
Figure 5.8b: The best performance is achieved for parameter settings using a sim-
ilarity threshold of less than 100%. Note that a threshold of 100% implies that all
generated columns are added to the master problem. As a result, the size of the
master problem grows quickly. Whenever the added columns are ‘good’, the column
generation algorithm terminates in only a few iterations. Whenever the columns are
‘bad’, however, the time spent in the master problem grows quickly. Following this
reasoning, it is no surprise that each setting for which not all runs terminated in
time, used a similarity threshold of 100%. Figure 5.8b also seems to indicate that
a threshold of 50% outperforms a threshold of 25%. In this case, a 25% threshold
might be too strict, implying that too many generated (and useful) columns will not
be added to the master problem, and hence more column generation iterations are
needed. Finally, the effect of the (maximum) number of paths returned per RCSPP,
shown in Figure 5.8c, seems to be less clear, although returning 10 or 100 paths seems
to outperform returning 250 paths. Note, however, that the effect of this parameter
is highly intertwined with the other two parameters, e.g., returning 250 paths can
perform well accompanied with a low similarity threshold, but can also perform badly
whenever accompanied with a 100% threshold and/or a partial pricing parameter of
100%.

Summarizing, the results shown in Figure 5.8 give insight in the effective usage and
possible gain of the acceleration strategies discussed in Section 5.5.4. Clearly, it is not
possible to select the ‘best’ configuration based on the experiments, as the number
of runs per configuration are limited and the running times vary substantially (see
Appendix 5.A). It does, however, give insight in ‘good’ configuration settings. In
particular, the experiments highlight the benefit of partial pricing and the focus on
task-disjoint columns, together with a suitably picked number of maximum paths to
be returned for each solved pricing problem.

5.6.3 Results Iterative Selection Procedure

In this section, we analyze the benefit of the integrated approach compared to the
day-by-day approach. As discussed in Section 5.2, the start and end of the altern-
ative rosters can shift at most half an hour, but the start and end times of duties
within the roster can be changed freely. The maximum allowed shift regulates the
latter: Allowing a shift of two hours implies that the end of the alternative duty



132 Chapter 5

on Saturday and the beginning of the alternative duty on Sunday can deviate up to
two hours from their corresponding original duty. By varying the allowed shift, the
trade-off between the number of necessary duties and the deviation from the original
rosters can be analyzed. In particular, the solution found using the day-by-day ap-
proach (corresponding to a maximum shift of half an hour) can be compared with the
solutions when larger shifts are allowed. Note that every duty should still satisfy the
general start and end time rules (i.e., duties start from 04:00 and end before 08:30
the next day), even if the maximum shift would allow otherwise.

We consider four maximum shifts for each instance: 00:30, 01:00, 02:00 and 05:00.
Note that larger shifts are also possible, yet we found that these shifts did not lead
to a decrease in the root bound (compared to 05:00), and are therefore omitted. The
problem for a maximum shift of 00:30 is equivalent to the day-by-day approach, i.e.,
the problem is decomposable per day. Hence, in this case, we solve two separate
CRSPs (instead of the ICRPP). For each instance and each shift size, we average
the results over five runs, each for a different random seed. The results are shown
in Table 5.5. The major cost components are a cost of 2100 for a scheduled duty,
a cost of 1 for an empty duty, and an additional penalty of 10000 for an additional
duty (roughly five times the cost of a normal duty), together with some (small) cost
on the connections. In other words, we avoid scheduling additional duties, and try
to assign empty duties whenever possible (as assigning an empty duty to an original
duty reduces the fixed cost for this duty from 2100 to 1) . We used a partial pricing
parameter of 10%, similarity threshold of 50%, and return 100 paths per RCSPP.

The results in Table 5.5 show a clear benefit from the integrated approach: The
solutions found using time shifts larger than 00:30 all improve on the day-by-day
approach. Furthermore, in almost all cases, the best found solution is below the root
bound for the half hour shift, i.e., the best found solutions are provably better than
the best possible solution using a day-by-day approach. The benefit of larger time
shifts is most clearly expressed in the root bounds, where often a major decrease
(often about 10%) is visible. Table 5.5 also shows, however, that the solution quality
varies over the different runs. In particular, the objective value of the found solutions
are not monotonically decreasing (or non-increasing) in the allowed shift size, some-
thing which is clearly the case would the problem have been solved to optimality.
This variability seems to be mostly contained in the number of reserve duties in the
found solution, the major driver behind the objective value. Table 5.5 does show
that the number of scheduled empty duties tend to increase with larger shift sizes,
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Shift Objective Gap (%) Best Found Root Bound Additional Empty Time (s)

1

00:30 343286.0 (4711.9) 4.3 (1.3) 340506.0 328406.0 3.2 (0.4) 6.0 (0.0) 560.0 (65.6)
01:00 328529.4 (11253.5) 5.5 (3.3) 310009.0 310009.0 2.6 (1.0) 9.4 (0.8) 1127.0 (211.8)
02:00 330233.2 (7944.9) 8.0 (2.3) 315812.0 303712.0 3.4 (0.8) 13.2 (1.2) 1969.6 (253.5)
05:00 327294.6 (4435.3) 7.8 (1.2) 323714.0 301613.0 3.4 (0.5) 14.6 (0.8) 5281.4 (464.5)

2

00:30 270574.2 (8396.6) 7.8 (2.8) 261314.0 249214.0 1.8 (0.7) 14.2 (0.4) 418.2 (51.0)
01:00 258375.4 (7032.9) 5.0 (2.6) 247115.0 245365.8 1.0 (0.6) 15.4 (0.5) 812.2 (81.8)
02:00 265437.8 (5837.7) 8.4 (2.0) 257116.0 242917.0 2.0 (0.6) 17.8 (1.2) 965.8 (145.5)
05:00 259758.2 (8472.8) 6.4 (3.2) 242917.0 242917.0 1.6 (0.8) 18.2 (0.7) 1983.0 (174.4)

3

00:30 375570.2 (8396.6) 5.6 (2.1) 366310.0 354210.0 3.8 (0.7) 10.2 (0.4) 677.4 (39.4)
01:00 360274.2 (9348.4) 8.0 (2.4) 345814.0 331086.9 3.2 (0.7) 14.2 (1.0) 2936.8 (462.7)
02:00 351197.2 (1570.7) 6.8 (0.4) 349518.0 327417.0 3.0 (0.0) 17.2 (0.7) 3070.4 (625.3)
05:00 354876.6 (8887.3) 7.7 (2.4) 339517.0 327417.0 3.2 (0.7) 16.6 (0.5) 5924.0 (303.4)

4

00:30 368077.8 (9504.9) 7.9 (2.4) 350718.0 338618.0 6.4 (0.8) 17.8 (0.4) 641.6 (55.3)
01:00 334178.4 (11083.5) 7.5 (3.0) 322918.0 308719.0 4.0 (1.1) 18.4 (1.4) 1923.8 (286.6)
02:00 337240.4 (7725.3) 9.0 (2.0) 330820.0 306620.0 4.6 (0.8) 20.4 (1.0) 2406.4 (161.9)
05:00 342080.4 (13671.5) 10.2 (3.5) 328721.0 306620.0 5.0 (1.1) 20.4 (0.5) 5018.2 (308.6)

Table 5.5: Computational results for the iterative selection procedure. For each
instance and each maximum shift, the results are averaged over five different runs,
each for a different random seed. The average found solution value, average root
gap, best found solution, and root bound are shown. Furthermore, the average
number of scheduled additional and empty duties is depicted, together with the
average computation time (in seconds). The numbers within brackets denote the
standard deviation, when applicable.

an indication that the original duties can be used more efficiently, i.e., more tasks
can be placed into a single duty.

The computation times shown in Table 5.5 are in line with the expectations: The
running time for the half hour shift (i.e., the combined time of two CRSPs) is sub-
stantially lower than the time needed for the ICRPP, since there is no synchronization
between the two days in this case. Furthermore, the running times increase in the
shift size. Note, however, that the running times for the ICRPP can be considered
reasonable: The average computation time never exceeds two hours, and in most
cases stays well below one hour.

Summarizing, the integrated approach shows clear potential over the day-by-day
approach: Allowing larger shifts leads to provably better solutions. The trade-off
between the efficiency (i.e., number of necessary duties) versus the deviation from the
original roster, however, is not clear, as the performance of the heuristic varies among
runs. From a practical point of view, a small increase in shift (e.g., one hour) seems
therefore the most profitable strategy: The solution value decreases substantially, the
running time stays within one hour, and the newly scheduled duties stay relatively
close to the original duties.
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5.7 Conclusion

In this chapter, we introduced the Integrated Crew Re-Planning Problem (ICRPP),
an integrated approach for crew re-scheduling over multiple days. In doing so, we
extend the Crew Re-Scheduling Problem (CRSP), by allowing more flexibility in
the newly assigned duties. The additional complexity of the ICRPP resides in the
problem size, as multiple days need to be re-scheduled at once, and in the fact that
the feasibility of the rosters should be taken into account explicitly.

We proposed a mathematical formulation for the ICRPP and developed a column
generation based heuristic to solve the problem. We applied the approach to four
instances, based on data from NS. We analyzed the benefit of an integrated approach
and considered the trade-off between the number of necessary duties and the deviation
from the original plan. The results show a clear gain from integrating the solution
process, yet also show that the performance of the heuristic varies among different
runs. From a practical point of view, the integrated approach accompanied with
a slightly larger flexibility in the start and end times seems most profitable: The
solution value decreases substantially, the increase in running time is limited, and
the deviation from the original schedule will be relatively small.

For further research, the (primal) performance of the column generation heuristic
seems most interesting. It is well-known that the incorporation of sophisticated local
search methods within the column generation algorithm can substantially improve
the performance. Similarly, exact branch-and-price methods could further highlight
the potential of the integrated approach. Finally, heuristic approaches that iteratively
enlarge the allowed time shift, either in an integrated or sequential way, could be an
effective way of obtaining good solutions quickly.

Appendix

5.A Overview Computational Results

Tables 5.6 and 5.7 show the computation results used for Figure 5.8. Table 5.6 shows
the overall computation time and the computation time per shift size, averaged over
three random seeds. Table 5.7 shows the average number of iterations and the average
number of iterations per shift size, averaged over three random seeds.
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Chapter 6

Summary and Conclusions

In this thesis, we considered novel optimization problems aimed at further integrating
the crew planning process at Netherlands Railways (NS), thereby setting the next
step towards decision support for integrated crew planning at NS. In Chapters 2 and
3, we focused on the combination of fairness and attractiveness, thereby extending
the ’Sharing-Sweet-and-Sour’ rules to crew rostering. In Chapter 4, we gave an in-
depth analysis of modeling techniques for crew rostering and provided insight in the
solution approaches used in Chapters 2 and 3. Finally, in Chapter 5, we proposed an
integrated approach towards crew re-planning (i.e., updating the crew schedules due
to planned maintenance), where we exploit additional freedom in the crew rosters to
efficiently re-schedule the crew after disruptions.

6.1 Main Findings

In Chapter 2, we introduced the Fairness-oriented Crew Rostering Problem (FCRP).
In this problem, fair and attractive cyclic rosters have to be constructed for groups of
employees. We analyzed a class of resource allocation problems, in which the resource
allocation is based on approximate utility functions. We considered a fairness scheme
for this class, based on the ‘Sharing-Sweet-and-Sour’ rules, and we derived a tight
upper bound on the price of fairness for this scheme, which showed that the price
of fairness is highest for instances with a large number of groups, and instances
with large differences in group sizes. Furthermore, we developed an exact Branch-
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Price-and-Cut solution method, based on a novel mathematical formulation. We
applied our solution approach to practical instances of NS, where we showed that
our integrated approach leads to a diverse set of solutions. We concluded that, in
order to generate high-quality rosters, the explicit trade-off between fairness and
attractiveness should be taken into account. In particular, the analysis of these
solutions led to two important insights. Firstly, decision makers should be careful not
to ‘over-optimize’ fairness. We observed that by loosening the fairness requirements
slightly, the attractiveness could be greatly improved, thereby showing the possible
suboptimality of a sequential approach. Secondly, we found that the decrease in
attractiveness caused by a tight fairness level is unevenly distributed over the different
roster groups.

In Chapter 3, we considered the Cyclic Crew Rostering Problem with Fairness Re-
quirements (CCRP-FR), a variant of the FCRP in which the rosters have to be con-
structed for a fixed, a priori known, set of fairness levels. We proposed a three-phase
heuristic for the CCRP-FR, which is complementary to the exact approach developed
in Chapter 2: The exact approach is able to solve reasonably sized instances to optim-
ality in a few hours, whereas the heuristic quickly finds good solutions for the larger
instances. The three-phase heuristic combines the strengths of the exact approach
with a large-scale neighborhood search algorithm. The design of the heuristic assures
that good solutions for all fairness levels are obtained quickly, and can still be further
improved if additional running time is available. We evaluated the performance of
the heuristic using real-world instances from NS, found close to optimal solutions
for most instances, and achieved a major improvement (up to 40%) over the current
(sequential) approach.

In Chapter 4, we provided an in-depth analysis of different formulations for the
CCRP, the problem underlying both the FCRP and CCRP-FR. In doing so, we
showed that the row-based formulations of Chapters 2 and 3 are the best-suited for-
mulations for the roster constraints at NS. We proposed a family of formulations,
and derived analytical results regarding the relative strength of the proposed formu-
lations. The family of formulations can be seen as a generalization of the typical
assignment and set partitioning formulations, and is motivated by the poor perform-
ance of assignment formulations on difficult instances. Furthermore, we discussed
modeling techniques and provided tightness results for an important class of roster
constraints. We adapted the branch-price-and-cut approach of Chapter 2 to the fam-
ily of formulations, and showed the benefit of a suitably picked formulation using
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practical instances from NS.

Finally, we introduced the Integrated Crew Re-Planning Problem (ICRPP) in Chapter
5: an integrated approach for crew re-scheduling over multiple days. In doing so, we
extended the Crew Re-Scheduling Problem (CRSP), by allowing more flexibility in
the newly assigned duties. The additional complexity of the ICRPP resides in the
problem size, as multiple days need to be re-scheduled at once, and in the fact that
the feasibility of the rosters should be taken into account explicitly. We proposed a
heuristic diving framework based on column generation, where alternative rosters are
selected in a sequential fashion. We applied the solution method to four instances,
based on real-world data from NS. We analyzed the benefit of an integrated approach
and considered the trade-off between the number of necessary duties and the devi-
ation from the original plan. The results showed a clear gain from integrating the
solution process, yet also showed that the performance of the heuristic varies among
different runs.

6.2 Practical Implications and Recommendations

The research presented in this thesis has been successfully applied at NS. Around
March 2018, crew base Amersfoort lacked the necessary experience to construct the
rosters for the coming year, due to the retirement of senior employees responsible for
constructing the rosters. As a result, the rostering process took much longer and the
quality of the final rosters was worse, implying both higher operational costs and less
satisfied personnel. These circumstances triggered a sense of urgency to automate
and optimize the rostering process, and hence the department Process quality and
Innovation of NS started the development of a decision support tool for crew rostering
(in collaboration with crew base Amersfoort). The algorithm underlying the decision
support tool builds upon the exact approach developed in Chapter 2, and assured
that the tool provided good operational rosters before the planners would start the
rostering process.

The decision support tool led to a win-win situation for both the crew and the
operator. By implementing the ‘Sharing-Sweet-and-Sour’ rules on the crew base
level, we were able to construct high-quality rosters, while simultaneously taking the
allocation of work into account. As with duty scheduling, this would be too complex
to incorporate in the manual process. The planning tool not only reduced the time
needed for the rostering process by a factor three, from three weeks to a single week,
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but also produced rosters which were considered to be of very high quality, according
to both planners and managers. The key to success was a combination of state-
of-the-art Operations Research techniques with a highly participative approach, in
which the feedback of the planners was constantly used to improve the algorithm.
The rosters constructed using the tool are currently used in practice, and NS is
considering to standardize and develop the planning tool for all crew bases in the
Netherlands.

Based on the research in this thesis and the success of the pilot study, we recommend
to incorporate the solution methods presented in this thesis in full-fledged decision
support tools. Such tools should provide quick and transparent feedback to the user
(e.g., a roster committee), and, to assure the former, should most likely be based on
heuristics. The subjectivity of fairness and attractiveness implies that the tool should
be easily adaptable to the users’ need, without requiring too much knowledge about
the underlying algorithm. The exact design of such a tool should be determined in
extensive collaboration with the end users. The exact solution methods developed in
this thesis should be applied on a ‘tactical’ level: They should provide insights in the
effect of different roster rules and fairness metrics, fuel the discussion on a suitable
trade-off between fairness and attractiveness, and allow for a rigorous performance
evaluation of heuristics.

6.3 Further Research

The problems in this thesis pose interesting challenges and directions for further re-
search. The integration of fairness in crew rostering, for example, leads to a challen-
ging optimization problem. Although we developed exact and heuristic methods for
the integrated problem, other solution strategies could possibly lead to improvements.
In particular, non-trivial incorporation of the balancing aspects of fairness into a
branch-and-bound framework, using e.g., constraint propagation or fixing strategies
with provable bounds, could lead to more efficient algorithms.

The general modeling framework presented in Chapter 4 could be used to develop,
and identify, efficient algorithms for classes of crew rostering problems, leading to a
unified framework of exact solution methods for crew rostering in public transport-
ation.

Finally, the integrated crew re-planning problem seems well-suited for a ‘decompose
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and synchronize’ approach in which the re-scheduling problem is decomposed per
day and ‘synchronization’ constraints (e.g., Benders cuts) assure the feasibility of
the rosters. An advantage of such an approach is that it closely resembles practice,
where problems are often solved in parallel, yet it should be evaluated whether such
an approach is competitive with an integrated approach.





References

Abbink, E. (2014). “Crew Management in Passenger Rail Transport”. PhD thesis.
Erasmus Research Institute of Management (ERIM).

Abbink, E., M. Fischetti, L. Kroon, G. Timmer and M. Vromans (2005). “Reinventing
crew scheduling at Netherlands Railways”. Interfaces 35.5, pp. 393–401.

Abbink, E., D. Huisman and L. Kroon (2018). “Railway Crew Management”. Hand-
book of Optimization in the Railway Industry. Ed. by R. Borndörfer, T. Klug, L.
Lamorgese, C. Mannino, M. Reuther and T. Schlechte. Cham: Springer Interna-
tional Publishing, pp. 243–264.

Ahuja, R.K., Ö. Ergun, J.B. Orlin and A.P. Punnen (2002). “A survey of very
large-scale neighborhood search techniques”. Discrete Applied Mathematics 123.1-
3, pp. 75–102.

Barnhart, C., D. Bertsimas, C. Caramanis and D. Fearing (2012). “Equitable and
efficient coordination in traffic flow management”. Transportation Science 46.2,
pp. 262–280.

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H. Vance
(1998). “Branch-and-price: Column generation for solving huge integer programs”.
Operations Research 46.3, pp. 316–329.

Beasley, J.E. and N. Christofides (1989). “An algorithm for the resource constrained
shortest path problem”. Networks 19.4, pp. 379–394.

Bertsimas, D., V.F. Farias and N. Trichakis (2011). “The price of fairness”.Operations
Research 59.1, pp. 17–31.

Bertsimas, D., V.F. Farias and N. Trichakis (2012). “On the efficiency-fairness trade-
off”. Management Science 58.12, pp. 2234–2250.

Bertsimas, D., V.F. Farias and N. Trichakis (2013). “Fairness, efficiency, and flex-
ibility in organ allocation for kidney transplantation”. Operations Research 61.1,
pp. 73–87.

143



144

Bertsimas, D. and S. Gupta (2015). “Fairness and collaboration in network air traffic
flow management: an optimization approach”. Transportation Science 50.1, pp. 57–
76.

Borndörfer, R., A. Langenhan, A. Löbel, C. Schulz and S. Weider (2013). “Duty
scheduling templates”. Public Transport 5.1-2, pp. 41–51.

Borndörfer, R., M. Reuther, T. Schlechte, C. Schulz, E. Swarat and S. Weider (2015).
“Duty Rostering in Public Transport-Facing Preferences, Fairness, and Fatigue”.
CASPT.

Borndörfer, R., C. Schulz, S. Seidl and S. Weider (2017). “Integration of duty schedul-
ing and rostering to increase driver satisfaction”. Public Transport 9.1, pp. 177–
191.

Breugem, T., R. Borndörfer, T. Schlechte and C. Schulz (2019). A Three-Phase Heur-
istic for Cyclic Crew Rostering with Fairness Requirements. eng. Tech. rep. 19-43.
Takustr. 7, 14195 Berlin: ZIB.

Breugem, T., T. Dollevoet and D. Huisman (2017). Is Equality always desirable?
Analyzing the Trade-Off between Fairness and Attractiveness in Crew Rostering.
Tech. rep. EI2017-30. Econometric Institute.

Breugem, T., T. Dollevoet and D. Huisman (2018). Analyzing a Family of Formula-
tions for Cyclic Crew Rostering. Tech. rep. EI2018-35. Econometric Institute.

Burke, E.K., P. De Causmaecker, G. Vanden Berghe and H. Van Landeghem (2004).
“The state of the art of nurse rostering”. Journal of Scheduling 7.6, pp. 441–499.

Cacchiani, V., D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf and J. Wagen-
aar (2014). “An overview of recovery models and algorithms for real-time railway
rescheduling”. Transportation Research Part B: Methodological 63, pp. 15–37.

Caprara, A., M. Fischetti, P. Toth, D. Vigo and P.L. Guida (1997). “Algorithms for
railway crew management”. Mathematical Programming 79.1-3, pp. 125–141.

Caprara, A., L. Kroon, M. Monaci, M. Peeters and P. Toth (2007). “Passenger railway
optimization”. Handbooks in Operations Research and Management Science 14,
pp. 129–187.

Clausen, J., A. Larsen, J. Larsen and N.J. Rezanova (2010). “Disruption management
in the airline industry-Concepts, models and methods”. Computers & Operations
Research 37.5, pp. 809–821.

Colquitt, J.A., D.E. Conlon, M.J. Wesson, C.O. Porter and K. Yee Ng (2001). “Justice
at the Millennium: A Meta-Analytic Review of 25 Years of Organizational Justice
Research”. Journal of Applied Psychology 86.3, pp. 425–445.



145

Colquitt, J.A., B.A. Scott, J.B. Rodell, D.M. Long, C.P. Zapata, D.E. Conlon and
M.J. Wesson (2013). “Justice at the millennium, a decade later: a meta-analytic test
of social exchange and affect-based perspectives.” Journal of Applied Psychology
98.2, pp. 199–236.

Cordeau, J.F., G. Stojković, F. Soumis and J. Desrosiers (2001). “Benders decom-
posiion for simultaneous aircraft routing and crew scheduling”. Transportation sci-
ence 35.4, pp. 375–388.

Dantzig, G.B. (1954). “Letter to the editor-A comment on Edie’s “Traffic delays at
toll booths””. Journal of the Operations Research Society of America 2.3, pp. 339–
341.

De Causmaecker, P. and G. Vanden Berghe (2011). “A categorisation of nurse ros-
tering problems”. Journal of Scheduling 14.1, pp. 3–16.

Desaulniers, G., J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis (1997).
“Daily aircraft routing and scheduling”. Management Science 43.6, pp. 841–855.

Desaulniers, G., J. Desrosiers and M.M. Solomon (2002). “Accelerating strategies in
column generation methods for vehicle routing and crew scheduling problems”.
Essays and surveys in metaheuristics. Springer, pp. 309–324.

Desaulniers, G., J. Desrosiers and M.M. Solomon (2006). Column Generation. Vol. 5.
Springer Science & Business Media.

Desrochers, M. and F. Soumis (1989). “A column generation approach to the urban
transit crew scheduling problem”. Transportation Science 23.1, pp. 1–13.

Desrosiers, J. and M.E. Lübbecke (2011). “Branch-Price-and-Cut Algorithms”. Wiley
Encyclopedia of Operations Research and Management Science.

Dumitrescu, I. and N. Boland (2003). “Improved preprocessing, labeling and scal-
ing algorithms for the weight-constrained shortest path problem”. Networks 42.3,
pp. 135–153.

Ehrgott, M. (2000). Multicriteria optimization. Lecture Notes in Economics and
Mathematical Systems. Springer-Verlag.

Ernst, A.T., H. Jiang, M. Krishnamoorthy, H. Nott and D. Sier (2001). “An in-
tegrated optimization model for train crew management”. Annals of Operations
Research 108.1-4, pp. 211–224.

Ernst, A.T., H. Jiang, M. Krishnamoorthy and D. Sier (2004). “Staff scheduling and
rostering: A review of applications, methods and models”. European Journal of
Operational Research 153.1, pp. 3–27.



146

Freling, R., R.M. Lentink and A.P.M. Wagelmans (2004). “A decision support system
for crew planning in passenger transportation using a flexible branch-and-price
algorithm”. Annals of Operations Research 127.1-4, pp. 203–222.

Greenberg, J. (1990). “Organizational justice: Yesterday, today, and tomorrow”.
Journal of Management 16.2, pp. 399–432.

Grötschel, M., R. Borndörfer and A. Löbel (2003). “Duty scheduling in public transit”.
Mathematics-Key Technology for the Future. Springer, pp. 653–674.

Hart, P.E., N.J. Nilsson and B. Raphael (1968). “A formal basis for the heuristic
determination of minimum cost paths”. IEEE transactions on Systems Science
and Cybernetics 4.2, pp. 100–107.

Hartog, A., D. Huisman, E. Abbink and L. Kroon (2009). “Decision support for crew
rostering at NS”. Public Transport 1.2, pp. 121–133.

Heil, J., K. Hoffmann and U. Buscher (2019). “Railway crew scheduling: Models,
methods and applications”. European Journal of Operational Research.

Hoffman, K.L. and M. Padberg (1993). “Solving airline crew scheduling problems by
branch-and-cut”. Management Science 39.6, pp. 657–682.

Huisman, D. (2007). “A column generation approach for the rail crew re-scheduling
problem”. European Journal of Operational Research 180.1, pp. 163–173.

Huisman, D., R. Freling and A.P.M. Wagelmans (2005a). “Multiple-depot integrated
vehicle and crew scheduling”. Transportation Science 39.4, pp. 491–502.

Huisman, D., L.G. Kroon, R.M. Lentink and M.J.C.M. Vromans (2005b). “Opera-
tions Research in Passenger Railway Transportation”. Statistica Neerlandica 59.4,
pp. 467–497.

Irnich, S. and G. Desaulniers (2005). “Shortest path problems with resource con-
straints”. Column Generation. Springer, pp. 33–65.

Johnson, D.S. and L.A. McGeoch (1997). “The traveling salesman problem: A case
study in local optimization”. Local search in combinatorial optimization 1.1, pp. 215–
310.

Joncour, C., S. Michel, R. Sadykov, D. Sverdlov and F. Vanderbeck (2010). “Column
generation based primal heuristics”. Electronic Notes in Discrete Mathematics 36,
pp. 695–702.

Kalai, E. and M. Smorodinsky (1975). “Other solutions to Nash’s bargaining prob-
lem”. Econometrica: Journal of the Econometric Society, pp. 513–518.

Kohl, N. and S.E. Karisch (2004). “Airline crew rostering: Problem types, modeling,
and optimization”. Annals of Operations Research 127.1-4, pp. 223–257.



147

Kroon, L. and M. Fischetti (2001). “Crew scheduling for Netherlands railways destin-
ation: customer”. Computer-aided scheduling of public transport. Springer, pp. 181–
201.

Kroon, L., D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maróti, A. Schrijver,
A. Steenbeek and R. Ybema (2009). “The New Dutch Timetable: The OR Revolu-
tion ”. Interfaces 39.1, pp. 6–17.

Lavoie, S., M. Minoux and E. Odier (1988). “A new approach for crew pairing prob-
lems by column generation with an application to air transportation”. European
Journal of Operational Research 35.1, pp. 45–58.
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Nederlandse samenvatting
(Summary in Dutch)

Er zullen binnen Nederland weinig bedrijven zijn die meer invloed hebben op het
nationale debat dan de Nederlandse Spoorwegen (NS). En dit is ook niet zo gek:
Nederland reist volop met de trein en ongeveer 90% van de treinreizigers reist met
NS. Zoals besproken in hoofdstuk 1, kunnen als gevolg van dit veelvuldig gebruik de
sociale kosten van verstoringen, werkzaamheden en stakingen van NS-personeel oplo-
pen tot in de honderden miljoenen euro’s. Personeelsplanning speelt een belangrijke
rol in het beperken van deze kosten: Bij verstoringen en werkzaamheden dient NS
op een zo slim mogelijke manier het geplande werk van het personeel aan te passen
om zoveel mogelijk treinen te kunnen blijven rijden, terwijl stakingen voortkomen
uit onvrede onder het personeel en verholpen kunnen worden door hun wensen mee
te nemen in het personeelsplanningsproces. NS heeft de afgelopen jaren dan ook veel
tijd en energie gestoken in de ontwikkeling van beslissingsondersteunende software
voor personeelsplanning. Desondanks blijft er altijd ruimte voor verbetering.

In dit proefschrift zetten we de volgende stap in beslissingsondersteuning voor per-
soneelsplanning bij NS. Hierbij kijken we naar personeelsplanning op de middellange
termijn, waarbij het doel is diensten (werkdagen) en roosters (toewijzingen van werk-
dagen aan personeel) te maken zodat uiteindelijk al het geplande werk toegewezen is
aan een machinist of conducteur. Hierbij nemen we drie criteria in acht: eerlijkheid,
kwaliteit en effectiviteit. De effectiviteit van de roosters heeft betrekking op het aan-
tal personeelsleden dat nodig is om het plan uit te voeren. Eerlijkheid, daarentegen,
heeft betrekking op de verdeling van het werk. Bij NS wordt eerlijkheid uitgedrukt
aan de hand van ‘Lusten-en-Lasten-Delen’, een lijst van regels die ervoor zorgt dat
de ‘lusten’ en ‘lasten’ van het werk (zoals bijvoorbeeld leuke ritten of lange diensten)
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evenredig verdeeld worden over de personeelsleden. De kwaliteit, ten slotte, relateert
aan aspecten zoals de rusttijd tussen diensten en werkvariatie binnen het rooster.
Hierin dient een veelvoud aan complexe regels, afkomstig uit de cao, in acht genomen
te worden, wat ervoor zorgt dat het maken van een kwalitatief hoogstaand rooster
een complexe aangelegenheid is.

In de verschillende hoofdstukken bekijken we nieuwe optimalisatievraagstukken en
bijbehorende oplosmethoden die verscheidene aspecten van het personeelsplannings-
proces verder integreren. In hoofdstukken 2 en 3 kijken we naar de combinatie van
eerlijkheid en kwaliteit bij het maken van roosters, stellen we onszelf de vraag “is
eerlijkheid altijd gewenst?” en laten we zien dat het antwoord hierop afhangt van
de expliciete afweging tussen eerlijkheid en kwaliteit. In hoofdstuk 5 combineren we
het aanpassen van de diensten en roosters om zo op een slimmere manier te kunnen
reageren wanneer de dienstregeling aangepast moet worden door geplande werkzaam-
heden aan het spoor. De gepresenteerde optimalisatieproblemen en wiskundige for-
muleringen zijn zorgvuldig onderbouwd met theoretische resultaten. In hoofdstuk
2, bijvoorbeeld, laten we zien dat ‘Lusten-en-Lasten-Delen’ optimale eigenschappen
heeft onder redelijke aannames en laten we ook het theoretisch hoogst mogelijke ver-
lies van kwaliteit zien door het gebruik van deze regels. In hoofdstuk 4 duiken we in
de wiskundige modellen voor personeelsroostering en laten we wiskundig zien welke
modellen sterk zijn en hoe deze te kiezen. Uiteindelijk passen we alle oplosmethoden
toe op data van NS. De oplosmethoden ontwikkeld in de eerste drie hoofdstukken
worden ieder toegepast op data verkregen van standplaats Utrecht, en de oplosmeth-
ode gepresenteerd in hoofdstuk 5 wordt geëvalueerd op basis van daadwerkelijke
buitendienststellingen rondom station Leiden Centraal. Door de praktische data van
NS te gebruiken om de oplosmethoden te evalueren kan een beter beeld verkregen
worden van de meerwaarde van de verschillende methoden.

Het onderzoek in deze thesis heeft reeds geleid tot nieuwe beslissingsondersteuning
bij NS. Begin 2018 leidde een vraag van standplaats Amersfoort ertoe dat NS be-
gon met het ontwikkelen van roosteringssoftware. De standplaats kampte met een
tekort aan ervaren roostermakers, waardoor het maken van de roosters niet alleen
langer duurde maar ook roosters van mindere kwaliteit opleverde. Door middel van
een goede en snelle samenwerking tussen centrale planners en de roostercommissie
van standplaats Amersfoort, waarin de feedback van de planners van standplaats
Amersfoort voortdurend gebruikt werd om de oplosmethode te verbeteren, werd er
een tool ontwikkeld op basis van de oplosmethode gepresenteerd in hoofdstuk 2. Met
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behulp van de uiteindelijke tool werd het roosterproces flink verkort, van drie weken
naar één week, en werden kwalitatief hoogstaande roosters in de ogen van zowel
planners als managers verkregen. De succesvolle ontwikkeling van de roostering-
stool laat de potentie zien van verdere beslissingsondersteuning bij NS. Dit is echter
niet altijd eenvoudig. Het ontwikkelen van een succesvolle tool vereist dat men het
‘echte’ onderliggende probleem goed begrijpt en ook een goede samenwerking met
de eindgebruiker is onmisbaar om het eindproduct te laten slagen. Voor ons als on-
derzoekers betekent dit dat we verder moeten kijken dan enkel ‘de wiskunde achter
het probleem’ en dit is zeker geen gemakkelijke klus.
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