
SCHEDULING TRAINEES AT A HOSPITAL DEPARTMENT
USING A BRANCH-AND-PRICE APPROACH

JEROEN BELIEN & ERIK DEMEULEMEESTER

OR 0403

Abstract

Scheduling trainees at a hospital
department using a branch-and-price

approach

Jeroen Belien!, Erik Demeulemeester l

1 Department of Applied Economics, K. U.Leuven, Belgimn
e-mail: <fn·stname>.<familyname>@econ.kuleuven.ac.be

1

Scheduling trainees (graduate students) is a complicated problem that has to be solved
frequently in many hospital departments. We will describe a trainee scheduling problem
encountered in practice (at the ophthalmology department of the university hospital
Gasthuisberg, Leuven). In this problem a department has a certain number of trainees at its
disposal, which assist specialists in their activities (surgery, consultation, etc.). For each
trainee one has to schedule the activities in which (s)he will assist during a celiain time
horizon, usually one year. Typically, these kind of scheduling problems are characterized
by both hard and soft constraints. The hard constraints consist of both work covering
constraints and formation requirements, whereas the soft constraints include trainees'
preferences and setup restrictions. In this paper we will describe an exact branch-and-price
method to solve the problem to optimality.

Key words: Staff scheduling, branch-and-price, health care

Introduction

The problem of scheduling medical trainees to perform a number of activities over a given
time horizon is addressed. Recently, a very good bibliographic survey on medical staff
rostering problems has appeared (Cheang et al (2002)). Several studies in the literature
have utilized mathematical progralmning techniques to assist in finding efficient staff
schedules (see e.g. Warner (1976) or Beaumont (1997)). The main problem of these
integer programs lies in the large computation times needed for many practical instances,
even to obtain just a feasible solution. To overcome this problem both heuristic
approaches and exact approaches that exploit specific features of the problem structure
have been developed and described for plenty of staff scheduling applications. The most
important heuristic approaches include simulated annealing (e.g. Brusco and Jacobs
(1993)), tabu search (e.g. Burke et al. (1998)) and genetic algorithms (e.g. Aickelin and
Dowsland (2000)). Regarding exact approaches we can distinguish between constraint
programming, branch-and-bound (see e.g. Bosi and Milano (2001)) and branch-and-price
approaches. Branch-and-price, a technique in which bounds are calculated by solving the
LP relaxation of the problem using a column generation scheme, has gained considerable
attention during the last decade.

2

Most of the encountered scheduling problems studied in the literature are shOli-term shift
scheduling problems involving some kind of set covering or set partitioning formulation
(e.g. Mason and Smith (1998». Altematively, 0-1 multi-commodity flow formulations are
proposed (e.g. Cappanera and Gallo (2001». To the best of our knowledge all branch-and
price approaches for staff scheduling problems decompose on staff members, i.e. generate
columns per staff member (see e.g. Mehrotra et al (2000». In contrast, we study a long
tenn scheduling problem for which we propose a decomposition scheme on the tasks,
further referred to as activities, instead of decomposing on the employees. The main
advantage of this decomposition strategy is that it results in smaller network problems
while pricing out new columns. This approach enables us to find optimal solutions for
real-life data sets. The problem will be written as a 0-1 multi-commodity flow problem
with side-constraints, where each activity corresponds to a commodity.

The paper is organized as follows. Firstly, the problem will be stated and written as an
integer program. Secondly, to solve the problem to optimality a branch-and-bound
algorithm will be elaborated. Next, starting from the drawbacks of the branch-and-bound
scheme, a branch-and-price algorithm will be introduced. Thirdly, several features of the
branch-and-price scheme are discussed followed by an extensive overview of
computational results. Finally, the paper ends with a conclusion and some ideas for future
research.

1. Problem definition

As the problem originates from a practical context, the exact statement of the problem is
not straightforward. The main reason is the presence of both hard and soft constraints.
Hard constraints are constraints that cannot be violated, whereas soft constraints are
constraints that must be met 'as much as possible'. Firstly, the problem will be described
in an infonnal way by means of an example. Secondly, an integer linear programming
(ILP) formulation of the problem will be given.

Consider a hospital department in which trainees have to perfonn a number of activities
over a certain time horizon. Since the trainees have different experience levels, they can be
divided in a number of experience groups. Most of the activities include assisting a
specialist in a very specific field of the health care. Firstly, for each activity it is known
how many trainees of each experience group are required in each period. Secondly, for
each trainee it is known which activities (s)he has to perform in order to meet formation
objectives. Thirdly, for each trainee it is known for each time period whether or not (s)he
is available to be scheduled. Finally, in order to maximize both the efficiency and the
quality of the service provided, it is not allowed that activities are split up per trainee. The
efficiency decreases with each new activity start of a trainee, because it takes (again) some
time to master the skills required for the activity. Moreover, patients have a smaller chance
to be treated by one and the same trainee, resulting in less efficient care. In the ideal case
each trainee starts each activity only once and perfonns it for a minimum number of
consecutive periods. The last two constraints are soft constraints meaning that they can be
violated at a certain 'cost'. Since a split-up in activities is considered to be worse than the
violation of a non-availability constraint, we will concentrate on the problem solution in

3

which we only relax the non-availability constraints. Therefore, the trainees have to
quantify their preferences for having weeks-off. This happens by dividing a number of
points per trainee over the scheduling horizon. The higher the number of points a ce11ain
period receives, the stronger the trainee feels about not being scheduled during that period.

Let us illustrate this problem with a simple example (see Figure 1). Suppose we have a
problem with three activities, four trainees and ten periods. Furthennore, assume that all
assistants have the same level of experience. Finally, suppose that each assistant has to
perfonn each activity and this between a minimum of two and maximum of three
consecutive periods. This example is graphically represented in Figure 1. The columns
represent the trainees and the rows represent the periods. The periods of non-availability
for each trainee are marked in grey and the respective 'costs' are indicated. Note that each
trainee has divided in total five points over the ten periods. It is realistic that these points
are concentrated in a small number of periods.

tr 1 tr 2 tr 3 tr 4 min. nr. consecutive periods:
tr 1 tr 2 tr 3 tr 4

)1;;4 act 1 2 2 2 2
~; •. '<¢;!'lS act 2 2 2 2 2

,.J'~ \i act 3 2 2 2 2

;Jel2 .) max. nr. consecutive periods:
,rfl\'1.;1~ k tr 1 tr 2 tr 3 tr 4

..;i'a· ':f act 1 3 3 3 3
··l~14t)~ act 2 3 3 3 3

!.'>,{~ ".;l!: act 3 3 3 3 3

Figure 1: Example 1

A possible solution for this problem is represented in figure 2. In this solution, trainees 1
and 3 are both scheduled during a period in which they actually prefer not to be scheduled,
respectively period 7 and period 9, making up for a total cost of 1 + 1 = 2. In practice, this
means that either the trainee has to give up hislher preference for having a period off or the
trainee has to be replaced by someone else in this period, resulting in a decrease of the
quality of care. As a final remark, observe that in this solution during four time periods no
activity is scheduled for particular trainees. During these periods, the trainees will perform
activities for which no specific skills are required and for which consequently both
experience level and minimal formation requirements are less important. An example of
such an activity is consultation. A two-phase approach is thus being used to solve this
problem. In the first phase the difficult (hard constrained) activities are scheduled. In the
second phase the partial schedule is completed with the easy activities. The scheduling of
the easy activities is straightforward and can easily be done manually. Therefore, we will
only concentrate on the scheduling of the difficult activities in this paper.

4

tr 1 tr 2 tr 3 tr 4 min. nr. consecutive periods:
act 1 act 2 act 3 tr 1 tr 2 tr 3 tr 4

IIH4t act 1 act 2 act 3 act 1 2 2 2 2
act 3 act 1 4 \ act 2 act 2 2 2 2 2
act 3 1 act 1 act 2 act 3 2 2 2 2

act 3 act 1 act 2
act 2 act 3 act 1 .~t.2 j' max. nr. consecutive periods:
qct~'; act 3 act 1 tr 1 tr 2 tr 3 tr 4
act 2 i~if act 3 act 1 act 1 3 3 3 3
act 1 act 2 iaqf;3·,' act 2 3 3 3 3
act 1 act 2 act 3 H. 3 act 3 3 3 3 3

Figure 2: A solution for example 1

The problem can be mathematically stated as follows. Consider the following binary
decision variables:

Xijk = 1 if during period i trainee} is scheduled to perfonn activity k;
= 0 otherwise.

Yijk = 1 if trainee} starts activity k during period i;
= 0 otherwise.

Let Pij be the penalty cost charged for assigning trainee} to period i. It must be clear that Pij

equals 0 if trainee} is available during period i. Let 0k and Ujk be the respective minimum
and maximum number of periods assistant} has to perform activity k. Finally, Let Sk
represent the set of trainees that will perform activity k in the given time horizon (i.e. all
trainees) for which Ujk> 0). The integer linear programming model (ILP) is given below.

n 111

MINLLPuxUk
;=1)=1

S.T.

1. A trainee can perform no more than one activity per period:
p

[1.1]

LXUk .::;; 1 V i = 1, .. ,n and V} = 1, .. ,m [1.2]
k=1

2. At each period every activity has to be performed by exactly one trainee:

V i = 1, .. ,n and V k = 1, .. ,p [1.3]

3. Each trainee has to perform each activity between a minimum and maximum
number of periods:

n

LXUk ~ i)k V} = 1, .. ,m and V k = 1, .. ,p [1.4]
i=1

11

LXijk ~ U jk Vi = 1, .. ,m and Vk= 1, .. ,p
i=l

4. Each trainee starts each activity only once:

Yljk = X 1jk Vi = 1, .. ,m and V k = 1, .. ,p

Y ijk ~ Xijk - XCi-1)jk Vi = 2, .. , n, Vi = 1, .. ,m and Vk= 1, .. ,p

Vi = 1, .. ,m and Vk= 1, .. ,p
i=l

5. Integrality constraints:

Xijk'Yijk E {O,l} V i= 1, .. ,n, Vi= 1, .. ,m and Vk= 1, .. ,p

5

[1.5]

[1.6]

[1.7]

[1.8]

[1.9]

For a problem with n time periods, m trainees and p activities, this notation requires 2nmp
binary decision variables, a number that is growing rapidly. Even very simple problems
require long solution times using this fonnulation and a cOlmnercial ILP solver.
Obviously, better formulations and thus smaller solution times could be found by
introducing other (integer) decision variables. It seems, however, that a specifically
developed solution procedure like branch-and-bound is more suitable to solve this
problem.
A last remark concerns activities that require more than one trainee during each period.
We replace each of these activities by two or more m1ificial activities dividing the trainees
in the original set Sk over these new activities. Consider for instance an activity for which
each time period two trainees are required and twelve trainees have to perform the activity.
Then, this activity will be replaced by two new activities each of which has to be
performed by six trainees. This assumption facilitates the construction of an enumeration
scheme at the cost of possibly excluding an optimal solution, since we only consider one
particular division of trainees over the newly introduced activities.
In the remainder of this paper an effort will be made to solve the problem to optimality. To
prove optimality all possible solutions have to be enumerated (either explicitly or
implicitly). Firstly, a simple branch-and-bound scheme will be elaborated. The difficulties
encountered in this approach will serve as a link towards a branch-and-price approach.

2. A branch-and-bound approach

The most intuitive way of enumerating all solutions is to run through a triple loop. In the
first loop all activities are enumerated. The second loop runs through all trainees that have
to perform the activity under consideration. The third loop walks from the minimum
number of consecutive periods till the maximum number of consecutive periods for the
activity and trainee under consideration. Each time a non-available period is assigned, its
cost is added to the total cost of the schedule. Before stm1ing the enumeration the activities
k and the trainees within each activity (j E Sk) are sorted. Tests indicated that the best
results are obtained when the activities are sorted in descending order of (average)
difference between maximum and minimum number of consecutive periods of the trainees
performing the activity. The trainees are sorted within each activity in descending order of
occupation. By occupation we refer to the number of activities a trainee has to perform. In
the pseudo-code below cost(a,j,tlh) represents the cost of scheduling trainee i to perform

6

activity a from period t1 until period t2 (periods t1 and t2 are included) and tc is the total
cost of a (patiial) schedule.

SORTO;

DO RECURSION(1,l);

RECURSION(a,t)
{

}

calculate_lower_bound;
IF (lower_bound ~ best_solution_found) RETURN;
ELSE IF (a = p+ 1)
{

}

register schedule;
best_solution_found = tc;
a = a-I;

ELSE IF (a ::Sp)
{

}

IF (t=n)
{

DO RECURSION(a+l,I);
}
ELSE IF (t < n)
{

}

FOR EACH trainee j E Sa
{

}

FOR (d = lja; d::s Uja; d = d+ 1)
{

}

IF (trainee j is not yet scheduled between periods t and t+d) AND
(SUM(~'a Ii' E Sa \j) ::s n-t-d) AND (SUM(uj'a Ii' E Sa \j) ~ n-t-d)
{

}

Schedule trainee j to perfonn activity a from period t until period
t+d;
tc = tc + cost(aJ,t,t+d);
Sa= Sa \ {j};
DO RECURSION(a, t+d);
Undo scheduling of activity a from period t until period t+d;
Sa= Sa U {j};
tc = tc - cost(aJ,t,t+d);

7

This algorithm explicitly enumerates all possible schedules. It should be clear that this
number grows exponentially with the number of activities, the number of trainees per
activity and the difference between the minimum and maximum number of consecutive
periods required per activity per trainee. Obviously, the construction of many schedules
could be interrupted at an early stage if one could prove that completing the CUlTent
(patiial) schedule never leads to a better schedule than the best schedule already found. To
that purpose one should be able to calculate a strong (high) lower bound for the total cost
of each (still to complete) partial schedule. The construction of patiial schedules could
also be terminated because of symmetry with an earlier generated schedule.

This branch-and-bound enumerating scheme has two disadvantages. The main problem is
the calculation of strong lower bounds. Our lower bound calculation works as follows. For
each period a minimum cost assignment problem is generated, in which the remaining
activities are assigned to the available trainees. Each activity-trainee assigmnent cost
equals the minimum cost to schedule the activity such that it 'covers' the time period for
the considered trainee. A time period is covered by an activity for a certain trainee if the
trainee is scheduled to perform the activity in the given time period. To find the minimum
cost for each activity-trainee assignment, only the activity schedule at the minimum
number of consecutive periods has to be considered, since longer activity schedules can
only increase this cost. The construction of such a minimum cost assigmnent problem for
period 1 is represented in figure 3.

tr 1 tr 2 tr 3 tr 4 min. nr. consecutive periods:
act 1 tr 1 tr 2 tr 3 tr 4

1:1;,4&,,,,, act 1 act 1 2 2 2 2
act 1 iJ"~tiii' act 2 2 2 2 2

ik,:;Yl:~;:,! .• ·'· act 1 act 3 2 2 2 2
act 1
act 1 "':~~{~;, max. nr. consecutive periods:

.:;\~1·, ..••.. '. act 1 tr 1 tr 2 tr 3 tr 4

4' I act 1 act 1 3 3 3 3
act 1 l' 1. act 2 3 3 3 3
act 1 "3. \1.. act 3 3 3 3 3

Figure 3: Assignment problem for period 1 in the partial schedule for example 1 represented above

8

In this figure the numbers next to the arcs represent the assigmnent costs. For instance, to
cover period 1 for trainee 1 with activity 2, a cost of 4 has to be incurred. All the trainee 2
assignment costs are 00, since it is impossible to schedule an activity to cover period 1 for
trainee 2. Such an assigmnent problem can be solved very efficiently with a branch-and
bound algorithm. For each activity, the available trainees are sorted in increasing order of
assignment costs. Then, the activities are subsequently considered and the first still
available trainee is assigned. After each trainee assigmnent, the trainee has to be excluded
from being assigned to other activities. A lower bound for the assigmnent problem can be
calculated by summing up all costs of the first still available trainee for each activity. The
optimal solution value for the assigmnent problem in figure 3 is of course O. This is also
the case for all assignment problems until period 7. The optimal costs for the assigmnent
problems in period 8, 9 and 10 are equal to 1. If, however, for a certain time period an
increase in the lower bound is obtained, then the algorithm cannot simply continue with
solving the assignment problem of the next period, because the scheduling of an activity to
cover the current period could also cover some later periods. Since a lower bound is
searched, a best-case scenario has to be assumed. This means that the highest possible
number of next periods have to be omitted. This is the maximum number of consecutive
periods over all still to schedule activity-trainee combinations. In the example above, the
lower bound can thus only be increased with 1, obtained from solving the assigmnent
problem in period 8. Summarizing, given a partial schedule, a lower bound is found by
solving at most n assignment problems. The bound relaxation lies in two facts. Firstly, it is
assumed that each activity can be scheduled for each trainee during its minimum number
of consecutive periods, which obviously cannot be the case for all trainees in a feasible
solution. Secondly, if during a certain time period a cost is inevitable, then it is assumed
that the cost is incurred by scheduling an activity, such that a maximum number of next
periods is also covered by this activity. The second relaxation could be tightened by doing
the lower bound calculation a second time, but now starting at the end of the scheduling
horizon and working backwards. A second way to tighten the second relaxation is to
assume that each trainee has to perform each activity for only one period. In this way,
assignment problems for next periods will never be omitted. This happens at the expense
of a decrease in the assigmnent costs and thus an increase of the gap from the first
relaxation. Obviously, the highest of the three bounds provides the best lower bound. This
lower bound calculation is fast, but does not provide good lower bounds. Moreover, the
quality of the bounds is highly dependent on the difference between the minimum and
maximum number of consecutive periods (first relaxation) and the relative magnitude of
the maximum number of consecutive periods (second relaxation).
A second problem with the branch-and-bound scheme is the way of traversing the search
tree. The tree is searched in a depth-first way, which entails that, if accidentally a bad
decision is made near the root of the tree, detection of the optimum could happen at a very
late stadium in the search. A best-first search would solve this matter. However, since the
number of active branches can be very large, this would happen at the cost of an important
. .
mcrease m memory usage.
Since both problems originate from the fact that optimality has to be proven, a heuristic
search procedure seems to be the only alternative. A branch-and-price approach, however,
provides an answer to both difficulties, while still maintaining the ability to prove the
optimality of solutions.

9

3. A branch-and-price approach

3.1 An alternative formulation

The integer program of [1.1]-[1.9] could be formulated in a totally different way. Observe
that the problem can be seen as the scheduling of p activity patterns. An activity pattern
includes the scheduling of all trainees having to perform the activity. In figure 3 such a
pattern is represented for activity 1. For reasons that will become clear in a moment, an
activity pattern will be called a column in the rest of this paper. Now, we can introduce
new binary decision variables that explicitly incorporate these columns. Let binary
decision variable Zkt be defined as follows:

Zkt = 1, if column t was chosen for activity k;
= 0, otherwise.

Let Ckt be the total cost of column t for activity k and NCk the total number of different
columns for activity k. Let aijkt equal 1 if trainee j is scheduled during period i in column t
for activity k. The model can then be formulated as follows:

P NCk

MINLL CklZkl
k=1 1=1

S.T.
P NCk

L Laijklzkl ::;; 1
k=1 1=1

NCk

LZkl = 1
1=1

[1.10]

V i = 1, .. ,n and Vj = 1, .. ,m [1.11]

Vk= 1, .. ,p [1.12]

Vk= 1, .. ,p and Vt= 1, .. ,NCk [1.13]

The objective function is again the minimization of costs, but now expressed in terms of
the new Zkt variables. Constraint [1.11] states that each trainee can perform no more than
one activity at the same time. Constraint [1.12] implies that exactly one column has to be
selected for each activity. Remark that aUkt is merely a coefficient in the constraint matrix
of the new model, whereas Xijk was a decision variable in the old model. Tests revealed
that the LP relaxation of this fonllulation provides a much stronger lower bound than that
from the original fonllulation of [1.1]-[1.9]. The main drawback, however, is that this new
model can have far more variables than can be reasonably attacked directly. Indeed, the
number of columns increases dramatically with growing problem dimensions. It is
however not necessary to enumerate all possible columns to solve the LP to optimality.
The LP can be solved by using only a subset of the columns and can generate more
columns as needed. This way of LP optimizing is called column generation. We iteratively
add new columns and solve the restricted model until no more columns price out, i.e. no
more columns with negative reduced cost can be found. Let Aij represent the dual prices of

10

restrictions [1.11] and let Yk represent the dual prices of restrictions [1.12]. The reduced
cost of a new column t for activity k is given by:

Yk + tt(Pij +A;j~Ukl
;=1 j=1

17 m

= Yk + Ckl + LLAuaijk'
;=1 j=1

[1.14]

In this expression Yk is non-positive and can be seen as the 'discount' for introducing a
new column for activity k. This reward has to outperfonll the 'price' of the new column
which is given by the remaining part in [1.14]. This price consists of two non-negative
parts: the real price Ckt and the price charged for 'consuming' timetable cells (iJ) expressed
by the dual prices Au. Consequently, the LP is solved to optimality when no more columns
can be found with negative reduced cost. The search is started by solving the master
problem, stated in [1.10]-[1.12]1 for a limited number of columns. These initial columns
are originated from a heuristic solution procedure. The master returns an objective value
(which is an upper bound for the LP solution) and dual prices Au and Yk. Au serves as a
direct input for the objective function of the pricing problem (stated below), whereas Yk is
needed to check the negativity of the reduced cost of a newly found column for activity k.
Then, to check the optimality of the LP solution, a subproblem, called the pricing problem,
is solved for each activity k. Let bijkt equal 1 if in column t activity k starts during period i
for trainee}. The tth pricing problem for activity k is given by:

;=1 j=1

n

LaUkl 2: ljk
;=1

n

LaUk' S u jk
;=1

bljkl = aljkl

buk, 2: aijkl - aU-I)jkl

;=1

'\I} = l,oo,m

'\I} = l,oo,m

'\I} = l,oo,m

'\I i = 2,oo,n and '\I} = l,oo,m

'\I} = l,oo,m

'\Ii = l,oo,m and '\I} = l,oo,m

[1.15]

[1.16]

[1.17]

[1.18]

[1.19]

[1.20]

[1.21]

In this formulation the objective function [1.15] minimizes the reduced cost of the new
column. Constraints [1.16] to [1.21] imply the restrictions each column has to satisfy.

1 Remark that the integrality constraints are omitted

11

Observe that in the pricing problem aijk! is a decision variable instead of a coefficient.
Columns with a negative reduced cost are added to the master problem and the master is
again optimized. This process continues until no columns price out any more. As will be
shown in a moment, the pricing problem can be solved very efficiently by means of a
dynamic programming fOlmulation.

When an integer problem is solved by an enumeration scheme in which the lower bound is
calculated by a LP relaxation and the LP is solved through column generation, one speaks
of a branch-and-price approach. One could ask why we didn't apply the original
formulation [1.1]-[1.8] as a lower bound calculation in the enumeration scheme described
above. This would avoid the need of column generation, but entails two important
drawbacks. The first problem is that the number of branches (recursive calls) would still
be large and thus the lower bound calculation, which is still computationally intensive, has
to be done many times. The second and most important problem is the weakness of the
lower bounds. This observation is completely in line with Barnhmi et al. (1998) when they
state that the LP relaxation frequently can be tightened by a reformulation that involves a
huge number of variables.

In the next sections the branch-and-price algorithm will be elaborated. Firstly, an overview
of the algorithm is given. Secondly, the pricing problem is discussed. Thirdly, four
possible branching strategies are elaborated. Finally, some improvements to speed up the
computation time will be studied and their impOliance will be discussed on the basis of
test results.

3.2 Braneh-and-priee algorithm overview

In Figure 4 an overview of the branch-and-price algorithm is given. The algorithm starts
with a heuristic search for an initial solution. This heuristic successively generates activity
patterns (columns) without violating the no-overlap constraint. If the algorithm succeeds
in finding a feasible solution, this solution is saved and an initial upper bound is registered.
The number of trials is adjustable. The master is initialized with both the p columns
making up the best found solution and p supercolumns (one per activity). Supercolumns
have a very high objective coefficient elk and all aijkt equal to O. Consequently,
supercolumns are not likely to enter the basis but are needed to ensure feasibility of the
master at each stage of the branching scheme. Next, the algoritlun enters the LP
optimization loop. Every iteration of this loop consists of solving a number of pricing
problems and adding columns to the master LP. When no more columns price out, the LP
is optimized and the solution value is registered as the lower bound. If the solution is non
fractional, the solution is feasible and thus optimal. In the other case, branching has to be
applied in order to find an integer solution. The algoritlun again ends up in the LP
optimization loop to determine a lower bound. Whenever this lower bound exceeds an
already found upper bound, the loop is terminated and the search tree is backtracked. This
process continues until an integer solution is found. The solution is saved and the solution
value is registered as the new upper bound. The algoritlun ends if the upper bound equals
the lower bound or when backtracking leads back to the root node.

Apply heuristic to find
initial solution.
Register UB.

Branch (partition
solution space into
d isjointsu bsets).

NO

o

Initiate master with p columns
from initial solution and p
supercolumns.

12

r------------- ---

YES

YES

. Solve Jor each activity
a pricing problem;
if reduced cost < 0;
add neW column to .

NO

I

, , ,

+ LP optimization
\ loop ,

, ,

, ,

\
\

-+
I

I

*First time: register LB

Figure 4: Branch-and-price algorithm overview

0 .. 1 1 2
.. j) j] 1 1 1

4 2 .1fi 4
2 ,,:\t1.~;. 0 0
0 IF: U 4 0
1 5 3 ,,;/·1

YES

Figure 5: Pricing problem (left: optimal solution; right: 2nd best solution)

13

3.3 The pricing problem

The pricing problem can be described as a restricted shortest path problem. Given is a
matrix of costs. This matrix has to be traversed from top to bottom in the cheapest possible
way, while visiting each column exactly once between a minimum and maximum number
of rows. Figure 5 represents the best and one of the several alternative second best
solutions for an instance of a pricing problem for an activity of four trainees that all have
to be scheduled between one and two periods in a time horizon of six periods. The pricing
problem is solved with a forward dynamic programming approach. Dynamic programming
(Bellman (1957); Dreyfus and Law (1977)) is a decomposition technique that first
decomposes the problem into a nested family of subproblems. A possible way to divide
the pricing problem in a set of nested subproblems is as follows. Let T denote a set of
trainees and tl ETa trainee that is scheduled as the last one. The subproblem can be
described as finding the cheapest way to reach a period i:S n with all trainees in T
scheduled and trainee tl scheduled as the last one. Let cost(il Tltl) represent the cost of the
solution to this problem. If Cij is the cost to assign period i to trainee j and we search a
column for activity k, then cost(il Tltl) can be formulated recursively as follows:

[1.22]

The different values for cost(il TI tl) can be calculated working forward from the beginning
until period n. All values are initialized with +00 except for each trainee 0 E Sk and for
each i = Ilk .,ulk :

J J

i

cost(il~j ~tj) = I>b,l j
[1.23]

b=l

Once all calculations are done, the cheapest way to reach period n can be found easily.
Firstly, one searches the trainee that is to be scheduled last by solving the following
expreSSIOn:

MIN {cost(nlS kit,)} [1.24]
I,ESk

Assume trainee tm is found with a total column cost of c* = cost(nISkltm). Then, the
schedule is constructed backward step-by-step by searching for which trainee assigmnent
the following expression holds:

d

c* = cost(n - diS k\{t m}lt i) + 2>cn-b),lm
[1.25]

b=l

This expression is checked for each trainee 0 E Sk\{tm} and for each d = Ilk •• ulk • If a
J J

match is encountered, the trainee is scheduled and both the current period and the set of
already scheduled trainees are updated. This process continues until the last trainee is

14

scheduled at the beginning of the scheduling horizon. Note that the major part of the
required computation time goes to the calculations of all cost values. Once the cost values
obtained, the schedule can be constructed in a relatively limited number of steps. The
number of cost calculations obviously grows exponentially with the number of trainees
that have to be scheduled. For realistic data (number of trainees) this number is not too
large which results in acceptable solution times «Is). We tried to extend the dynamic
program with a lower bound calculation giving rise to an A * algorithm. Preliminary
results, however, indicated that the time spent in the lower bound calculation exceeds the
time gained from node pruning. If larger networks (i.e. activities with more than ten
trainees) are considered, a lower bound calculation is however indispensable.
An important advantage of the pure dynamic programming approach is that it can be
easily extended to find the bth best solution instead of only the optimal solution. This
property is very useful in a branch-and-price environment with branching on the column
variables Zkt (see 3.5.1). Our algorithm to find the bth best column reflects the same idea as
the algorithm proposed by Jimenez and Marzal (1999) for computing the K shortest paths
in a network. To find the second best solution one first searches for the optimal solution as
described above. Then, starting at the beginning of the time horizon all cost values being
part of the found column are adapted to represent the second cheapest cost values. During
this cost recalculation phase ISkl cost recalculations are made. For the example of figure 5
the recalculations are as follows. cost(21 { I} 11) with initial value zero is now updated to 00,

since there is no other possibility to reach period 2 with trainee 1 scheduled and trainee 1
scheduled as the last one. cost(41 { 1,3 } 13) with initial value one is now updated to 00, since
the only way to reach period 4 with trainees 1 and 3 scheduled and trainee 3 scheduled as
the last one is to schedule trainee 1 during periods 1 and 2 and trainee 3 during periods 3
and 4. The value of cost(51 {I ,2,3} 12) changes from one to two, since the cheapest way to
reach period 5 with trainees 1, 2 and 3 scheduled and 2 as the last one is now by
scheduling trainee 1 during periods 1 and 2, trainee 3 during period 3 and trainee 2 during
periods 4 and 5. Finally, cost(61{1,2,3,4}14) is updated fi'om two to three as the cheapest
way to reach period 6 with all trainees scheduled and trainee 4 scheduled as the last one is
now represented at the right of figure 5. Note that the same cost can also be obtained when
scheduling trainee 2 only during period 4 and trainee 4 during periods 5 and 6. When the
I Ski cost values are updated, the backward construction algorithm described above will
now generate the second best column.
The old cost values (and the partial paths represented by these values), however, have to
be saved in a list, because they could be part of the second best column and thus could be
necessary during backward construction. This will be the case if the second best column
has the same 'head' as the optimal column but a different 'tail', which is the case for the
example in Figure 5. When during backward construction no trainee assignment can be
found that matches [1.25], the list has to be scanned. In this case the list always contains a
matching cost value. Note that once a cost value is retrieved in the list, the remaining
trainee assignments can also be found in the list; they occupy the immediately preceding
positions. Also during the cost recalculation phase, one should consider the list values as
possible starting points when searching for the second best cost value to reach a certain
node in the network. It should be clear that the extra computation time for finding the bth

best solution only requires 2*b* L(u jk -ljk)computation steps and b*ISkl write
jESk

15

instructions, which is negligible compared to the number of computation steps needed to
calculate all initial cost values.

3.4 Column addition

An impOliant characteristic of the branch-and-price algorithm is the number of columns
that are added per master LP optimization. Three strategies can be distinguished. Firstly,
we could add the most negative reduced cost column for each activity. Secondly, we could
add only one column for all activities, i.e. the column with the overall most negative
reduced cost. Finally, we could add the most negative reduced cost column for activity k,
re-optimize the master and search for a new column for activity k+ 1. Remark that in this
last strategy it is no longer possible to prune nodes based on Lagrange relaxation (see
section 3.6.2), since the reduced costs of all activities, needed to calculate the lower
bound, are no longer available. Obviously, for all three strategies, columns with non
negative reduced cost are never added.

3.5 Branching

The LP relaxation of the master problem may not have an integral optimal solution.
Branching refers to the process of patiitioning the solution space to eliminate the current
fractional solution. After branching it may be the case that there exists a column that
would price out favorably, but is not present in the column pool. Applying standard
branch-and-bound procedures to the master problem over the existing columns is unlikely
to find an optimal, or good, or even feasible solution. To illustrate this point, a branch-and
bound algorithm was written to find the best possible integral solution given the column
pool after LP optimization. When the algorithm was run on the problem set, it never
succeeded in finding a feasible solution, because the columns could not be combined into
an integer solution.
Four binary branching schemes were implemented and extensively tested: branching on
the column variables, branching on timetable cells, branching on immediate precedence
relations and branching on normal precedence relations.

3.5.1 Branching on column variables

In this branching scheme branching happens by fixing the largest fractional variable Zkt

either to one (left branch) or to zero (right branch). It is however well known that 'direct'
partitioning of the solution space, i.e. by fixing (or bounding) individual column variables,
is not appropriate because of two reasons. Firstly, it could require significant alterations to
the pricing problem and secondly, it yields an unbalanced branch-and-bound tree
(Vanderbeck (2000)). The first problem is encountered along a branch, where a variable
has been set to zero. Recall that Zkt represents a patiicular schedule for activity k. Thus Zkt =

o means that this schedule is excluded. However, it is possible (and quite likely) that the
next time the pricing problem is solved for the kth activity the optimal solution is precisely
the one represented by Zkt. In that case it would be necessary to find the second best
solution. At depth I in the branch-and-bound tree we may need to find the lth best solution.
We already showed that the dynamic programming approach for the pricing problem (see

16

section 3.3) can be easily extended to handle this need and this at a negligible
computational effort. The unbalanced branch-and-bound tree remains a problem, but also
involves an advantage as faster detection of (sub)optimal integral solutions may be
expected.

3.5.2 Branching on timetable cells

Since timetable cells are represented by the original variables, this branching scheme will
also be referred to as branching on the original variables. When columns can be associated
with paths in a network, a possible branching scheme consists of fixing single components
of the arc incidence vector (Vanderbeck (2000)). If this branching principle is applied to
our problem, it results in branching on the original Xijk variables. The next Xijk to branch on
is found by selecting the largest fractional column k' and searching for this column the
first timetable cell (i,j) for which there exists another fractional column that includes the
same time table cell (i,j). Xijk' is set to one in the left branch and to zero in the right branch.
Altematively, this branching rule can be seen as Ryan-Foster branching. Ryan-Foster
branching, proposed by Ryan and Foster (1981) for set partitioning problems, identifies
two rows, say rand s, covered by different fractional columns. In the left branch rows r
and s have to be covered by the same column and in the right branch by different columns.
Observe that in our application row r corresponds to one of the capacity constraints [1.11]
and s corresponds to one of the convexity constraints [1.12]. The main advantage of this
branching scheme is that it does not destroy the structure of the pricing problem, because
the resulting modifications simply entail amending the cost of the corresponding arc in the
underlying network. If Xijk is set to zero, Cij is set to +ro in the pricing problem of activity
k. Else if Xijk is set to one, Cij is set to +ro for all trainees j E Sk with J*J'. A second
advantage is the fact that this branching scheme yields a balanced branch-and-bound tree.
The main drawbacks of this branching scheme are the large number of arcs (Xijk'S) to
choose from and the fact that a branching constraint that involves a single arc might not be
very restrictive.

3.5.3 Branching on immediate precedence relations

In this branching scheme branching happens on immediate precedence relations within the
trainees performing an activity. An immediate precedence relation for an activity k
between two trainees, say j and j', implies that trainee j has to perform activity k either
immediately before trainee j'. In the twin node trainee j cannot be scheduled immediately
before trainee J'. Upon detection of a fractional solution, the algorithm searches for two
fractional columns for the same activity with different orderings in trainee assignments
over the scheduling horizon. Then, an ilmnediate precedence relation, which is satisfied by
only one of both fractional columns, is implied. The main drawback of this branching
scheme is that it is not guaranteed that it drives the solution completely to integrality. In
other words, this branching scheme is not complete. Theoretically, it is possible that an
optimal fractional solution is found in which all fractional columns for each activity have
the same trainee ordering. If this would be the case, the algorithm rounds all fractional
values to 1 and verifies whether or not the resulting solution contains an overlap. In the
case of an overlap, only a lower bound instead of a feasible solution could be provided.

17

Preliminary tests, however, indicated that this scenario occurs rarely. Similar to the case in
which branching occurs on the timetable cells, application of this branching scheme
preserves the structure of the pricing problem. An immediate precedence relation can be
implied easily by simply amending the costs of celiain arcs in the dynamic programming
network. It is not immediately clear whether or not this branching scheme leads to more
balanced branch-and-bound trees than the trees yielded when branching on the timetable
cells. However, this branching scheme celiainiy leads to more balanced branch-and-bound
trees than in the case of branching on the column variables.

3.5.4 Branching on normal precedence relations

This branching scheme is equal to the previous branching scheme, except that branching
now occurs on nOlmal precedence relations instead of immediate precedence relations. A
normal precedence relation for an activity k between two trainees, say j and j', simply
states that trainee j has to perform activity k either before or after trainee j'. Obviously,
this branching scheme also preserves the pricing problem structure and is also incomplete.
Compared to the other three branching schemes, this branching scheme clearly yields the
most balanced branch-and-bound trees. The restrictions implied in the left branches are
similar to the ones implied in the right branches, i.e. if trainee j cannot perform activity k
before trainee j', it means that trainee j' has to perform activity k before trainee j?

3.6 Speed-up techniques

Once the column generator and branching scheme(s) are developed, we obtain a working
branch-and-price algorithm. The performance of the algorithm is, however, strongly
dependent on a number of speed-up techniques. The most important amongst these are
discussed below.

3.6.1 Initial heuristic

The column pool is initialized with the columns making up an initial solution. The
heuristic works as follows. Firstly, the activities k are sorted such that the most constrained
activities are considered first. Then, the first activity is scheduled optimally using the
dynamic program of the pricing algorithm. All occupied timetable cells receive large costs
(+ 1 000) in order to exclude overlaps when scheduling the next activities. In addition, the
timetable cell costs just before and after the already scheduled activity are slightly
decreased (-0.05), making them more attractive for scheduling the following activities.
This prevents as much as possible the appearance of "holes", i.e. blocks of timetable cells
that are too small to fit an activity in. Then, the next activity is considered taking into
account the new timetable costs. This process continues until either all activities are
scheduled or an activity cannot be scheduled any more due to an overlap. If all activities
are scheduled, the total cost is compared with an earlier found solution and if lower, the
upper bound is decreased. The changes to the timetable cell costs are made undone and the
process restarts with the first activity. In order to avoid generation of the same columns as

2 Observe that this is not the case when branching occurs on timetable cells or on immediate precedence
relations.

18

much as possible, the costs of the occupied timetable cells in the previous iteration are
increased slightly (+0.01) before starting a new iteration. The heuristic ends if it fails to
improve the current best solution in a predetermined number of iterations.

3.6.2 Lower bound calculation

Our column generation scheme exhibits the tailing-off effect, i.e. requiring a large number
of iterations to prove LP optimality. Instead of solving the linear program to optimality,
i.e. generating columns as long as profitable columns exist, we could end the column
generation phase based on bound comparisons. It is well known that Lagrangian relaxation
can complement column generation in that it can be used in every iteration of the column
generation scheme to compute a lower bound to the original problem with little additional
computational effort (see e.g. Van den Akker and Hoogeveen (2000); Vanderbeck and
Wolsey (1996)). If this lower bound exceeds an already found upper bound, the column
generation phase can end without any risk of missing the optimum. Using the information
from solving the reduced master and the information provided by solving a pricing
problem for each activity k, it can be shown (see e.g. Hans, 2001) that a lower bound is
given by:

[1.26]

where r5 is the objective value of the reduced master, RCk is the reduced cost of a newly
found column for activity k and fA is a binary variable equal to 1 when RCk is non-negative
and set to zero, otherwise. This lower bound is referred to as the Lagrangian lower bound,
since it can be shown that it equals the bound obtained by Lagrange relaxation. In addition
with an upper bound it can also be used to fix variables. When the reduced cost of a
variable Zkt is larger than UB-LB, we know from linear programming theory that Zkt = 0 in
any solution with a value less than UB. Hence, that variable can be fixed in the current
node and in all nodes below that node. Analogously, when the reduced cost is smaller than
LB-UB then Zkt = 1 in any solution with a value less than UB.

3.6.3 Initial network restriction

Recall that, to price out a new column, a shOliest path network problem is solved by
applying a forward dynamic program approach. For problems in which these networks are
very large, the pricing problems are the bottleneck of the algorithm. We distinguish two
ways of decreasing the required solution times of the pricing problems. Firstly, one could
initially restrict these networks. Concretely, arcs with positive non-availability costs are
excluded during the early phase of each LP optimization loop. When no more columns can
be found with negative reduced cost, these arcs are restored. The benefits are two-fold.
Firstly, the required time of the pricing algorithm dramatically decreases during the early
phase of column generation. Secondly, from the start on, the algorithm is forced to price
out qualitatively good columns.

19

3.6.4 Dynamic programming with upper bound pruning

A second way of reducing the computational effort to price out a new column was already
mentioned in section 3.3 and involves an extension of the forward dynamic recursion with
bound pruning. Whenever the forward dynamic program reaches a leaf node in the
network, the cost value of the path can be compared with the best found solution and, if
lower, registered as the new upper bound. This enables us to stop the construction of
partial paths as soon as the associated cost value exceeds the upper bound. Remark that the
cost value of a partial network cannot be decreased when extending the path, since all non
availability costs and dual prices of the non-overlap constraints are non-negative. As also
mentioned in section 3.3, the partial cost value could be increased with a lower bound
calculation for scheduling the remaining trainees. Preliminary tests, however, showed that
this didn't tum out to be beneficial. Finally, remark that bound pruning is not possible if it
could be required to find the 2nd, 3rd, .•. , kth best path, since these could be pruned. Hence,
when branching takes place on the column variables, a pure dynamic program is applied to
price out new columns.

3.6.5 Master LP optimization

An important computational issue relates to the optimization of the master linear program.
When new columns are added and the master is re-optimized, the (dual) simplex algorithm
could be started either from an empty base or from the optimal base of the previous
iteration. Tests revealed that the LP is optimized fastest when started from an advanced
base.

3.6.6 Cost varying horizon

To limit the solution space as much as possible, we implemented the idea of a cost varying
horizon. This idea is equivalent with a time varying horizon in exact algorithms for the
Resource Constrained Project Scheduling Problem (Demeulemeester and Herroelen,
1992).
When implementing a cost varying horizon, one could distinguish between a maximum
and minimum bounding search strategy. Both strategies are different with respect to the
value of the upper bound. In minimum bounding search the upper bound reflects the best
found solution. When it is important to prove the optimality of a solution, a maximum
bounding approach can be more effective than a minimum one. In maximum bounding
search the upper bound is set to the first integer equal to or higher than the LP lower
bound. If the algorithm succeeds in finding a solution with a total cost equal to this upper
bound, we found an optimal solution. Otherwise, both the upper and lower bound are
increased with one, the column pool is re-initiated with the columns making up the LP
optimum and the algorithm tries to find a solution equal to this new upper bound. This
approach corresponds to best-first search in branch-and-bound, as the first solution
obtained is also the optimal solution. Tests indicated that maximum bounding search
slightly decreases computation times at the expense of not providing (sub)optimal
solutions during search.

20

3.6.7 Column elimination

The idea of column elimination is inherent in all branching schemes except for the
column-based branching scheme. To fully exploit the column-based branching strategy,
the branching scheme was extended in that it also inherits the idea of column elimination.
The solution time of the master LP grows strongly with the number of COlUlIDlS in the
master, even when their associate colUlllil variables Zkt cannot be positive in a feasible
solution. After branching, an impOliant number of already generated columns could be
excluded from the master. If a particular column, say Zk't', is set to one, all other columns
Zk'i with t-:f:.t' are excluded implicitly because of the convexity constraint [1.12] in the
master. To speed up the computation time of the master, these colUlllils can be excluded
explicitly from the master (by eliminating them). Similarly, all colUlllils having an overlap
with colUlllil Zk't' can be excluded as well, due to the non-overlap constraints [1.11].
Observe that eliminated columns have to be saved, since they have to be reentered upon
backtracking. Obviously, if column Zk't' is set to zero, no colUlllils but Zk'I' can be left out.
Column elimination is inherent when branching occurs on the original variables. Consider
the situation in which Xi'j'k' is set to one. All colUlllils Zk'i not including timetable cell (i'J')
(i.e. having ai)'k't = 0) will be left out. Similarly, all colUlllils Zkt with k-:f:.k' including
timetable cell (i'J') (i.e. having ai'j'kt = 1) will be removed as well. If Xi'j'k' is set to zero,
the reverse applies. ColUlllil elimination is also inherent in the immediate and nOlmal
precedence relation branching schemes. Columns that do not satisfy the introduced
precedence relations will be eliminated explicitly out of the master.
The same reasoning leads to the artificial adaptation of dual prices when branching occurs
on the colUlllil variables. During preliminary tests of the algorithm, colUlllils were
generated that share timetable cells with already branched-to-one columns. Obviously,
these colUlllils can never enter the basis. The algorithm was adapted in that the dual prices
of all timetable cells making up branched-to-one columns are increased with an artificially
high value. Observe again that these artificial cost adaptations are inherent in the case
branching is done on timetable cells and on immediate or normal precedence relations.

3.6.8 Subgradient optimization

Instead of solving the master problem with a standard simplex algorithm, subgradient
optimization applied on the Lagrangian relaxation of the master could be used to find the
dual prices. Excellent expositions on how to exploit Lagrangian relaxation and subgradient
optimization techniques in combination with colUlllil generation can be found in Peeters
(2002) and Jans (2002). If we relax the capacity constraints [1.11], dualizing them into the
objective function [1.10], we obtain the Lagrange problem of [1.10]-[1. 13]:

NCk

I>kl = 1
1=1

Zkl E {0,1}

Vk= l, .. ,p

Vk= 1, .. ,pand Vt= 1, .. ,NCk

[1.27]

[1.28]

[1.29]

21

We have implemented a standard sub gradient optimization scheme for setting the dual
prices AU. At step r+ 1, the dual prices are updated as follows:

A~+1 = max{O'A~ - (j(I- f IaijkIZ~IJ}
k=1 1=1

V i = 1, .. ,n and Vj = 1, .. ,m [1.30]

OJ(UB - Z LAG (A~))
with cr = --~--------''------'-~

t.~(l- t. %o,'"z;, J
[1.31]

In this expression (j can be seen as a step size. Z LAG (A~) is the optimal objective value

[1.27] of the Lagrange dual problem for a given set of dual prices A~ at step rand

Z~I indicates the corresponding optimal value of column t for activity k. The optimal

solution to the Lagrange dual problem [1.27]-[1.29] is always integral and easily found by
setting for each activity the Zkt with the lowest cost equal to 1 and all other Zkt'S equal to o.
UB is the best known integer solution. co is initially set to 1.5 and is halved each time the
lower bound has failed to increase for a fixed number of iterations. After a predetermined
number of iterations we stop the updating and we obtain the approximate dual prices Au. In
order to determine whether or not a new column prices out and thus should be added to the
master, one has to calculate the reduced cost of the new column. The reduced cost could
be calculated using the approximating dual prices given in [1.28] or the optimal dual
prices obtained from the last solved master. If the approximating dual prices are used, one
still needs to calculate the dual price Yk of the convexity constraint [1.12]. It can be shown
that the dual price of the convexity constraint for activity k is approximated by the cost of
the optimal column, as defined in the first term of [1.27].

4 Computational results

4.1 Test set

In order to study the computational performance of the algorithm, a test set was generated.
Firstly, the six factors that have an influence on the complexity of the problem were
identified. These are the number of periods, the number of trainees, the number of
activities, for each activity the number of trainees performing the activity, the difference
between the maximum and minimum number of consecutive weeks fmiher refelTed to as
the range and finally the magnitude of the costs. Consider the following settings for these
six factors:

22

Table I: Design of experiment

Factor Nr. Nr.
Nr. activities Nr. trainees per Magnitude

setting periods trainees
(% of nr. activity (% of nr. Range of costs
trainees) trainees)

1 18 6 60 60 1

2 35 8 75 75 2 U(1,5)

3 52 10 90 90 3
4 12 random(75) 4
5 random(2)
6 random(3)

Observe that the number of activities and the number of trainees having to perfonn an
activity is expressed as a percentage of the number of trainees. For instance, a test problem
with 10 trainees and 90% activities includes 9 activities. Note also that the number of
activities cannot exceed the number of trainees, because otherwise not all activities can be
perfonned. The ratio nr. activities over nr. trainees represents the total schedule occupation
percentage. Recall that the remaining part of the schedule has to be filled up with activities
for which the consecutiveness is not important. random(x) indicates that the factor setting
is uniformly distributed with an average of x. For instance, the range setting random(2)
means that the ranges are generated randomly in such a way that the average amounts to 2.
If the magnitude of the costs is 1, it means that all non-available time periods, which are
generated randomly for each trainee, have a cost of 1. Altematively, these cost values are
drawn from a unifonn distribution between 1 and 5.
According to these factor settings, problem instances were generated with randomness on
both the activity-trainee assignments and the non-available periods. In order to exclude
non-feasible and trivial problems as much as possible, the trainee occupations were kept
more or less at the same level. Without loss of generality all non-availability costs are
assumed to be integral. The total number of periods containing positive costs equals 3, 4 or
5 for problems with respectively 18, 35 and 52 periods. If we generate three problem
instances per factor setting, we obtain 3*(3*4*3*4*6*2) = 5184 problem instances. In
order to decrease this number, we decided to subsequently fix the first three factors and
the next two factors (the fourth and fifth factor) at an intermediate level, making us end up
with 3*(4*6*2)+ 3*(3*4*3*2) = 360 problem instances.

4.2 Proven optimal solutions

In order to find (proven) optimal solutions, all above discussed speed-up techniques tumed
out to be useful to reduce computation times, except, somewhat surprisingly, for
subgradient optimization (see section 3.6.7). In this part we present optimal solutions and
computation times of all problems instances. All our experiments were performed on a 2.4
GHz Pentium 4 PC with the Windows XP operating system. The algorithm was written in
MS Visual C++.NET and linked with the CPLEX 8.1 optimization library. All speed-up
techniques described above were incorporated in the algorithm, except for subgradient
optimization (see Section 3.6.7), since it could not improve solution times. We apply
maximum bounding search on all 360 problem instances and distinguish between the four
branching strategies. All computation times are given in seconds. The results are

23

represented in Appendix 1. The first COIU1llil contains the name of the problem instance.
All problems are named "DOEabcdeCg", which can be interpreted as follows:

• a is the factor setting for the number of periods,
• b is the factor setting for the number of trainees,
• c is the factor setting for the number of activities,
• d is the factor setting for the number of trainees for each activity,
• e is the factor setting for the range,
• f is the factor setting for the magnitude of costs,
• g is a replication number.

The second COIU1llil contains the optimal LP objective value at the root node (before
branching), the heuristic solution, and the optimal integer solution value (after branching).
The next COIU1llilS contain respectively the required CPU time (in seconds), the number of
generated columns and the number of nodes in the branch-and-bound tree for each
branching scheme. The time limit for each problem was 600 seconds. If the optimum was
not found (or proven) within this time limit, this is indicated with a ">600". Recall that,
since a maximum bounding search is applied, no solution is found when the algorithm
fails to find the optimum. If the precedence-related branching schemes could not branch
until a non-fractional solution, this is indicated with "Fract" equal to 1.

4.3 Discussion of results

In this section, we summarize the most important findings from our computational
experiments.
In table II the number of problems that could be solved to optimality within 1 0 minutes is
given for each branching scheme together with the average computation times. The second
row (*) contains the average times for only those problems for which all four branching
schemes succeeded in finding (and proving) the optimal solution within 600 seconds. In
the third row (**) average times are calculated based on all problems. For these
calculations, 600 seconds were assigned to those problems for which no optimal solution
was found within 600 seconds.

Table [I: Comparison of branching schemes

Branch on: COIU1llil timetable cells immediate prec. normal prec.
variables relations relations

Nr. solved to 311 319 281 281
optimality

Average compo 14.5 19.0 22.9 42.1
time* (s)

Average compo 112.0 114.1 161.1 171.5
time** (s)

24

A first impOliant observation is that the two precedence-related branching schemes are
clearly outperformed by the first two branching schemes. A second observation is that,
although branching on timetable cells yields more problems solved to optimality, the
required computation times are generally higher than those for the column-based
branching scheme. This is a clear indication of the appearance of unbalanced branch-and
bound trees when branching occurs on the column variables.

In the following graphs the results are visualized per factor combination. The first four
graphs (Figure 6) summarize the results as a function of varying number of trainees for
each activity and range. The number of periods, trainees and activities are fixed at an
intennediate level and the non-availability costs are always 1. The columns represent
average computation times over three test instances per factor setting for each branching
scheme. The first column indicates branching on the column variables, the second
branching on the timetable cells and the third and the fourth branching on ilmnediate and
normal precedence relations.

Nr. trainees for each activity = 60 %

2,5 .,-----------------,

2 ----- -----------.

~ 1,5 +---------~I ---. -- -

!o:h-·
o JIll IIII : I

N

Range

N
:0-
c:
co oc

Nr. trainees for each activity = 90 %

200 -,----------------,
180 ---- --------,,------1

160 -- .-- ----- ----- ----- ---

~ 140 ------ ------------11---1

E 120+-----------~~--~
~ 100 ~----------~~--~H
ci. 80
E
a

U 60
40

20
0

JL
I JI
rill rllil rI rI

.,.
~ S
"0 "0
C C

'" '" 0: 0:

Range

Nr. trainees for each activity = 75 %

250 T·············· .. ········-·-········-·················· .. -.-............................. -...... -......................... ,

200-~----

~
'" 150 ----------
~

----11-

~ 100 +------------111-
a

U

50+~----~--~r~~--~--~r---

Range

Nr. trainees for each activity = random(75%)

~
"0
C

'" 0:

700 ,-----------------,

600

~ 500

i 400

ci. 300
E
a
U 200

100

-------- -----

N

Range

------.---

N
:0
c

'" 0:

Figure 6: Compo times for nr. periods = 35, nr. trainees = 8, nr. activities = 6 and magnitude of costs =
1

25

The conclusions with respect to these graphs are three-fold. Firstly, the computation times
grow exponentially with the number of trainees per activity. The results in graph 4 suggest
that randomness on this factor complicates the problem only if the range is small.
Secondly, the influence of the range on the complexity of the problem is far less
important. The reason is that the number of possible columns for each activity grows
exponentially with the number of trainees (all possible permutations) whereas this number
grows only linearly with the range. All four graphs indicate that randomness on the range
tends to complicate the problem. Thirdly, branching on the columns and timetable cells
seem to outperform the two precedence-related branching schemes.

The next set of four graphs (Figure 7) show the same information with the only difference
that the magnitude of the costs are now randomly distributed between 1 and 5.

Nr. trainees for each activity = 60 %

::J=_W

.§ 20 --- -.... -- ------U

~ 25 t-= ... -.... -----.
~15 ------U----;
E !
3 10~!-----------[~--~

:1 ,-,=-,-,

250

200

~
Q) 150

·E
~ 100
E
o
u

50

--

Range

Nr. trainees for each activity = 90 %

----- ---_.-

.In ~ ~II
N

Range

300

250

~ 200

" E
'" 150
~

Nr. trainees for each activity = 75 %

.............................. , ··············1

! '::=!F1:::L~
Range

Nr. trainees for each activity = rand(75 %j

700 ,-----------------,

600 ---

_ 500 i----llrll---------tllI---j
.!!!.
E 400 I~- ------ -: I .. .
;

~ 300
E
o
u 200

100 --lUI 1---[1111-----[11 1-

Range

Figure 7: Results for nr. periods = 35, nr. trainees = 8, nr. activities = 6 and magnitude of costs =
V(I,S)

These graphs confirm all previous conclusions. With respect to the comparison of the first
two branching schemes, one can observe that branching on the columns now performs

26

significantly worse. This can be explained by the fact that the randomness on the
magnitude of the costs makes the quality of the LP lower bound decrease, which of course
brings more harm to the unbalanced column branching than to the balanced timetable cell
branching.

The next three graphs show the results for varying number of periods, trainees and
activities while the fOUlih and the fifth factor are fixed at an intermediate level. We
distinguish again between the case in which the non-availability costs are always 1 and the
case in which these costs are uniformly distributed between 1 and 5.

Nr. periods = 1 B

--~- ------

600

~ 500

E 400
:;:: 300 ~----- --~------ --- -- -

~ 200
8 100

ri1

-[

--J

-~

1--- -

r--J H1
°

1
0,6 10,;510,9 10,6 1

0,:510,9 0,6 10,7510,9 1 0,6 io, 75 1 0,9 I

10 12

Nr. activities (% of nr. trainees)
Nr. trainees

Nr. periods = 52

700,------------------------------,
~600+------------n~----~
-; 500 - ----~--------
~ 400-------- ~----~--
ci. 300 +_-----------llcc-lilll
:5 200 ,
U 100t=::-- -- -,

o II 0,610,7~9,9 0,6 0,75 0'91~0'75! 0,9

6 8 10 12

Nr. activities (% of nr. trainees)
Nr. trainees

700
~ 600
-; 500
.§ 400
ci. 300
E 200
8 100

°

Nr. periods = 35

~r---~ ~---- -- -- -
I

.------
-~--=-

-

r--
c--

-~~
-- --

--~ --~ I-i -

..n:
0,610,7510,9 I 0,6 iO,75 0,9 0,6 1 0.7510,9 I 0,610,751 0,9

6 8 10 . 12 i

Nr. activities (% of nr. trainees)
Nr. trainees

Figure 8: Results for nr. trainees for each activity = 75%, range = 3 and magnitude of costs = 1

Nr. periods = 18

600,----------------------------~--____,

Nr. activities (% of nr. trainees)
Nr. trainees

700
~ 600
-; 500
.§ 400
ci. 300
E 200
.3 100

°

Nr. periods = 35

---- ---- --
-

=l -

f--
1--,

~ ~ -~ -- - -- -jl-, ...ni

0,610.7510,9 I 0,610.751 0,9 ! I I . 0,60.75 0,9.0,6 0,7510,9

6 8 10 I 12 I

Nr. activities(% of nr. trainees)
Nr. trainees

Nr. periods = 52

Nr. activities (% of nr. trainees)
Nr. trainees

27

Figure 9: Results for nr. trainees for each activity = 75%, range = 3 and magnitude of costs = U(t ,5)

From these graphs one may conclude that both the number of activities and the number of
trainees have a significant impact on the complexity of the problem. With a few
exceptions the algorithm was not able to solve problems with 12 trainees and 11 activities
to optimality within the time limit of 600 seconds. Furthermore, the results indicate that
the impact of the number of periods on the complexity of the problem is rather small.
Similar to the previous results, the precedence-related branching schemes are
outperformed by the first two branching schemes. Branching on the columns seems to
perform best when the magnitude of the costs is always 1, whereas when these cost values
are uniformly distributed between 1 and 5, branching on the timetable cells seems to be
the most robust way of branching.

4 Contributions of speed-up techniques

In order to gain some insights into the contributions of the different speed-up techniques,
an experiment was performed including all 307 problems for which an optimal solution
was found within 600 seconds for both the first and the second branching scheme. Besides
all eight speed-up techniques (see section 3.6) the influence of the two alternative ways of
column addition (see section 3.4) was investigated. The results are presented in Table 3
and visualized in Figure 10. The first row of Table 3 contains the average computation
times for the basic algorithm, i.e. the branch-and-price algorithm including all speed-up
techniques except for subgradient optimization (see section 4.2). Rows 2 to 9 contain the
average computation times when the respective speed-up technique was omitted (or
included in the case of subgradient optimization). Note that the effects are not cumulative,
i.e. the algorithm always included all but one speed-up technique. Row 10 gives the
computation times when only one column, i.e. the overall best (most negative reduced
column), was added after each master optimization. Finally, row 11 contains the
computation times when the master was re-optimized after the generation of only one
column, instead of one column for each activity. Recall that the dynamic program could
not be extended with upper bound pruning in the first branching scheme, since the 2nd, 3rd,

... , kth best column may be required. Recall also that column elimination is inherent in the
second branching scheme.

28

Conclusions with respect to this experiment are twofold. Firstly, the way of column
addition plays a major role in fast convergence of column generation. Adding only one
(optimal) column per master optimization seems to be outperformed by adding k
(suboptimal) columns per master optimization. The main reason for the large difference
between (10) and (11) is probably the impossibility in (11) to prune nodes based on
Lagrange relaxation.
Secondly, the results clearly indicate the positive impact of all speed-up techniques except
for subgradient optimization. The initial heuristic and initial network restrictions turned
out to have the smallest impact on the computation times.

Table nl: Contributions of speed-up techniques

Average computation time (s)

Basic algorithm

Without initial heuristic (section 3.6.1)

Without initial network restriction (section 3.6.3)

DP without upper bound pruning (section 3.6.4)

Without Lagrange dual pruning (section 3.6.2)

Minimum bounding search strategy (section 3.6.6)

Solving master LP starting from empty basis (section 3.6.5)

With subgradient optimization3 (section 3.6.8)

Without column elimination first branching strategy (section 3.6.7)

Search k columns, add 1 column per master optim. (section 3.4)

Search 1 column, add 1 column per master optim. (section 3.4)

160,00

140,00

~ 120,00
Q)

..§ 100,00

E 80,00

8 60,00
Cl
~ 40,00

20,00

Branching
on columns

(1) 36.00

(2) 37.94

(3) 36.14

(4)

(5) 42.57

(6) 56.66

(7) 55.92

(8) 65.88

(9) 93.46

(10) 72.33

(11) 141.09

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Algorithmic properties

Figure 10: Contributions of algorithmic improvements

3 Subgradient optimization settings include:
10 subgradient optimization iterations per simplex iteration;

Branching on
timetable cells

36.17

41.60

42.60

49.51

49.96

60.97

67.80

81.44

76.03

148.31

C:1 Branching on
columns

III Branching on
timetable cells

50 iterations of dual price updating within each sub gradient optimization iteration;
new colunms priced out based on the optimal dual prices.

29

5 Conclusions and future research

In this paper the problem of scheduling trainees at a hospital department was addressed. In
the first part, the problem was stated and fOlmulated as an integer program. Next, a
branch-and-bound algorithm was proposed to solve the problem to optimality. The
drawbacks of this approach served as a link towards a branch-and-price approach.
Therefore, the problem was reformulated as a zero-one multi-commodity flow problem
with side-constraints in which we decomposed on the activities. In the next sections the
different parts of the branch-and-price algorithm were discussed extensively. The pricing
problem could be formulated as a constrained shortest path problem and can be solved
efficiently using a forward dynamic programming approach. A very important feature of
this dynamic program is the ability to find also the 2nd, 3rd or kth shOliest path at a very low
computational extra cost. This property enabled us to develop a branching scheme based
on the column variables. Alternatively, a branching scheme based on timetable cells and
two precedence relations based branching schemes were elaborated. Finally, several
speed-up techniques were discussed. In the next part, extensive computational results were
presented. An experiment was set up in which the influence of six factors on the
complexity of the problem was investigated and the four branching schemes were
compared. Concerning theoretical issues, there are two main conclusions. The first one is
that the branch-and-price algorithm clearly outperforms the branch-and-bound algorithm.
The second is that, within the branch-and-price algorithm, branching on the timetable cells
turned out to provide the best results in the most consistent way. Compared to branching
on the column variables, this branching scheme is more robust when the magnitude of the
non-availability costs contains variability. The branching schemes based on precedence
relations converge more slowly to an optimal solution and moreover are not guaranteed to
branch until a completely integer solution has been found.
Concerning practical issues, the application makes it possible to find better solutions in
less time compared to previous ways of scheduling. To illustrate this, earlier schedules
were built for 18 periods. These 18 periods represented 52 weeks (16 3-week periods and
2 2-week periods). If a trainee was not available during a certain week, the full period was
made unavailable (for scheduling the difficult activities). The developed application is
able to deal with scheduling problems for 52 periods. Also, the fOlmerly seniority based
division of weeks-off can now be replaced by an approach that takes as much as possible
all preferences of all trainees into account. Of course, senior trainees may still be given
more priority by assigning them a larger total amount of non-availability costs.
Despite all the improvements, the borders of optimality searching within reasonable time
were reached when considering problems starting from twelve trainees and ten activities.
Obviously, the exact branch-and-price algorithm can also provide heuristic solutions by
allowing a gap between the lower and upper bound. It would, however, be interesting to
develop robust heuristic solution procedures that provide good solutions in small
computation times. Another interesting research direction would be to adapt the existing
branch-and-price algorithm to handle setup costs explicitly. Setup costs would occur each
time an assistant (re)starts a certain activity. In this way, one could search for the optimal
tradeoff between assigning preferred weeks-off and splitting up activities within trainees.

30

6 Acknowledgements

We acknowledge the support given to this project by the Fonds voor Wetenschappelijk
Onderzoek (FWO) - Vlaanderen, Belgium under contract number G.0463.04. We are
grateful to Prof. Dr. W. Sermeus and Kris Vanhaecht of the Centrum voor Ziekenhuis- en
Verplegingswetenschap (CZV) for drawing our attention to challenging scheduling
problems in health care management and to Jenny Cristael, (Oogziekenhuis UZ Leuven,
Belgium) for providing case study data.

7 References

Aickelin, U. and Dowsland, KA., Exploiting problem structure in a genetic algorithms
approach to a nurse rostering problem, Joumal of Scheduling, Vol. 31, pp. 139-153,
2000.

Barnhart, c., Johnson, E.L., Nemhauser, G.L., Martin, W.P., Savelsbergh, W.P. and Vance
P.R., Branch-and-price: column generationfor solving huge integer programs, Operations
Research, Vol. 46(3), pp. 316-329, 1998.

Beaumont, N., Scheduling staff using mixed integer programming, European Joumal of
Operational Research, Vol. 98, pp. 473-484, 1997.

Bellman, R., Dynamic Programming, Princeton University Press, 1957.

Brusco, MJ and Jacobs, L W, A simulated annealing approach to the cyclic staff
scheduling problem, Naval Research Logistics, Vol. 40, pp. 69-84, 1993.

Bosi, F. and Milano, M., Enhancing constraint logic programming branch and bound
techniques for scheduling problems, Software Practice & Experience, Vol. 31, John Wiley
& Sons, 2001.

Burke, E.K., De Causmaecker, P. and Vanden Berghe, G., A hybrid tabu search algorithm
for the nurse rostering problem, in Selected Papers from the 2nd Asia Pacific Conference
on Simulated Evolution and Learning, Springer Verlag, Vol. 1585 ofLNAI, pp. 187-194,
1998.

Cappanera, P. and Gallo, G., A multi-commodity flow approach to the crew rostering
problem, Technical Report, TR-01-08, Dip. di Informatica, Univ. di Pisa, 2001.

Cheang B., Li H., Lim A., Rodrigues B., Nurse rostering problems - A bibliographic
survey, European Joumal of Operations Research, Vol. 151, pp. 447-460, 2003.

Demeulemeester, E. and Rerroelen, W.S., A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem, Management Science, Vol. 38(12), pp.
1803-1818,1992.

31

Dreyfus, S.E. and Law, AM., The art and theOlY of dynamic programming, Academic
Press, Inc. Ltd., 1977.

Hans, E.W., Resource loading by branch-and-price techniques, Twente University Press,
Enschede, The Netherlands, pp. 38-42,2001.

Jans, R., Capacitated lot sizing problems: New applications, formulations and algorithms,
Doctoraal Proefschrift, Faculteit Economische en Toegepaste Economische
Wetenschappen, 2002.

Jimenez, V.M. and Marzal, A, Computing the K shortest paths: A new algorithm and an
experimental comparison, in Lecture Notes in Computer Science Series, J.S. Vitter and
C.D. Zaroliagis (eds.), Spinger-Verlag, Vol. 1668, pp. 15-29, 1999.

Mason, AJ. and Smith, M.C., A nested column generator for solving rostering problems
with integer programming, in International Conference on Optimisation: Techniques and
Applications, L. Caccetta; K. L. Teo; P. F. Siew; Y. H. Leung; L. S. Jennings, and V.
Rehbock (eds.), Cmiin University of Technology, Perth, Australia, pp. 827-834, 1998.

Mehrotra, A., Murphy, K.E. and Trick, M.A, Optimal shift scheduling: A branch-and
price Approach, Naval Research Logistics, Vol. 47, pp. 185-200,2000.

Peeters, M., One dimensional cutting and packing:
Doctoraal Proefschrift, Faculteit Economische
Wetenschappen, 2002.

New problems and algorithms,
en Toegepaste Economische

Ryan, D.M. and Foster, B.A, An integer programming approach to scheduling, Computer
Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, A Weren
(ed.), North-Holland, Amsterdam, pp. 269-280, 1981.

Van den Akker, M., Hoogeveen H. and Van de velde, S.L., Combining column generation
and lagrangian relaxation to solve a single-machine common due date problem,
INFORMS Journal on Computing, Vol. 14(1), pp. 37-51,2002.

Vanderbeck, F., On Dantzig-Wolje decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm, Operations Research, Vol. 48(1), pp.
111-128,2000.

Vanderbeck, F. and Wolsey, L.A, An exact algorithm for IP column generation,
Operations Research Letters, Vol. 19, pp. 151-159, 1996.

Warner, M.D., Scheduling nursing personnel according to nurses preference: A
mathematical programming approach, Operations Research, Vol. 24(5), pp. 842-856,
1976.

32

A d' 1 C ~ppen IX omputatlOna resu ts
Branching on column Branching on timetable Branching on immediate Branching on normal

variables cells precedence relations precedence relations
Problem RootLP Heur Opt Time Cols Nodes Time Cols Nodes Time Cols Nodes Fract Time Cols Nodes Fract

DOE222111_1 1j 14 U.LL

~~
1 0.2 63 C U.L OJ U

~
U.L OJ 0 C

DOE222111_2 16 20 16 0.36 3 0.28 80 2 0.28 83 2 0.27 79 1 0
DOE222111_3 16 17 16 0.2 60 1 0.25 69 4 0.25 65 5 0 0.31 78 8 0
DOE222112_ 1 36 41 36 0.2 60 0 0.25 73 2 0.38 104 3 0 0.38 107 3 0
DOE222112_2 50 53 50 0.22 69 0 0.28 84 2 0.28 89 2 0 0.44 116 5 0
DOE222112_3 45 45 45 0.13 43 0 0.11 39 0 0.09 39 0 0 0.11 39 0 0
DOE222121_1 11 12 11 0.25 75 0 0.28 80 1 0.31 90 1 0 0.36 91 1 0
DOE222121_2 15 19 15 0.44 121 2 0.28 83 1 0.28 81 2 0 0.3 83 2 0
DOE222121_3 16 17 16 0.36 103 3 0.41 106 4 0.31 88 2 0 0.53 130 8 0
DOE222122_1 42 44 42 0.42 110 4 0.38 103 3 0.41 108 4 1 0.36 96 3 0
DOE222122_2 33.5 43 34 0.34 94 1 0.33 94 1 0.31 90 1 0 0.31 90 1 0
DOE222122_3 31 31 0.33 94 0 0.33 91 0 0.31 91 0 0 0.33 91 0 0
DOE222131_1 10 14 10 0.63 154 3 0.64 167 2 0.58 143 2 a 0.5 133 1 0
DOE222131_2 13.5 16 14 0.34 95 0 0.55 138 4 0.67 163 6 0 0.55 136 4 0
DOE222131_3 10.66 16 12 2.91 480 28 1.64 334 12 1.45 295 9 0 1.91 359 17 0
DOE222132_1 35.75 45 37 3.17 404 60 0.98 216 9 1.38 278 15 0 0.72 156 8 1
DOE222132_2 33.5 50 35 1.03 218 7 1.01 223 6 1.05 224 8 0 106 224 8 0
DOE222132_3 31.5 - 33 1.88 340 18 1.3 312 8 1.89 413 9 0 1.98 360 16 1
DDE222141_1 9.56 13 10 0.83 197 2 0.95 214 7 0.98 221 5 0 1.16 242 8 0
DOE222141_2 12.3 - 13 0.72 161 5 1.05 222 12 0.97 215 7 a 1.23 256 9 0
DOE222141_3 13.33 14 0.42 112 1 0.69 156 6 0.66 155 5 0 0.59 133 5 a
DOE222142_1 28.83 45 31 2.81 433 25 2.25 419 16 2.22 421 16 0 4.48 712 38 0
DOE222142_2 30.8 40 32 2.17 380 19 2.13 401 16 2.14 388 16 0 2.23 397 15 0
DOE222142_3 221 25 24 8.47 705 120 2.38 425 20 2.77 488 21 0 4.03 652 29 0
DOE222151_1 14 16 14 0.38 100 2 0.77 183 5 0.75 182 5 0 0.59 138 7 0
DOE222151_2 13.38 16 14 0.55 134 2 0.56 143 3 0.73 168 5 0 0.73 159 6 0
DOE222151_3 13.33 16 14 0.41 105 2 0.47 114 6 0.42 109 4 0 0.56 128 9 0
DOE222152_1 43 54 43 0.25 74 1 0.45 116 2 0.42 113 1 0 0.47 119 1 0
DOE222152_2 42 49 43 3 469 41 1.58 312 15 1.33 263 11 1 1.5 288 13 0
DOE222152_3 37 44 37 0.34 95 1 0.33 94 0 0.33 93 0 0 0.33 93 0 0
DOE222161_ 1 12 14 12 0.86 198 3 0.8 189 4 0.63 150 2 0 0.66 147 4 0
DOE222161_2 10.63 13 11 0.88 192 4 0.72 166 5 0.97 211 5 0 1.44 282 10 0
DOE222161_3 12.5 14 13 0.78 176 7 0.45 119 3 0.69 172 4 0 0.45 113 3 0
DOE222162_1 32 47 32 0.56 146 0 0.77 191 2 0.83 201 2 0 0.8 194 1 0
DOE222162_2 37 45 37 0.39 106 0 0.44 120 0 0.44 120 0 0 0.44 120 0 0
DOE222162_3 33.58 43 35 1.64 349 8 1.64 341 7 1.75 368 7 0 2.36 454 10 0
DOE222211_ 1 13 14 13 1.03 227 4 1.53 325 14 1.31 267 10 0 2.05 336 23 0
DOE222211_2 14 14 14 0.69 153 6 0.31 90 0 0.3 84 a 0 0.3 84 0 0
DOE222211_3 13 16 13 1.34 281 7 1.36 286 7 1.59 317 7 0 1.84 319 17 0
DOE222212_ 1 33 41 33 0.88 210 3 1.42 299 12 1.38 286 11 0 1.8 342 16 0
DOE222212_2 31 36 31 0.34 90 0 1.3 273 12 1.36 295 10 0 1.73 297 24 0
DOE222212_3 26 32 26 106 246 5 1.63 352 12 1.53 309 10 0 1.88 327 19 a
DOE222221_ 1 6 9 6 3.39 507 3 7.61 1025 10 5.75 718 9 0 15.56 1271 16 0
DOE222221_2 9 12 9 2.11 315 2 3.41 526 10 5.69 765 10 0 5.88 637 12 a
DOE222221_3 8 15 8 2.59 385 3 3.39 507 7 4.25 603 7 0 3.91 422 11 0
DOE222222_ 1 26 35 26 4.38 656 5 4.69 691 4 4.02 562 6 a 5.98 634 14 0
DOE222222_2 31.57 42 33 157.94 3844 290 61.45 2984 141 23.72 1732 39 0 74.88 2831 147 0
DDE222222_3 18 27 18 7.75 1005 11 3.61 534 3 3.66 522 2 a 5.19 576 5 a
DOE222231_1 6 12 6 3.48 432 1 6.99 737 6 19.88 1417 18 0 20.34 1211 18 0
DOE222231_2 6 10 7 123.25 3854 130 45.22 2791 45 42.8 2496 38 0 61.94 2585 67 1
DOE222231_3 6 9 6 3.2 336 0 4.06 502 1 5.7 614 2 0 9.72 745 5 0
DOE222232_ 1 17 27 18 361.89 8807 354 119.61 4431 111 66 2947 63 0 110.95 3738 89 0
DOE222232_2 15.1 21 16 9.59 1062 7 78.73 3639 100 14.13 1172 15 0 16.53 1072 21 0
DOE222232_3 15 25 15 5.88 711 5 6.86 790 11 26.14 1840 22 0 35.47 1819 31 0
DOE222241_1 7 9 7 5.84 581 20 6.22 733 12 7.13 755 16 0 7.27 474 20 0
DOE222241_2 8 9 8 4.13 376 3 6.56 652 16 8.31 671 18 0 12.28 697 32 a
DOE222241_3 5 9 5 15.3 1285 19 7.06 679 7 8.64 666 7 a 25.97 1224 18 0
DOE222242_ 1 18 25 18 57.14 3258 46 11.02 1001 7 89.09 3126 61 0 67.38 2306 29 0
DOE222242_2 8 24 8 8 717 5 8.42 970 7 13.39 1078 11 0 16.06 887 9 0
DOE222242_3 11 34 11 10.52 751 2 8.89 789 2 19.06 1255 6 0 34.13 1553 11 a
DOE222251_1 8.1 12 9 2.86 432 4 2.55 390 4 5.34 671 8 0 11.2 1035 28 0
DOE222251_2 9 13 10 9.88 973 15 37.73 2540 69 273.53 4984 252 0 >600 7134 506 a
DOE222251_3 6.51 13 7 9.08 1063 50 29.54 2015 50 12.99 1193 16 0 25.47 1515 30 0
DOE222252_ 1 10.81 27 13 >600 13252 1163 453.45 10680 684 374.58 8504 465 0 561.53 10154 592 0
DOE222252_2 22.58 38 24 63.9 3410 146 9.57 955 14 20.52 1634 27 0 39.15 2275 58 0
DOE222252_3 19.49 29 22 512.87 9910 589 174.91 7359 211 257.19 5919 225 0 171.37 4916 192 a
DOE222261_1 6 11 6 18.61 1635 27 19.77 1728 20 12.24 1007 10 0 11.47 731 16 0
DOE222261_2 7 10 8 121.47 3804 127 36.12 2485 44 57.07 2936 59 0 35.17 1759 42 0
DOE222261_3 4.01 10 5 35.36 2033 108 30.58 2425 44 7.91 719 10 0 10.52 693 23 a
DOE222262_ 1 14.14 38 15 9.73 860 7 10.97 997 12 19.95 1349 21 0 15.11 1006 15 a
DOE222262_2 20.29 27 21 14.25 1254 15 25.14 2123 29 40.59 2184 32 a 133.01 3504 74 0
DOE222262_3 13.98 28 16 344.36 7687 1198 113.02 5798 243 184.55 5694 274 0 193.96 6041 312 a
DOE222311_ 1 15 15 15 0.28 70 0 0.33 87 0 0.28 77 0 0 0.31 77 0 a
DOE222311_2 15 15 15 0.42 95 0 0.34 89 a 0.34 89 a 0 0.36 89 0 0
DOE222311_3 12 13 12 0.41 96 0 1.19 238 15 1.28 252 14 0 1.31 193 17 a
DOE222312_ 1 37 37 37 0.55 125 0 0.36 89 0 0.39 100 0 0 0.44 100 0 0
DOE222312_2 34 39 34 0.39 90 0 1.42 300 15 1.2 216 14 0 2.23 327 32 a
DOE222312 3 40 40 40 0.52 117 a 0.37 96 0 0.39 100 0 0 0.42 100 0 0

33

Branching on column Branching on timetable Branching on immediate Branching on normal
variables cells precedence relations precedence relations

Problem RootLP Heur Opt Time Cols Nodes Time Cols Nodes Time Cols Nodes Fract Time Cols Nodes Fract
!1.1 b ~ b b.f8 ~b1 10.L 141L

~1
IL.IO

~;~ '~ ~
[I.OL

~~~~ 
40 0 

DOE222321_2 5 11 5 7.25 642 2 18.13 1380 9.11 122.44 62 0 
DOE222321_3 8 11 8 5.69 527 4 15.33 1429 18 10.83 880 15 1 19.6 1068 28 1 
DOE222322_ 1 14 24 14 24.9 1555 7 18.8 1409 7 41.35 1886 17 0 69.25 2114 16 0 
DOE222322_2 18 28 18 10.14 820 6 13.85 1167 13 12.97 839 7 0 24.9 948 13 0 
DOE222322_3 10 26 10 12.77 1283 16 6.6 805 6 6.72 755 11 0 27.45 1664 28 0 
DOE222331_ 1 5 8 5 8.49 501 2 14.74 1182 18 15.2 705 10 0 52.66 1432 29 0 
DOE222331_2 5 9 5 13.85 916 5 13.55 1251 16 20.78 1236 18 0 27.13 827 27 0 
DOE222331_3 6 9 6 10.02 664 5 16.02 1112 15 29.52 1324 17 0 140.12 3406 58 0 
DOE222332_ 1 17 26 17 14.2 831 6 10.78 969 9 13.13 999 18 0 31.7 1134 30 0 
DOE222332_2 12 24 12 14 772 5 12.5 902 8 18.78 1011 10 0 42.2 1425 19 0 
DOE222332_3 8.6 20 9 29.31 1586 20 90.05 3384 58 29.16 1532 15 0 58.11 1757 24 0 
DOE222341_ 1 4 6 4 12.44 494 2 25.91 1159 19 32.47 1052 16 0 67.01 1109 27 0 
DOE222341_2 5 8 5 18.72 777 4 18.81 1281 17 32.16 1404 25 0 104.15 1716 46 0 
DOE222341_ 3 2 6 2 13.56 567 2 14.45 891 10 27.3 966 9 0 43.86 925 19 0 
DOE222342_ 1 13 19 13 24.11 1015 14 24.59 1443 18 22.13 851 11 0 50.77 929 28 0 
DOE222342_2 4 11 4 40.08 1455 27 29.33 1467 16 34.59 1226 16 0 77.47 1383 30 0 
DOE222342_ 3 4 17 4 20.31 827 4 19.11 1075 12 32.99 1178 14 0 49.38 1077 28 0 
DOE222351_ 1 5 8 5 11.72 677 3 18.81 1442 16 9.48 772 12 0 13.91 786 18 0 
DOE222351_2 9.37 12 10 20.89 1424 34 15.05 1378 24 20.44 1351 14 0 378.05 6198 164 0 
DOE222351_3 5.69 10 6 165.3 4671 255 18.7 1236 15 46.28 1819 32 0 225.8 3486 95 0 
DOE222352_ 1 10.83 19 11 14.22 1144 9 15.89 1257 11 71.78 2520 41 0 150.34 3472 63 0 
DOE222352_2 18.29 27 19 >600 9249 623 247.14 5900 99 256.78 5050 104 0 >600 6964 229 0 
DOE222352_3 18 24 18 9.84 703 9 8.16 646 7 36.75 1341 18 0 160.02 2938 51 0 
DOE222361_1 7 10 7 14.08 649 4 16.64 933 12 24.82 919 11 0 55.21 1077 30 0 
DOE222361_2 5 7 5 23.05 1056 13 14.8 810 7 >600 7174 102 0 259.96 3616 59 0 
DOE222361_3 5 9 5 65.8 2606 38 >600 9508 173 393.65 7522 132 0 298.31 4419 69 0 
DOE222362_ 1 8 19 8 34.73 1681 23 38.97 2354 29 47.78 1855 17 0 39.08 1012 16 0 
DOE222362_2 15 26 15 83.53 3091 20 14.13 1046 8 61.13 2432 18 0 97.81 2619 22 0 
DOE222362_3 6 15 7 234.16 6940 273 >600 10322 226 >600 7921 155 0 >600 7615 140 0 
DOE222411_ 1 12.25 15 >600 11797 3031 129.77 5981 515 >600 7214 1159 0 >600 7502 1346 0 
DOE222411_2 10.78 >600 12467 1856 >600 13338 2064 >600 7322 1200 0 >600 7991 1534 0 
DOE222411_3 10.64 >600 10479 1409 >600 12713 1941 >600 9326 1304 0 >600 8044 1383 0 
DOE222412_ 1 26.43 - 29 53.36 2955 328 24.56 2436 94 19.05 1997 59 0 37.77 2641 110 0 
DOE222412_2 24.5 - 28 11.86 1447 70 10.02 1266 65 26.86 2226 189 1 83.03 3911 561 0 
DOE222412_ 3 32.25 >600 12525 3968 >600 17638 3646 >600 12019 2860 0 >600 13329 2583 0 
DOE222421_ 1 6.57 12 7 9.97 1216 27 21.72 1928 33 53.23 2848 46 0 7.27 649 12 0 
DOE222421_2 7.41 13 8 4.5 460 3 6.69 687 13 8.45 745 10 0 13.23 842 18 0 
DOE222421_3 8 10 8 13.59 1119 37 5.89 622 8 6.14 502 4 0 12.84 626 10 0 
DOE222422_ 1 13 29 >600 12668 864 >600 13691 452 >600 11584 357 0 >600 11748 385 0 
DOE222422_2 17.6 29 20 394.74 8729 425 75.22 4610 66 154.2 5828 90 0 364.47 7436 182 0 
DOE222422_ 3 12.29 25 13 8.31 928 10 14.09 1336 11 8.86 809 5 0 12.28 755 10 0 
DOE222431_ 1 5 7 6 25.14 1352 17 15.44 1241 14 41.98 1892 29 1 31.03 1162 27 1 
DOE222431_2 4 10 4 4.7 405 1 9.42 780 5 7 554 2 0 9.09 530 4 0 
DOE222431_3 4.89 9 6 19.42 1098 14 14 960 14 22.44 1184 15 0 53.45 1787 37 0 
DOE222432_ 1 9.7 19 12 64.34 2693 90 77.61 4047 76 46.56 2610 36 0 71.06 2707 54 0 
DOE222432_2 20.49 33 21 7.44 564 3 8.16 607 6 9.33 606 5 0 18.19 745 8 0 
DOE222432_3 10 23 10 8.86 528 1 5.89 553 2 6.78 576 2 0 7.92 498 1 0 
DOE222441_ 1 5.04 8 6 29.3 1489 20 27.94 1835 36 41.39 1824 17 0 54.14 1550 17 0 
DOE222441_2 2 5 2 14.69 746 4 11.06 654 3 18.14 815 6 0 19.89 592 3 0 
DOE222441_3 5 7 5 22.3 1105 13 15.2 1120 15 12.19 775 11 0 22.81 975 21 0 
DOE222442_ 1 3 12 3 28.92 1077 7 16.11 925 3 39.25 1640 12 0 72.5 1731 12 0 
DOE222442_2 9 16 9 14.83 721 2 35.8 1743 10 45.14 1564 6 0 48.42 1321 16 0 
DOE222442_3 12 21 13 69.5 2487 80 26.83 1754 12 26.88 1498 13 0 115.6 3603 47 0 
DOE222451_ 1 6.78 12 8 23.44 1822 42 268.03 6138 287 8.63 800 10 1 223.12 5367 261 0 
DOE222451_2 7.98 12 10 >600 5747 447 340.81 9565 374 601 11059 580 0 >600 11060 530 0 
DOE222451_3 9.56 11 >600 4990 556 99.52 4264 167 220.3 5614 289 0 424.22 7684 516 0 
DOE222452_ 1 14.56 35 19 254.66 8220 481 140 7243 140 211.41 8606 181 0 242.19 8003 182 0 
DOE222452_2 14.83 33 16 15.27 1079 9 12.88 1073 12 14.59 1089 8 1 25.8 1310 18 0 
DOE222452_ 3 22 36 25 344.08 10188 727 245.36 9327 258 >600 13211 396 0 >600 13195 486 0 
DOE222461_1 5.19 9 7 565.67 7296 586 152.07 4598 111 230.35 5295 109 0 >600 6326 236 0 
DOE222461_2 7 10 7 7.94 425 4 105 3253 55 31.23 934 6 0 65.44 1204 9 0 
DOE222461_3 4 7 4 38.48 2042 23 18.27 1206 6 9.97 643 4 0 17.45 699 6 0 
DOE222462_ 1 10 18 10 4.22 413 2 3.41 412 3 7.06 680 7 0 10.2 724 12 0 
DOE222462_2 14.65 37 18 >600 11515 564 327 10757 250 515.46 12880 340 0 >600 10379 308 0 
DOE222462_3 11.56 25 13 86.82 3838 91 86.05 3867 47 79.45 2910 38 0 152.89 3269 74 0 
DOE111231_1 1 1 1 0.03 7 0 0.06 14 0 0.06 14 0 0 0.06 14 0 0 
DOE111231_2 6 6 6 0.03 6 0 0.02 6 0 0.01 6 0 0 0.02 6 0 0 
DOE111231_3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 3 0 0 
DOE111232_ 1 1 3 1 0.09 18 0 0.11 20 0 0.11 20 0 0 0.11 20 0 0 
DOE111232_2 1 2 2 0.36 48 5 0.3 38 3 0.23 29 2 0 0.22 29 2 0 
DOE111232_3 8 8 8 0.05 10 0 0.03 8 0 0.03 8 0 0 0.03 8 0 0 
DOE112231_1 3 4 3 0.14 34 0 0.22 47 2 0.25 55 2 0 0.25 58 2 0 
DOE112231_2 3 7 3 0.34 89 0 0.28 77 0 0.28 77 0 0 0.28 77 0 0 
DOE112231_3 4 5 4 0.17 50 0 0.47 120 4 0.36 88 4 0 0.45 116 4 0 
DOE 112232_ 1 9.25 18 10 0.38 94 1 0.48 111 3 0.63 136 5 0 0.44 102 2 0 
DOE112232_2 13 16 13 0.09 27 0 0.3 70 3 0.47 96 4 0 0.41 92 4 0 
DOE112232_3 11 17 11 0.25 68 0 0.23 64 0 0.34 88 1 0 0.33 90 1 0 
DOE113231_1 8 8 0.45 127 1 0.83 215 3 0.69 187 3 0 1.59 330 13 0 
DOE113231_2 7 9 7 0.72 179 3 0.73 192 4 1.05 250 6 0 0.88 222 6 0 
DOE113231 3 8 9 8 0.58 165 1 0.55 156 1 0.91 230 5 0 0.95 228 7 0 



34 

Branching on column Branching on timetable Branching on immediate Branching on normal 
variables cells precedence relations precedence relations 

Problem Root LP Heur Opt Time Cols Nodes Time Cols Nodes Time Cols Nodes Fract Time Cols Nodes Fract 
uut: 11~L~L_ 10 LL 

;~ 
u.oo 100 C 0.92 243 U.fj ·I~O 

~ 
U.fj 

;~~ 
1 C 

DOEl13232_2 21.67 1.19 298 3 106 289 3 0.92 253 3 1.44 6 0 
DOEl13232_3 15 15 0.53 155 0 0.58 157 1 0.58 156 2 0 0.63 156 3 0 
DOE121231_1 0 0 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 
DOE121231_2 0 0 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 
DOE121231_3 0 0 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 
DOE121232_1 0 0 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 
DOE121232_2 5 5 5 0.11 20 0 0.13 27 0 0.11 26 0 0 0.13 26 0 0 
DOE121232_3 0 0 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 
DOE122231_1 3 4 3 2.81 430 5 3.88 614 13 4.06 538 12 0 6.24 616 23 0 
DOE122231_2 2 5 2 2.61 430 3 3.31 548 10 3.89 609 10 0 12.45 1248 26 0 
DOE122231_3 1 3 1 1.38 240 2 2.64 497 6 3.7 525 12 0 15.11 1468 46 0 
DOE 122232_ 1 9 17 9 3.11 475 4 3.27 550 11 3.67 603 13 0 6.44 633 21 0 
DOE 122232_2 8 15 8 1.72 261 3 1.88 322 7 3.91 566 12 0 5.63 617 22 0 
DOE122232_3 7 9 7 4.03 547 6 4.77 671 15 506 585 10 0 8.89 732 21 0 
DOE123231_1 11 11 4.94 639 9 9.27 1067 20 9.2 899 20 0 24.72 1584 39 0 
DOE 123231_2 11 15 11 4.61 619 4 9.38 1277 20 23.48 1852 38 0 18.63 1246 43 0 
DOE123231_3 9 14 9 4.63 674 4 10.23 1332 21 10.95 1088 20 0 19.17 1253 41 0 
DOE 123232_ 1 30 39 30 5.75 769 3 10n 1277 23 9.23 995 14 0 15.25 1038 35 0 
DOE 123232_2 28 28 7.45 922 6 1208 1422 19 10.83 1070 16 0 29.75 1822 40 0 
DOE123232_3 26 38 26 9.08 1180 7 15.66 2052 23 15.66 1440 17 0 19.77 1405 30 0 
DOE131231_1 0 0 0 1.61 145 3 0 6 0 0 6 0 0 0 6 0 0 
DOE131231_2 1 1 1 0.48 50 0 0.34 66 0 0.34 65 0 0 0.42 65 0 0 
DOE131231_3 0 0 0 0 6 0 0 6 0 0 6 0 0 0 6 0 0 
DOE131232_1 2 2 2 0.88 89 0 0.31 76 0 0.28 72 0 0 0.3 72 0 0 
DOE131232_2 0 0 0 0 6 0 0 6 0 0 6 0 0 0 6 0 0 
DOE131232_3 3 4 3 2.19 161 3 4.05 313 14 4.41 331 20 0 10.17 300 35 0 
DOE132231_1 3 4 3 0.5 66 0 5.36 618 30 701 658 29 0 11.14 722 70 0 
DOE132231_2 1 2 1 4.72 366 5 8.94 685 27 12.28 835 29 0 26.66 1018 49 1 
DOE132231_3 0 2 0 3.05 284 5 4.58 637 25 8.66 845 20 0 8.97 728 41 0 
DOE132232_1 5 8 5 4.22 330 5 4.45 420 26 8.92 663 24 0 18.89 685 57 0 
DOE132232_2 0 3 0 0.01 7 0 401 539 35 5.89 719 18 0 8.08 672 41 0 
DOE132232_3 5 6 5 5.48 456 2 8.94 740 26 8.86 866 31 0 13.66 689 50 0 
DOE133231_1 18 18 16.17 1136 7 42.33 2959 50 221.22 5228 152 1 91.09 2509 109 1 
DOE133231_2 16 16 17.2 1124 7 38.7 2508 47 247.74 4938 172 1 >600 7251 236 0 
DOE133231_3 14 14 20.2 1413 7 50.58 3558 51 223.36 5524 112 0 >600 8227 210 0 
DOE133232_1 26 26 26.56 1591 6 64.53 3980 41 128.35 3810 42 0 >600 8558 171 0 
DOE133232_2 38 - 38 24.72 1636 8 61.63 3892 47 195.52 5014 58 0 103.22 2228 70 0 
DOE133232_3 44 44 29.59 1985 11 69.7 3861 47 71.5 2996 56 0 262.07 4916 158 1 
DOE141231_1 0 0 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE141231_2 0 0 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE141231_3 0 0 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE141232_1 0 0 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE141232_2 0 0 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE141232_3 1 1 1 4.77 95 0 0.84 77 0 0.88 77 0 0 1.69 77 0 0 
DOE142231_1 2 2 2 65.42 659 6 3.64 310 0 3.08 271 0 0 5.59 271 0 0 
DOE142231_2 5 5 5 24.95 305 0 2.73 235 0 3.05 244 0 0 5.81 244 0 0 
DOE142231_3 2 4 2 68.41 740 8 54.78 1242 69 107.72 1870 61 0 497.53 2392 148 0 
DOE142232_1 12 14 12 77.33 787 9 109.82 1401 63 175.47 1828 60 0 563.6 1285 103 0 
DOE 142232_2 2 4 2 57.65 639 7 94.09 1086 65 169.45 2264 70 1 >600 1035 93 0 
DOE142232_3 11 13 11 88.53 978 6 65.02 1257 59 113.76 1985 64 1 >600 1480 149 0 
DOE143231_ 1 6 10 6 218.26 2500 10 349.81 5015 74 >600 6550 124 0 >600 1477 108 0 
DOE143231_2 8 9 8 140.03 1486 7 166.36 2363 84 >600 5406 104 0 >600 871 61 0 
DOE143231_3 12 13 12 50.73 578 0 274.35 3151 81 245.24 1982 80 1 >600 844 78 0 
DOE 143232_ 1 21 29 21 154.42 1411 7 349.31 4078 92 >600 6103 159 0 >600 912 58 0 
DOE143232_2 16 26 16 150.01 1397 10 275.31 2341 81 >600 4601 73 0 >600 772 55 0 
DOE143232_3 23 27 23 146.28 1271 7 315.14 4105 68 >600 4064 73 0 >600 858 56 0 
DOE211231_1 5 5 5 0.05 8 0 0.06 10 0 0.05 10 0 0 0.05 10 0 0 
DOE211231_2 5.5 6 6 0.06 12 0 0.03 7 0 0.03 7 0 0 0.05 7 0 0 
DOE211231_3 4 4 4 0.06 10 0 0.06 11 0 0.06 11 0 0 0.06 11 0 0 
DOE211232_ 1 8 8 8 0.03 6 0 0.03 6 0 0.03 6 0 0 0.03 6 0 0 
DOE211232_2 5 12 5 0.17 31 0 0.16 33 0 0.17 33 0 0 0.17 33 0 0 
DOE211232_3 11 21 11 0.11 20 0 0.11 22 0 0.11 22 0 0 0.11 22 0 0 
DOE212231_1 5 13 5 0.25 50 1 0.33 70 2 0.33 69 3 0 0.38 80 3 0 
DOE212231_2 7 8 8 0.48 94 3 0.61 124 4 0.61 120 4 0 0.64 122 5 0 
DOE212231_3 8 12 8 0.38 81 1 0.33 78 2 0.34 74 3 0 0.36 79 3 0 
DOE212232_ 1 24 29 25 0.89 160 8 0.75 152 5 0.69 142 2 0 0.95 184 6 1 
DOE212232_2 20.5 24 21 0.28 58 2 0.25 58 1 0.28 64 2 0 0.3 63 3 0 
DOE212232_3 24.33 36 25 0.34 77 0 0.45 90 4 0.52 105 4 1 0.48 89 5 0 
DOE213231_1 13 14 13 0.7 165 0 0.94 208 1 0.94 208 1 0 0.95 205 1 0 
DOE213231_2 13 15 13 0.67 154 1 0.8 172 4 0.81 172 5 0 0.97 196 6 0 
DOE213231_3 13 15 13 1.06 237 1 0.83 186 0 1.03 232 1 0 1 223 1 a 
DOE213232_1 41 44 41 0.63 143 1 1.24 248 6 0.75 160 2 a 1.08 213 9 a 
DOE213232_2 39 44 39 0.5 111 2 0.75 156 3 0.88 183 5 0 1 196 7 0 
DOE213232_3 45 47 45 1.03 211 4 0.52 121 2 0.81 171 4 0 0.66 145 3 a 
DOE221231_1 1 1 1 0.16 28 a 0.17 33 0 0.16 32 0 a 0.17 32 0 a 
DOE221231_2 2.17 3 3 0.75 86 0 0.66 99 0 0.47 75 a a 0.53 75 a a 
DOE221231_3 a 1 a 0.38 50 1 0.3 48 1 0.56 82 3 0 0.67 90 4 a 
DOE221232_1 0 a a 0.41 50 1 a 4 0 a 4 a 0 a 4 0 0 
DOE221232_2 1 1 1 0.17 24 a 0.2 40 a 0.22 38 a a 0.23 38 0 a 
DOE221232 3 a a a a 4 a 0.02 4 0 0 4 0 a 0 4 0 a 



35 

Branching on column Branching on timetable Branching on immediate Branching on normal 
variables cells precedence relations precedence relations 

Problem RootLP Heur Opt Time Cols Nodes Time Cols Nodes Time Co Is Nodes Fract Time Cols Nodes Fract 
0 0 

1l~~~ 
1400 18 12.19 W89 a.u~ 

;~~~ 
10 

~ 1~~;~ 
1440 23 0 

DOE222231_2 5.82 12 7 3888 200 69.8 3325 86 7603 82 3829 155 0 
DOE222231_3 6,42 10 7 36.25 2252 58 8.25 840 11 133.17 3774 86 0 449.3 6863 233 0 
DOE222232_ 1 12.39 22 13 57.16 2824 74 25.98 1742 21 18.64 1197 15 0 71.73 2569 49 0 
DOE222232_2 17 32 17 6.31 614 6 14,45 1273 13 7.51 672 3 0 16,42 1082 13 0 
DOE222232_3 16 34 16 12.06 1007 7 7.22 700 4 5.19 495 2 0 8.55 642 9 0 
DOE223231_1 13.09 14 41.61 3230 28 >600 9976 191 71.52 3154 25 0 >600 8596 156 0 
DOE223231_2 13 >600 12231 286 >600 11827 239 >600 10656 148 0 >600 9782 148 0 
DOE223231_3 14.17 21 15 24.56 1826 14 435.92 8091 119 37,47 1868 14 0 41.08 1735 28 0 
DOE223232_ 1 37 37 12.95 1070 6 32,45 2006 15 38.94 1792 14 0 51.66 1980 22 0 
DOE223232_2 39.14 - >600 8328 189 >600 9718 141 >600 8950 126 0 >600 8583 135 0 
DOE223232_3 29 77 >600 13427 234 >600 12784 171 >600 10899 82 0 >600 11191 87 0 
DOE231231_1 0 0 0 1.77 141 3 0 6 0 0 6 0 0 0 6 0 0 
DOE231231_2 3 3 3 1.2 119 0 0.64 95 0 0.53 83 0 0 0.59 83 0 0 
DOE231231_3 1 2 1 3.88 250 3 3.06 251 10 5.19 415 15 0 5.25 227 18 0 
DOE231232_1 3 5 3 3.28 198 4 4,42 319 10 3.64 247 11 0 6.23 245 23 0 
DOE231232_2 0 1 0 2.34 172 6 2.23 265 15 3.34 364 15 0 4.39 400 20 0 
DOE231232_3 0 4 0 2.03 172 3 3.05 362 12 3.34 362 13 0 4.08 350 15 0 
DOE232231_1 3 6 3 11.95 699 9 9.36 793 17 43.83 2123 35 0 27.78 983 23 0 
DOE232231_2 1 5 1 15.69 904 4 58.59 2606 31 15.5 809 9 0 33.14 1075 12 0 
DOE232231_3 6 10 6 7.95 470 4 18.34 1034 17 23.28 1068 18 0 27,44 792 35 0 
DOE232232_ 1 5 12 5 19.5 1177 7 32.11 1865 25 31.36 1612 30 0 11.61 613 17 0 
DOE232232_2 11 18 11 10.2 491 4 11.73 803 8 14.27 832 15 0 35.02 1125 28 0 
DOE232232_3 2 9 2 11.31 681 5 6.84 576 13 16.34 925 13 0 21.58 834 25 0 
DOE233231_1 18 >600 11742 136 >600 9396 66 >600 5875 29 0 >600 5329 48 0 
DOE233231_2 19 - >600 12674 199 >600 8739 36 >600 5818 25 0 >600 6123 42 0 
DOE233231_3 20 - >600 15023 171 602.1 8948 48 >600 5440 18 0 494.19 5056 45 0 
DOE233232_ 1 41 >600 13107 99 601.2 7883 20 >600 6007 11 0 >600 4680 22 0 
DOE233232_2 52 52 81.61 2950 10 242.16 4867 22 >600 5923 27 0 >600 5334 46 0 
DOE233232_3 56 >600 14705 216 >600 9205 88 >600 6871 30 0 >600 6237 60 0 
DOE241231_1 0 0 0 0.02 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE241231_2 0 0 0 0 7 0 0 7 0 0.02 7 0 0 0 7 0 0 
DOE241231_3 0 0 0 0.02 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE241232_1 0 0 0 0 7 0 0 7 0 0.01 7 0 0 0 7 0 0 
DOE241232_2 0 0 0 21.86 248 5 0 7 0 0 7 0 0 0 7 0 0 
DOE241232_3 0 0 0 0.01 7 0 0 7 0 0 7 0 0 0.02 7 0 0 
DOE242231_1 4 9 4 244.51 2376 14 >600 4877 75 432.5 3005 41 0 >600 1096 70 0 
DOE242231_2 0 4 0 81.16 1089 9 226.99 4527 86 >600 5294 44 0 >600 3755 95 0 
DOE242231_3 2 6 >600 4575 341 >600 7025 72 >600 3711 39 0 >600 1143 66 0 
DOE242232_ 1 2 15 2 159.63 1694 27 >600 6241 118 583 4695 40 0 >600 2222 95 0 
DOE242232_2 3 20 3 173.55 2135 11 >600 8812 102 183.64 2694 32 0 >600 4003 82 0 
DOE242232_3 1 15 1 288.18 2795 11 362.04 4606 45 >600 3867 37 0 >600 1471 61 0 
DOE243231_1 9 19 - >600 5310 33 >600 4308 34 >600 2276 27 0 >600 973 21 0 
DOE243231_2 8 - >600 3986 6 >600 3506 20 >600 2011 21 0 >600 913 16 0 
DOE243231_3 6 - >600 4178 4 >600 4652 25 >600 2529 28 0 >600 1215 26 0 
DOE243232_ 1 19 >600 3551 8 >600 3450 10 >600 2115 15 0 >600 1134 11 0 
DOE243232_2 20 43 >600 3445 4 >600 4772 24 >600 2129 19 0 >600 1142 15 0 
DOE243232_3 30 68 30 479.74 3195 8 >600 3197 13 >600 1992 18 0 >600 1042 13 0 
DOE311231_1 9 9 9 0.06 9 0 0.11 17 0 0.13 17 0 0 0.13 17 0 0 
DOE311231_2 6 6 6 0.06 10 0 0.05 9 0 0.05 9 0 0 0.06 9 0 0 
DOE311231_3 4 4 4 0.13 13 0 0.09 12 0 0.08 12 0 0 0.09 12 0 0 
DOE311232_ 1 23 23 23 0.06 8 0 0.08 11 0 0.06 11 0 0 0.06 11 0 0 
DOE311232_2 12 12 12 0.09 14 0 0.05 7 0 0.05 7 0 0 0.03 7 0 0 
DOE311232_3 14 14 14 0.08 13 0 0.08 14 0 0.09 14 0 0 0.08 14 0 0 
DOE312231_1 11 12 11 0.08 14 0 0.38 50 3 0.25 35 1 0 0.25 35 1 0 
DOE312231_2 13 17 13 0.5 76 1 0.39 63 0 0.38 63 0 0 0.39 63 0 0 
DOE312231_3 11 12 11 0.14 24 0 0.27 43 1 0.3 42 1 0 0.28 42 1 0 
DOE312232_1 28 33 28 0.33 47 1 0.39 58 1 0.33 50 1 0 0.34 53 1 0 
DOE312232_2 30 32 30 0,48 71 3 0.33 51 0 0.33 51 0 0 0.33 51 0 0 
DOE312232_3 33 33 33 0.14 23 0 0.09 19 0 0.11 19 0 0 0.09 19 0 0 
DOE313231_1 18.36 19 0.75 133 0 1.36 214 7 1,44 226 5 0 1.72 255 11 0 
DOE313231_2 19.5 20 20 0.53 93 0 0,44 81 0 0,44 81 0 0 0,45 81 0 0 
DOE313231_3 18 18 1.13 175 4 0.64 107 1 0.63 104 1 0 0.63 104 1 0 
DOE313232_1 53 53 0.88 142 2 0.84 131 3 1,44 219 5 0 1.09 169 6 0 
DOE313232_2 51 55 51 1.11 175 2 1.28 207 2 1.56 234 4 0 1.86 272 8 0 
DOE313232_3 55 55 0.92 157 1 0.89 155 0 0.89 155 0 0 0.91 155 0 0 
DOE321231_1 2 3 2 1.31 95 1 1.2 127 1 0.69 74 1 0 0.73 74 1 0 
DOE321231_2 1 2 1 0.83 73 1 2.94 231 12 4.99 374 18 0 5.75 410 18 0 
DOE321231_3 1 1 1 0.72 55 0 0.2 28 0 0.2 28 0 0 0.22 28 0 0 
DOE321232_ 1 1.21 4 2 1,42 105 0 1.83 179 8 1.78 172 5 0 1.28 116 5 0 
DOE321232_2 4.33 7 5 1.13 78 1 1.13 106 1 2.02 168 5 0 3.09 222 11 0 
DOE321232_3 10.29 13 11 3.81 231 7 2,48 220 9 1.58 150 5 0 4.2 307 12 0 
DOE322231_1 8.15 15 9 29.24 1609 21 9.63 650 4 31.39 1574 16 0 9004 3065 62 0 
DOE322231_2 14 18 14 5,49 353 0 4.56 338 0 4.66 341 0 0 5.63 341 0 0 
DOE322231_3 9.34 16 10 26.05 1351 67 9.94 664 11 11,47 718 10 0 12.42 660 17 0 
DOE322232_ 1 23 51 23 6.25 407 1 6.8 502 4 6,41 470 5 0 5.95 380 5 0 
DOE322232_2 20 44 - >600 13527 488 >600 11901 366 302.46 6115 102 0 >600 9358 253 0 
DOE322232_3 22.8 40 25 515.91 9512 341 345.18 7984 224 255.94 5362 180 0 326.94 6457 181 0 
DOE323231_1 22 22 18.75 1003 5 44.33 2118 15 51.3 1868 13 0 83.17 2142 24 0 
DOE323231_2 24 24 15.98 923 6 23.62 1379 24 31.75 1247 15 0 47.72 1651 30 0 
DOE323231 3 23 30 23 267.89 7368 108 158.56 4388 41 177.7 3876 19 0 331.77 5281 38 0 



36 

Branching on column Branching on timetable Branching on immediate Branching on normal 
variables cells precedence relations precedence relations 

Problem Root LP Heur Opt Time Cols Nodes Time Cols Nodes Time Co Is Nodes Fract Time Cols Nodes Fract 
uut:jL~nL_ b' b1 14.UL (~~ ~U.bj 1014 1; ob.~4 LU~b 10 U OU.~1 1bl4 Lb U 

DOE323232_2 63 63 15.11 871 4 47.91 2039 14 66.44 2051 11 0 76.61 1966 18 0 
DOE323232_3 53 53 5802 2877 24 61.31 2447 13 77.78 2073 8 0 >600 6628 53 0 
DOE331231_1 4 7 4 7.27 272 4 11.17 491 11 8.31 346 8 0 15.41 467 22 0 
DOE331231_2 0 3 0 9.48 470 4 8.83 543 3 14.84 524 2 0 28.36 717 4 0 
DOE331231_3 4 7 4 50.55 1237 34 14.27 681 11 13.3 600 10 0 9.45 389 7 0 
DOE331232_1 4 8 4 171.14 2505 191 23.63 1184 18 7.42 402 7 0 21.27 919 13 0 
DOE331232_2 1 9 1 10.56 500 2 8.64 588 7 7.09 471 6 0 10.64 560 10 0 
DOE331232_3 6 15 7 >600 6563 422 84.44 2626 58 383.95 6809 227 0 >600 8228 348 0 
DOE332231_1 9 14 9 172.48 3395 66 345.11 5089 78 597.3 6078 88 0 >600 5541 88 0 
DOE332231_2 9 12 9 54.42 1453 8 33.42 1139 14 35.39 826 8 0 60.31 998 12 0 
DOE332231_3 5 10 5 >600 6504 377 358.31 6260 154 143.86 2958 36 0 153.4 2906 53 0 
DOE332232_ 1 20 35 20 251.77 3725 135 77.66 2055 15 58.08 1228 11 0 50.18 969 17 0 
DOE332232_2 21 37 21 36.42 1136 7 40.67 1524 13 350.62 4744 46 0 63.46 1410 22 0 
DOE332232_3 9 24 9 >600 6706 659 27.89 1175 8 >600 6146 107 0 >600 5770 114 0 
DOE333231_ 1 27 598.6 9247 27 >600 7268 30 >600 4769 16 0 >600 4443 27 0 
DOE333231_2 28 28 440.78 8727 106 >600 8012 31 >600 4275 15 0 >600 4404 29 0 
DOE333231_3 27 >600 8807 86 >600 6648 23 >600 5259 26 0 >600 3775 46 0 
DOE333232_ 1 68 >600 6247 4 >600 4423 5 >600 4102 4 0 >600 4003 4 0 
DOE333232_2 75 >600 9474 6 >600 5398 5 >600 4724 4 0 >600 4358 4 0 
DOE333232_3 68.08 >600 7545 8 >600 5056 6 >600 5125 7 0 >600 4649 7 0 
DOE341231_1 1 2 1 46.86 489 6 68.54 820 34 105.35 973 26 0 347.27 1428 64 0 
DOE341231_2 2 2 2 12.36 132 0 3.72 186 0 4.61 166 0 0 6.75 166 0 0 
DOE341231_3 1 1 1 9.14 130 0 2.59 151 0 2.27 148 0 0 2.67 148 0 0 
DOE341232_1 0 3 0 0 7 0 14.71 631 35 28.78 1014 25 0 72.65 1477 67 0 
DOE341232_2 0 2 0 33.93 330 7 46.26 808 38 73.93 1105 23 0 129.48 932 65 0 
DOE341232_3 0 0 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 
DOE342231_1 4 10 >600 4225 25 >600 3914 40 >600 1919 15 0 >600 1211 40 0 
DOE342231_2 4 15 >600 3401 10 >600 3153 17 >600 1815 15 0 >600 1060 13 0 
DOE342231_3 7 14 >600 3740 55 >600 3334 20 >600 1969 26 0 >600 989 27 0 
DOE342232_ 1 4 38 >600 3013 6 >600 3397 10 >600 1973 9 0 >600 1191 12 0 
DOE342232_2 7 44 7 431.45 2403 5 >600 4587 25 >600 2608 18 0 >600 1406 32 0 
DOE342232_3 6 10 >600 3895 28 >600 3527 32 >600 2050 21 0 >600 984 33 0 
DOE343231_1 13.78 30 >600 1510 0 >600 1805 0 >600 1695 0 0 >600 1105 0 0 
DOE343231_2 11 34 >600 2235 1 >600 2581 5 >600 1666 5 0 >600 1145 1 0 
DOE343231_3 13.17 >600 1460 0 >600 1590 0 >600 1546 0 0 >600 956 0 0 
DOE343232_ 1 26.45 - - >600 1360 0 >600 1710 0 >600 1687 0 0 >600 1107 0 0 
DOE343232_2 26.37 - >600 1320 0 >600 1607 0 >600 1584 0 0 >600 1024 0 0 
DOE343232 3 31.62 97 >600 1410 0 >600 2334 4 >600 1928 2 0 >600 1318 0 0 


