
ORP3, VALENCIA. SEPTEMBER 6-10, 2005 319

Integrating nurse and surgery scheduling
Jeroen Belïen∗ and Erik Demeulemeester†

∗Katholieke Universiteit Leuven, Department of Applied Economics
Naamsestraat 69, B-3000 Leuven, Belgium

Email: jeroen.belien@econ.kuleuven.be
†Katholieke Universiteit Leuven, Department of Applied Economics

Naamsestraat 69, B-3000 Leuven, Belgium
Email: erik.demeulemeester@econ.kuleuven.be

Abstract— One common problem at hospitals is the
extreme variation in daily (even hourly) workload pressure
for nurses. The operating room is considered to be the
main engine and hence the main generator of variance in
the hospital. It is our belief that integrating the operation
room scheduling process with the nurse scheduling process
is a simple, yet effective way to achieve considerable sav-
ings in staffing costs. The purpose of this paper is threefold.
First of all, we present a concrete model that integrates
both the nurse and the operating room scheduling process.
Secondly, we show how the column generation technique
approach, often employed for nurse scheduling problems,
can easily cope with this model extension. Thirdly, by
means of a large number of computational experiments
we provide an idea of the cost saving opportunities and
required solution times.

Keywords— nurse scheduling, surgery scheduling, col-
umn generation, integer programming.

I. I NTRODUCTION

DURING the last decades, cost pressures on hos-
pitals have increased dramatically. This emphasis

on cost containment has forced hospital executives to
run their organizations in a more business-like manner.
The constant challenge is to provide high-quality service
at ever reduced costs. In order to achieve this purpose,
inefficient use of resources should be identified and
actions should be taken to eliminate these sources of
waste. Operations research techniques are increasingly
being used to assist in this complicated task.

As nursing services account for an important part of a
hospital’s annual operating budget, concentrating on this
resource can lead to substantial savings. The situation is
exacerbated by an acute shortage of nurses in all western
countries, said to be 120,000 today and expected to grow
to 808,000 by 2020 in the United States (US) alone
[24]. Hence, it is of vital importance that nurses are
used as much as possible at the right time and at the
right place. This goal is hard to achieve because of two
reasons. The first one is inherent in service organizations

for which human resources outnumber all other types of
resources. Unlike machines, staff schedules are restricted
by collective agreement requirements. These form an
important hindrance for the flexibility with which nurses
are scheduled.

A second reason is the presence of variability. Vari-
ability is probably the main obstacle to efficient delivery
of health care and reducing it is one of the major con-
cerns in current health care management [19]. Compared
with industrial environments, hospitals are much more
stochastic by nature. One common problem at hospitals
is the extreme variation in daily (even hourly) workload
pressure for nurses. On days when the workload is
too high, the quality of care decreases because it is
too costly to staff for peak loads. On days when the
workload is too low, there is waste. Fortunately, the
situation is not as chaotic as it seems to be at first
sight. As pointed out in [19], an important amount of
the variability can effectively be managed and reduced
by a thorough analysis of the existing system and by
appropriate decision-taking. Special emphasis is put on
the operating room since it is considered the main engine
and hence the main generator of variance in the hospital.
It is our believe that integrating the operation room
schedule process into the nurse scheduling process is a
simple yet effective way to achieve considerable savings
in staffing costs.

This paper is organized as follows. In Section II a
discussion of the background together with a brief liter-
ature review is given. In Section III a general overview
of the model together with a branch-and-price solution
approach is presented. Section IV provides more details
on both pricing problems, while a general overview of
the branch-and-price algorithm is given in Section V.
Section VI discusses a specific branching scheme. In
Section VII some computational issues are discussed and
in Section VIII extensive computational results are given.
Finally, Section IX draws conclusions and lists some
topics for further research.

320 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

II. BACKGROUND AND LITERATURE REVIEW

Nurse scheduling problems are frequently encountered
in the operations research literature. Recently, a good
bibliographic survey on medical staff rostering problems
has appeared [13]. Several studies in the literature have
utilized mathematical programming techniques to assist
in finding efficient staff schedules (see e.g. [22], [28],
[3], [8], [12], [4]). These problems typically involve
some kind of set covering or set partitioning formulation.
The main drawback, however, is that these models can
have far more variables than can be reasonably attacked
directly. Therefore, the linear program (LP) is often
solved using column generation (see e.g. [18], [5] and
[6], [21], [20]). To the best of our knowledge, all the
proposed models consider the nurse scheduling problem
as a separate problem, i.e. not related to any other activity
in the hospital. In this paper we will describe a more
general approach in which the demand constraints are
dependent on the operation room schedule and hence
become a part of the decision process.

The operations research literature is replete with ex-
amples of integer programming techniques being applied
to operating room scheduling problems. This work can
be categorized based on the stage of the scheduling
process to which it applies. Developing operating room
(OR) schedules can be seen as a three stage process.
In a first stage the available OR time is divided over
the different surgeons (or surgical groups). This first
phase is also referred to as case mix planning, since
it determines for which pathologies capacity will be
preserved. Hughes and Soliman [17] propose a linear
programming model to solve case mix planning prob-
lems. Dexter and Macario [14] argue that OR time should
be allocated to maximize OR efficiency instead of ”fixed
hours” blocks based on historical utilization data. Blake
and Carter [10] propose a methodology that uses two
linear goal programming models. One model sets case
mix and volume for physicians, while holding service
costs fixed; the other translates case mix decisions into
a commensurate set of practical changes for physicians.

Once the OR time allocated to each surgical group has
been chosen, the second stage involves the development
of a master surgery schedule. The master surgery sched-
ule is a cyclic timetable that defines the number and type
of operating rooms available, the hours that rooms will
be open, and the surgical groups or surgeons who are to
be given priority for the operating room time. Compared
to case mix planning (first stage) and elective case
scheduling (third stage), the literature on master surgery
scheduling is rather scant. Blake et al. [11] propose an
integer programming model that minimizes the weighted

average undersupply of OR hours (i.e. allocating to each
surgical group a number of OR hours as close as possible
to its target OR hours).

After the development of the master surgery schedule,
elective cases can be scheduled. This third stage occurs
on a daily base and involves detailed planning of each
intervention. Each patient needs a particular surgical
procedure, which defines the human (surgeon) and ma-
terial (equipment) resources to use and the intervention
duration. Guinet and Chaabane [15] define this problem
as a general assignment problem and propose a primal-
dual heuristic to solve it. Weiss [29] deals with the
problem of determining the case orderings and presents
both analytical and simulation results.

The methodology presented in this paper has some
similarities with models for integrating the scheduling
of project tasks and employees (Alfares et al. [1] and
Alfares and Bailey [2]). Although several authors men-
tion the interdependency between the surgery scheduling
process and the development of nurse rosters, as far as
we know, no models have been proposed to integrate
both areas of decision-making. Litvak and Long [19]
underline the negative impact of variability in hospital
environments. They consider the operating room as the
engine that drives the hospital. Consequently, the ac-
tivities inside the operation room heavily determine the
fluctuations in resource demands throughout the rest of
the hospital. A poor operating room schedule could for
instance be directly responsible for the occurrence of
(contra-productive) peeks in the demand for certain types
of resources. The authors distinguish between two types
of variability: natural variability and artificial variability.
Natural variability is inherent to the uncertain world of
health care. This variability arises from uncertainty in pa-
tient show-ups, uncertainty in recovery time, uncertainty
in the successfulness of therapies etc. . . . Artificial vari-
ability originates from poor scheduling policies. Beliën
and Demeulemeester [9] have elaborated this idea. They
propose a number of integer programming models for
building robust surgery schedules for which the resulting
expected bed shortage is minimized.

In this paper the master surgery schedule is being
considered as the main generator of the workload of the
nurses. In order to couple both scheduling environments,
the objective in the surgery schedule process will be
to construct a favorable workload distribution for the
nurses.

III. M ODEL DESCRIPTION

A. General idea

Figure 1 contains a schematic overview of the general
idea elaborated in this paper.

Jeroen Belïen and Erik Demeulemeester 321

Workload

distribution

Collective

agreement

requirements

Contributions

surgery type to

nurse workload

Surgery

schedule

restrictions

Master

surgery

schedule

Nurse

schedule

Fig. 1. Schematic overview of the general idea

First have a look at the nurse scheduling process
at the right of this figure. The input for the nurse
scheduling process consists of the restrictions implied
on the individual nurse roster lines on the one hand
and the workload distribution over time on the other
hand. The workload distribution itself is determined by
the master surgery schedule. In order to be able to
deduce the workload from the surgery schedule one
also has to know the workload contributions of each
specific type of surgery. The dotted arrow at the bottom
indicates the feedback that could be given from the nurse
scheduling process to the surgery scheduling process
in order to produce more favorable surgery schedules
with respect to the resulting workloads. The freedom in
modifying the surgery schedule is however limited, since
the master surgery schedule itself is restricted by a set
of specific surgery constraints (e.g. capacity and demand
constraints). It must be clear, however, that integrating
the surgery scheduling process with the nurse scheduling
process provides more flexibility in building the nurse
schedules, since one has an instrument to make the
workload distribution fit for the nurse schedules.

In what follows we will describe a mathematical
model for implementing this idea. Therefore, we start
with stating the standard nurse scheduling problem and
discuss the column generation solution procedure for
solving it. Then, we extend this model with the extra
decision of the nurse scheduling process and show how
the column generation solution procedure can easily
cope with this extension. Hereby, we focus on the
minimization of the total required number of nurses.
The reason for this objective is that it allows for a
quantitative measure of the resulting benefits, i.e. the
decrease in staffing cost. Obviously, this quantitative

benefit can easily be turned into a qualitative benefit by
employing the saved nurse(s) on moments when they are
most needed.

B. The nurse scheduling problem

The nurse scheduling problem (NSP) consists of gen-
erating a configuration of individual schedules over a
given time horizon. The configuration of nurse sched-
ules is generated so as to fulfill collective agreement
requirements and the hospital staffing demand coverage
while minimizing the salary cost. An individual’sroster
line can be viewed as a sequence ofdays on and
days off, where each day on contains a singleshift
identified by a label such as ‘day’, ‘evening’ or ‘night’.
Each such label coincides with a start and a finish
time of the corresponding shift. Furthermore, a day is
subdivided into severaldemand periodscharacterized by
fixed starting and ending times. These demand periods
do not necessarily coincide with the shifts. However, the
demand per shift can easily be determined.

Coverage constraints imply how many nurses of ap-
propriate skills have to be scheduled for each demand
period. For ease of exposition and without loss of
generalization we consider all nurses equally-skilled
throughout the rest of this paper.

Collective agreement requirements are rules that de-
fine acceptable schedules for individual nurses in terms
of total workload, holidays, weekends off and shift
transitions (e.g. a morning shift after a night shift is not
allowed). These rules cannot be violated and dramati-
cally reduce the set of feasible individual roster lines.
Obviously, when building nurse schedules also a set
of individual constraints, often called preference con-
straints, have to be taken into account. For instance, some
nurses prefer to do night shifts, others do not. Again, for
ease of exposition and without loss of generalization, we
make abstraction of these differences in individual pref-
erences and only consider those restrictions which are
stated in the collective agreement rules and consequently
apply on all nurses. Hence, we present an integrated
model that can be used to find optimal schedules for
a homogeneous set of nurses.

In what follows we state the standard set covering
model, which is often used for this type of problems.
Let J be the set of feasible roster linesj and I be the
set of demand periodsi. Let di ∈ ℜ+, ∀i ∈ I, denote
the required number of nurses scheduled during periodi.
Furthermore, letaij be 1 if roster linej contains an active
shift during periodi and 0 otherwise. The general integer
decision variablexj , ∀j ∈ J , indicates the number of
individual nurses which are scheduled by roster linej.

322 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Then, the nurse scheduling problem (NSP) can be stated
as follows:

Minimize
∑

j∈J

xj (1)

subject to:
∑

j∈J

aijxj ≥ di ∀i ∈ I (2)

xj ∈ {0, 1, 2, . . . } ∀j ∈ J (3)

C. Solution procedure for the nurse scheduling problem

The integer program (IP) (1)-(3) is solved by first
solving the linear programming relaxation and then using
a branching scheme to drive the solution into integrality.
As the number of possible roster lines an individual can
work is usually too large to allow complete, a-priori
enumeration, column generation is often applied to solve
the LP relaxation. Typically, the pricing step involves
the solution of a dynamic programming shortest path
problem (also called thesubproblem) to find the legal
column with the most negative reduced cost. Letπi,
∀i ∈ I, denote the dual price of constraint (2). Then,
the reduced cost of a new column (roster line)j is given
by:

1 −
∑

i∈I

aijπi (4)

A brief discussion of the solution procedure for this
subproblem is given in Section IV-A. The process of
adding new columns continues until no more columns
price out, i.e. no more columns with negative reduced
cost can be found. However, at that point, the solution is
not necessarily integral and applying a standard branch-
and-bound procedure to the restricted master with its
existing columns will not guarantee an optimal (or
feasible) solution. Therefore, a branching scheme has to
be applied to drive the solution into integrality. After
branching, new columns might price out favorably and
hence have to be added to the model.

Since it lies not in the scope of this paper to discuss
effective branching schemes for the NSP, we will not
go into details about this, but instead refer the reader
to the specialized literature. Barnhart et al. [7] discuss
appropriate branching strategies for solving a mixed
integer program (MIP) using column generation. Since
NSP (1)-(3) has identical restrictions on subsets (i.e.
there are no subsets having a separate convexity con-
straint), elaborating a branching scheme is a complex

issue. Conventional integer programming branching on
variables is not effective for reasons of symmetry and
also because fixing variables destroys the structure of the
subproblem. Vanderbeck and Wolsey [27] developed a
general rule in which one is branching on the constraints
(see also [26]). The drawback is that the branching
constraints cannot be used to eliminate variables and
have to be added to the formulation explicitly. Hence,
each branching constraint will contribute an additional
dual variable to the reduced cost, which complicates the
pricing problem.

D. The generalized nurse scheduling problem

In the NSP the right hand side values of the coverage
constraints (i.e. thedi’s in formulation (1)-(3)) are con-
sidered to be fixed. Nevertheless, coverage constraints
are based on workload estimations which entail the sum-
mations of individual patientworkload contributions. An
individual patient workload contribution is determined
by the patient type. The patient type can generally be
described by three dimensions. The first dimension is the
type of surgery the patient has undergone. The second is
the number of periods the patient has already recovered.
The third is the period to which the workload applies.
For instance, some pathologies may require increased
care during nights.

The number and type of the patients that are present
in the hospital at each moment in time is largely deter-
mined by the operation room schedule. Obviously, due
to emergency cases and uncertainty in patient show-ups,
patient recovery times etc. . . , exact estimations are not
possible. However, an in-depth analysis of the operation
room schedule enables hospital executives to make a
quite accurate prediction of the workload of the nurses.
Moreover, they can reshape the workload distribution
by modifying the operation room schedule. In the long
term case mix planning decisions determine the overall
workload. In shorter term the cyclic master surgery
schedule determines the workload distribution over time.

The generalized nurse scheduling problem (GNSP)
takes into account this extra dimension. Instead of as-
suming the demand values to be fixed, we consider them
to be dependent on the number and type of patients
undergoing surgery in the hospital at each moment.
By manipulating the master surgery schedule, hospital
management can create (and choose between) a number
of different workload distributions, further referred to
as workload patterns. Let K denote the set of possible
workload patterns that could be generated by modifying
the surgery schedule. These will be obtained by enumer-
ating all possible ways of assigning operating blocks to

Jeroen Belïen and Erik Demeulemeester 323

the different surgeons, subject to surgery demand and
capacity restrictions (for more details see Section IV-B).
Each workload patternk is described by a number of
periodic demandsdik ∈ {0, 1, 2, . . . }, ∀i ∈ I. Let zk be
1 if the surgery schedule that corresponds to workload
k is chosen and 0 otherwise. Then, the problem can be
stated as follows:

Minimize
∑

j∈J

xj (5)

subject to:
∑

j∈J

aijxj ≥
∑

k∈K

dikzk ∀i ∈ I (6)

∑

k∈K

zk = 1 (7)

xj ∈ {0, 1, 2, . . . } ∀j ∈ J (8)

zk ∈ {0, 1} ∀k ∈ K (9)

Constraint (7), further referred to as the workload
convexity constraint, implies that exactly one workload
pattern has to be chosen. In a feasible solution all
zk’s but one equal 0. Hence, in constraint (6) only the
correspondingdik’s are added in the right hand side
values. It is easy to see that the NSP is a special case of
the GNSP in which onezk is fixed to be 1.

E. Solution procedure for the generalized nurse schedul-
ing problem

In this part we show that the column generation
approach to solve the LP relaxation of NSP can easily
be extended to cope with the GNSP. Similarly to the
roster lines, the number of possible workload patterns
is usually too large to allow for complete, a-priori
enumeration. Also here, the process starts with a limited
subset of workload patterns and new patterns (columns)
are added as needed. Therefore, a second subproblem
has to be solved. The generation of a new workload
pattern boils down to the construction of a new master
surgery schedule. The subproblem is constrained by a set
of specific surgery schedule restrictions. Its objective is
the minimization of the reduced cost of a new workload
pattern. Letγ denote the dual price of the workload
pattern convexity constraint (7). Then, the reduced cost
of a new workload patternk is given by:

0 − γ +
∑

i∈I

πidik (10)

Obviously, the appropriate solution approach to price
out a new workload pattern strongly depends on the
characteristics of the master surgery schedule. In this

paper the workload pattern pricing problem is formulated
as an IP and solved using a state-of-the-art optimization
package (CPLEX). More details on this formulation can
be found in Section IV-B.

IV. PRICING PROBLEMS

A. Generating a new roster line

Although the generation of a new roster line happens
in a standard way (shortest path problem solved with
recursive dynamic programming) (see e.g. [12]) and its
exact implementation is not really necessary for under-
standing the general idea of this paper, we briefly discuss
the procedure. First, we summarize the restrictions which
apply to a roster line.

As already mentioned earlier, this work is only
concerned with collective agreement requirements and
leaves individual preferences out of consideration. Con-
cretely, we take into account five types of requirements
when building a new roster line. First of all, a nurse
cannot work more than one shift per day. Secondly,
the overall number ofactive days, i.e. days in which
the roster line contains anactive shift(”day”, ” evening”
or ”night”), cannot exceed a certain limit. Thirdly, the
maximum number ofconsecutiveworking days is also
constrained. The same holds for the maximum number
of consecutive rest days. A sequence of working days is
further referred to as ablock. Fourthly, the number of
so-called unpopular shifts (night shifts, weekend shifts)
is limited per roster line. Fifthly, in a block, certain shift
transitions are not allowed. For instance, a nurse cannot
switch from, say, a night shift to a morning shift without
having a rest first.

Generating a new roster line is typically done using a
dynamic programming recursion. To this aim, we define
a table giving the minimum cost that can be achieved in
days1 to d by a roster line that, starting from a situation
in which on dayd a shift s is scheduled and in which
between daysd to n a certain number of active shiftsf
occurred, a certain number of unpopular shiftsg occurred
and a number of consecutive working or rest daysh
(including dayd) is assigned. Formally, the entries of
the table are of the form

τ(d, f, g, s, h),

defined ford = 1..n, f = 0..fmax, g = 0..gmax, s ∈ S,
h = 0..hmax. Hereby,n denotes the number of days
in the scheduling horizon,fmax denotes the maximum
number of working days in a roster line,gmax is the
maximum penalty in terms of unpopular shifts,S is the
set of shift types (”day”, ” evening”, ” night”, ” rest”) and
hmax is the maximum of both the maximum number

324 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

of consecutive working days(hmax
1) and the maximum

number of consecutive rest days(hmax
2). Let pd,s be the

penalty cost for assigning an unpopular shift(d, s). LetA
denote the set of allowed shift transitions(s, s′) between
two consecutive days on. We consider demand periods
as being subsets of the shifts, i.e. no demand period can
be spread over more than one shift. However, a shift can
consist of more demand periods. LetQ(d,s) be the set of
demand periodsi that fall into shift(d, s). Let λd,s be the
total dual cost of a shift(d, s), i.e. λd,s =

∑

i∈Q(d,s)
πi.

The computation of the entries in the table is done by
starting at the beginning of the time horizon and working
forward by considering an insertion of a shift types on
the next dayd of the roster line associated with an entry
already computed. Therefore, we make use of recursive
algorithm 1.

Algorithm 1 RECURSION(d, f, g, s, h)
if (d=0) then

return0; {beginning of time horizon reached}
else if (τ(d, f, g, s, h) 6= 999999999) then

returnτ(d, f, g, s, h); {state already visited, can be pruned}

else
cost ← +∞;
min cost ← +∞;
for (all shifts s̄ ∈ S\{”rest”}) do

if (g+pd−1,s̄ ≤ gmax) AND ((s̄, s) ∈ A) AND (f < fmax) then
if (s 6= ”rest”) then

if (h < h1
max) then

cost ← λd,s+RECURSION(d−1, f+1, g+pd−1,s̄, s̄, h+1);
{successive active shift}

end if
else if (s = ”rest”) then

cost ←RECURSION(d−1, f+1, g+pd−1,s̄, s̄, 1); {start active
shift}

end if
end if
if (cost < min cost) then

min cost ← cost;
end if

end for
if (s 6= ”rest”) then

cost ← λd,s+ RECURSION(d − 1, f, g, ”rest”, 1); {start rest}
else if (s = ”rest”) then

if (h < h2
max) then

cost ← RECURSION(d−1, f, g, ”rest”, h+1); {successive rest}
end if

end if
if (cost < min cost) then

min cost ← cost;
end if
returnτ(d, f, g, s, h) ← min cost;

end if

Before starting the recursion all entries of table
τ(d, f, g, s, h) are initialized to999999999. The mini-
mal reduced cost of a new roster line can now easily
be calculated by starting the recursion on dayn and
minimizing over each shift type (see algorithm 2).

Once all the calculations are done, the best new roster
line can easily be constructed backward. The overall

Algorithm 2 FIND-NEW-ROSTER-LINE
{initialize all entries ofτ}
for (d = 1 to n) do

for (f = 0 to fmax) do
for (g = 0 to gmax) do

for (all shifts s ∈ S) do
for (h = 0 to hmax) do

τ(d, f, g, s, h) ← 999999999;
end for

end for
end for

end for
end for
cost ← +∞;
min cost ← +∞;
{start the recursion}
for (all shifts s̄ ∈ S\{”rest”}) do

if (pn,s̄ ≤ gmax) then
cost ←RECURSION(n, 1, pn,s̄, s̄, 1); {end with an active shift}

end if
if (cost < min cost) then

min cost ← cost;
end if

end for
cost ←RECURSION(n, 0, 0, ”rest”, 1); {end with a rest}
if (cost < min cost) then

min cost ← cost;
end if

space complexity of the dynamic programming recursion
is

O(n · fmax · gmax · |S| · hmax)

whereas the time complexity is (in the case that there
are no forbidden shift transitions),

O(n · fmax · gmax · |S| · hmax · |S|)

since each entry of the table is updated by considering
up to O(|S|) other entries.

B. Generating a new workload pattern

Each workload pattern corresponds to a particular
surgery schedule. Hence, a new workload pattern can be
obtained by building a new surgery schedule. Hereby,
the capacity preserved for the different surgeons (or,
more generally, surgery groups) is already determined
by the case mix planning (first stage, long term) and
considered to be fixed in our application. Elective case
scheduling (third stage) is also left out of consideration
because of two reasons. First of all, the impact of each
specific elective case on the workload is rather scant.
It is the type of surgery that determines the workload
contribution, not the individual case. Secondly, it is very
hard to predict the precise impact of the individual cases
on the workload contribution at the moment that the
nurse rosters have to be built. Often, at that moment,
an important part of the elective surgery scheduling is
still to be done.

Jeroen Belïen and Erik Demeulemeester 325

The master surgery schedule is considered to be the
tool for manipulating the workload distribution over
time. This work is concerned withcyclic master surgery
schedules. Cyclic schedules are schedules that are re-
peated after a certain time period (referred to as the cycle
time). During such a cycle time there might be a number
of time periods during which surgery cannot take place.
These periods are referred to as the inactive periods, the
others are active. Typically, cycle times are multitudes
of weeks in which the weekends are inactive periods.

In our application, a new surgery schedule is built by
solving an integer program. To find a new workload
pattern with minimal reduced cost given the current
set of roster lines and workload patterns, the objective
function minimizes the dual price vector of the demand
constraints (6) multiplied by the new demands. We deal
with two types of constraints. Surgery demand con-
straints determine how many blocks must be preserved
for each surgeon. Capacity constraints ensure that the
number of blocks assigned during each period do not
exceed the available capacity. Letyrt (∀r ∈ R and
t ∈ T) be the number of blocks assigned to surgeon
r in period t. Hereby, T represents the set of active
periods andR the set of surgeons. Letqr be the number
of blocks required by each surgeonr. Let bt be the
maximal number of blocks available in periodt. Let
wrti ∈ ℜ+ denote the contribution to the workload of
demand periodi of assigning one block to surgeonr in
period t. Then, the integer program to construct a new
surgery schedule (and at the same time price out a new
workload patternk) is as follows:

Minimize
∑

i∈I

πidik (11)

subject to:

∑

t∈T

yrt = qr ∀r ∈ R (12)

∑

r∈R

yrt ≤ bt ∀t ∈ T (13)

∑

r∈R

∑

t∈T

wrtiyrt ≤ dik ∀i ∈ I (14)

yrt ∈ {0, 1, 2, . . . ,min(qr, bt)} ∀r ∈ R, ∀t ∈ T (15)

dik ∈ {0, 1, 2, . . . } ∀i ∈ I (16)

The objective function (11) minimizes the reduced
cost of a new workload pattern. Observe that the periodic
demandsdik are now an integral part of the decision
process, whereas these are merely coefficients in the
master problem (5)-(9). Constraint set (12) implies that
each surgeon obtains the number of required blocks.

Constraint set (13) ensures that the number of blocks
assigned does not exceed the available number of blocks
in each period. Constraint set (14) triggers thedik’s to
the appropriate integer values. Finally, constraint set (15)
and (16) defineyrt anddik to be integer.

At first sight, constraint set (16) which requires the
periodic demandsdik to be integral, seems to be re-
dundant from a formulation point of view. Indeed, due
to constraint (6) and the fact thataij ∈ {0, 1} and
xj ∈ {0, 1, 2, . . . } fractional demand valuesdik would
also be covered by the upper integer number of nurses.
The reason why we require thedik’s to be integral is
to improve the computational efficiency of the overall
branch-and-price algorithm. We come back to this issue
in Section VII-A.

V. OVERVIEW OF THE BRANCH-AND-PRICE

ALGORITHM

Algorithm 3 contains the pseudocode of the branch-
and-price algorithm to solve the GNSP.

The algorithm starts with a heuristic in order to find
an initial solution. The heuristic generates only one
workload pattern. This is done by building a surgery
schedule for which the sum of the resulting quadratic
demand values is minimized. The idea is to level the
workload distribution as much as possible over the time
horizon and as such to avoid the occurrence of peeks in
the workload. This approach turned out to be beneficial
for the surgery scheduling problem in which the expected
shortage of beds has to be minimized (see [9]). The
surgery schedule is built with a mixed integer program
(MIP) in which the constraints are given by (12)-(15)
(replacing thedik’s by di’s) and the objective is:

Minimize
∑

i∈I

d2
i

with di the required number of nurses in periodi. To
speed up the heuristic, thedi’s are not required to be
integral. Instead, we round eachdi to the next upper
integer after solution of the quadratic MIP. Given this
workload pattern, new roster lines are added until the
set of roster lines (one nurse scheduled by each roster
line) completely satisfies the coverage constraints. A new
roster line is found by solving exactly the same shortest
path problem as in Section IV-A, but replacing the dual
pricesπi by the remaining right hand side valuesdi. As
such each new roster line cuts the peeks in the remaining
workload pattern until all demand is covered.

After detection of an initial solution, the objective
value is saved as an upper bound and both the surgery
schedule and the nurse schedule are registered. The
columns making up the initial solution are entered into

326 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

Algorithm 3 BRANCH-AND-PRICE
apply heuristic to find initial solution;
if (solution found)then

register nurse schedule and surgery schedule;
upperbound← best solution found;
initiate master with the columns making up the initial solutionand (|I|+
1) supercolumns;

else
upperbound← +∞;
initiate master with|I| + 1 supercolumns;

end if
lower bound← −∞;
stop← FALSE;
while (stop=FALSE)do

LP opt found← FALSE;
{solve LP with column generation}
while (LP opt found=FALSE)do

LP opt found← TRUE;
improving rosterline found← TRUE;
while (improving rosterline found=TRUE)do

RCj ← FIND-NEW-ROSTER-LINE(j);
if (RCj < 0) then

add new roster line to master;
LP opt found← FALSE;
LP opt ← SOLVE-MASTER-LP();

else
improving rosterline found← FALSE;

end if
end while
RCk ← FIND-NEW-WORKLOAD-PATTERN(k);
if (RCk < 0) then

add new workload pattern to master;
LP opt found← FALSE;
LP opt ← SOLVE-MASTER-LP();

end if
end while{LP solved to optimality}
if (fractional z) then

expand node;{replace node by two child nodes}

else if (LP opt<bestintegral z) then
bestintegral z ← LP opt;

end if
if (no more nodes)then

stop← TRUE;
else

explore next node;{best-first}
lower bound← boundbestnode;
if (lower bound≥ upperbound OR lowerbound≥ bestintegerz)
then

stop← TRUE;
end if

end if
IP opt ← SOLVE-MASTER-IP();
if (IP opt < upperbound)then

upperbound← IP opt;
register nurse schedule and surgery schedule;

end if
end while

the master together with a number of supercolumns,
which are needed to ensure feasibility of the master in
each stage of the branch-and-bound algorithm.

The algorithm starts with the LP optimization loop in
which iteratively a number of new roster lines and one
new workload pattern are added until no more columns
price out. Observe that roster lines are added until no
more lines with negative reduced cost can be found,
whereas only one workload pattern is generated, after
which the generation of new roster lines restarts. This
approach turned out to be the most successful, given the
generally larger computation times to price out a new
workload pattern.

Upon detection of the LP optimum, the solution is
checked for fractionalzk’s (workload patterns). If there
still are fractionalzk’s, branching is applied in order
to drive the solution into an integralz solution (i.e.
with only one zk equal to 1 and all other equal to
0). The algorithm does not branch until an integralxj

(roster line) solution, because branching schemes for
the xj variables are not straightforward to implement
and significantly complicate the roster line subproblem.
Moreover, it provides no extra value for the extended
model, which is the subject of this paper. Instead, we
report lower and upper bounds for the required number
of nurses to cover demand. The lower bound is the
best possible solution with exactly onezk equal to 1,
however one for which thexj ’s are not necessarily
integral. Hence, the solution represented by the lower
bound might not be interpretable in terms of the nurse
schedule (e.g. schedule 2.5 nurses following roster line
j). The upper bound on the other hand is the best found
overall integer solution (with also integrality of thexj ’s),
which is fully interpretable.

In order to increase the lower bound as much as
possible, the branch-and-bound tree is traversed in a
best-search way. After each move in the tree, the master
problem is solved with required integrality on both the
xj ’s and thezk’s. Because the integral master problem is
often computationally very intensive, the MIP optimizer
is interrupted after a specified time interval (e.g. 10
seconds). If a better solution is found, the upper bound
decreases and as such the gap between the lower and
upper bound tightens.

VI. B RANCHING

For reasons that are explained earlier, this work is only
concerned with a branching scheme for driving thezk’s
to integrality and leaves thexj ’s out of consideration. We
apply a constraint branching scheme [23] which works
as follows.

Jeroen Belïen and Erik Demeulemeester 327

First we search for the highest fractionalzk. Let this
be zk′ . Then we select anotherzk > 0, say zk′′ , and
take the first periodi for which dik′ 6= dik′′ . If no such
period exists, bothzk’s represent essentially the same
workload patterns and hence one of them can be set
to 0 while its fractional value is added to the other one.
Suppose we found periodi′ as the branching period with
di′k′ < di′k′′ . Then, we create two nodes in the branch-
and-bound tree. In the left node we implydi′k ≤ di′k′

and in the right node we implydi′k ≥ di′k′ +1. Figure 2
visualizes this branching scheme. Else ifdi′k′ > di′k′′ we
imply di′k ≤ di′k′′ in the left node anddi′k ≥ di′k′′ + 1
in the right node.

Parent

node

d
i’k

d
i’k’

d
i’k

d
i’k’
+1

Fig. 2. Binary branching scheme in the case ofdi′k′ < di′k′′

VII. C OMPUTATIONAL PERFORMANCE ISSUES

In this section we present some techniques which
helped to improve the computational efficiency of the
algorithm.

A. Integral versus fractional demand values

It has already been mentioned at the end of Section IV-
B that we imply thedik’s to be integral in the workload
pattern pricing problem. Although this is not necessary
from a formulation point of view, it has a substantially
positive impact on the overall computational efficiency
of the algorithm.

Implying integrality of thedik’s affects the compu-
tation time in two ways. On the one hand, there is
a negative impact, because the pricing problem itself
becomes more complex. On the other hand, there is
a positive impact as far fewer columns can be found
with negative reduced cost. Preliminary results indicate
that this positive effect dramatically exceeds the negative
effect. Consequently, the master LP is solved much
faster when integrality of thedik’s is implied. More-
over, requiring integral demand values in the workload

patterns makes the LP optimal solution substantially less
fractional in terms of thexj ’s. Hence, finding a global
optimum (with both integrality on thezk’s and on the
xj ’s) turns out to be much easier. In our application the
gap between the lower and upper bound becomes much
smaller.

B. Upper bound pruning for the workload pattern pric-
ing problem

Basically, we are no longer interested in finding the
column with the lowest reduced cost from the moment
we know that this reduced cost will be positive anyway.
Hence, we can act as if we already found a solution with
reduced cost 0 by providing an appropriate upper bound.
For the workload pattern subproblem, this observation
yields dramatic time savings.

The reduced cost expression (4) consists of a fixed
part and a variable part. By setting the upper bound
equal to the fixed part with reverse sign, we act as if
we found already a new column with reduced cost equal
to 0. The reduced cost of a workload pattern is given by
0 − γ +

∑

i∈I πidik. Consequently, we provideγ as an
upper bound in the integer program (11)-(16).

Note that, since generating a new roster line is
done using a backward dynamic recursion, upper bound
pruning cannot be applied here. As an alternative, we
wrote an A* algorithm (enumeration approach entailing
a forward recursion including both dynamic pruning and
pruning based on bound comparisons). Dynamic pruning
occurs if a state has already been visited at lower cost.
For pruning based on bound comparisons we need an
upper and lower bound for the best new roster line.
Since the reduced cost of a new roster line is given by
1 −

∑

i∈I aijπi, we can provide -1 as an initial upper
bound in the A* algorithm. Obviously, this bound is
decreased each time a better roster line is found. Starting
from a certain day, a lower bound on the minimal cost
path could be obtained by selecting for each remaining
day the shift with the lowest total of corresponding dual
prices, i.e:

MIN
{

MIN
s∈S\{”rest”}

{λd,i}, 0
}

∀d

and summing up only the (fmax − f) lowest values
amongst these. In other words, for calculating the lower
bound, we relax all constraints but the not-more-than-
one-shift-per-day constraint and the maximum number
of active days constraint. Preliminary tests, however,
indicated that the A* algorithm is outperformed by the
backward dynamic recursion. Hence, the time saved from
upper bound pruning in the A* algorithm is inferior to

328 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

the time won by visiting each state only once in the
purely dynamic backward recursion.

C. Two-phase approach for the workload pattern pricing
problem

During the LP optimization loop it is not necessary
to find the column with the most negative reduced cost,
any column with negative reduced cost will do. Again,
particularly for the computationally intensive workload
pattern pricing problem, using this observation dramat-
ically decreases the computation times. To guarantee
optimality of the LP solution, a two-phase approach is
applied for the workload pattern pricing problem. In
the first phase, a certain time limit is set for the MIP
optimizer. Only if no new workload pattern is found
with negative reduced cost within this time limit, the
algorithm enters the second phase. In this phase the time
limit is undone and the optimizer is required to search
until a feasible solution is found with negative reduced
cost or it is proven that such a column does not exist.

D. Lagrange dual pruning

It is well known that Lagrangian relaxation can com-
plement column generation in that it can be used in
every iteration of the column generation scheme to
compute a lower bound to the original problem with little
additional computational effort (see e.g. [25], [27]). If
this lower bound exceeds an already found upper bound,
the column generation phase can end without any risk
of missing the optimum. Using the information from
solving the reduced master and the information provided
by solving the pricing problem for a new workload
patternk, it can be shown (see e.g. [16]) that a lower
bound is given byδ + RCkθk whereδ is the objective
value of the reduced master,RCk is the reduced cost
of a newly found workload patternk andθk is a binary
variable equal to 1 whenRCk is non-negative and set to
zero, otherwise. This lower bound is referred to as the
Lagrangian lower bound, since it can be shown that it
equals the bound obtained by Lagrange relaxation.

Obviously, if the pricing procedure finds a negative
reduced cost column during the first phase and hence
does not enter the second phase (see Section VII-C) this
lower bound cannot be used, because the workload pat-
tern pricing problem has not been solved to optimality.

Using CPLEX, it is very easy to set upper bounds,
time limits and limits on the number of feasible solu-
tions. Moreover, it can easily be verified if either the
problem has been solved to optimality or optimization
has prematurely ended because of an insufficient time
limit.

VIII. C OMPUTATIONAL RESULTS

A. Test set

To test the algorithm, we started from the same set
as the one introduced in [9] for their surgery scheduling
application. All surgery scheduling problems in this set
involve a cycle time of 7 days. The last two days are
not available to allocate OR time (weekend), which is
common practice. The problems differ with respect to
five factors. These are: (1) the number of time blocks
per day, (2) the number of surgeons, (3) the division of
requested blocks per surgeon, (4) the number of operated
patients per surgeon and finally (5) the length of stay
(LOS) distribution. If we consider two settings for each
factor and repeat each factor combination three times,
we obtain25 ∗3 = 96 test instances. Table I contains the
settings for these five factors. Some of the factor settings
require some further explanation.

TABLE I

FACTOR SETTINGS IN SURGERY SCHEDULING TEST SET

Factor Nr. blocks Nr. Division Nr. patients LOS

setting per day surgeons req. blocks per surgeon

1 3-6 3-7 evenly 3-5 2-5

distributed

2 7-12 8-15 not evenly 3-12 2-12

distributed

The number of blocks per day is drawn from a
uniform distribution with bounds 3 and 6 in the first
setting and 7 and 12 in the second setting. A block is
defined as the smallest time unit for which a specific
operating room can be allocated to a specific surgeon
(or surgical group). Note that, due to large set-up time
and costs, in real-life applications the number of blocks
per day in one operating room is usually 1 or 2, i.e
each surgical group has the OR for at least half a day.
Hence, considering more blocks can be seen as a way
of considering more operating rooms as there is no
difference from a computational point of view. The third
factor indicates whether or not the requested blocks are
evenly distributed among all surgeons; e.g. if there are
20 time blocks and 5 surgeons, each surgeon requires
4 time blocks in the evenly distributed case, whereas in
the unevenly distributed case huge differences can occur.
For the LOS in factor 5 we simulated exponential distri-
butions (made discrete by use of binomial distributions)
with mean dependent on the factor setting.

Next, we generated some weightswrti defining the
contributions to the workload of periodi of allocat-
ing a block to surgeonr in period t. These weights

Jeroen Belïen and Erik Demeulemeester 329

vary linearly with the number of patients of surgeon
r operated in periodt that are still in the hospital in
period i. The patient’s workload contribution generally
decreases the longer the patient has already recovered
in the hospital. In our test set the workload demand
periods coincide with the shifts. Furthermore, we set the
contribution to a ”day” shift two times as large as the
one to an ”evening” shift and four times as large as the
one to a ”night” shift. Obviously, although attempting
to represent realistic scenarios, these contributions are
chosen somewhat arbitrarily.

Thirdly, we composed a set of collective agreement
rules which apply on individual roster lines. The schedul-
ing horizon amounted to 4 weeks or 28 days (= n). The
maximum days an active shift could be scheduled (”day”,
”evening” or ”night”) was set to 20 (= fmax). Shifts
during the weekends were marked as unpopular shifts:
day and evening shifts got a penalty of 1, night shifts got
a penalty of 2. The maximum number of consecutive
working days was set to 6 (=hmax

1 = hmax) and the
maximum number of consecutive rest days was set to
3 (= hmax

2). Furthermore, we distinguished between
two scenarios: a hard constrained scenario and a flexible
one. Collective agreement rules in the hard constrained
scenario differ from those in the flexible scenario on the
following two points:

• In the hard constrained scenario, there is only one
shift type allowed within each block. In other words,
no shift transitions between different shift types can
occur without scheduling a rest first. In the flexible
scenario, all shift transitions are allowed, except the
following three: a ”night” shift followed by a ”day”
shift, a ”night” shift followed by an ”evening” shift
or an ”evening” shift followed by a ”day” shift.

• In the hard constrained scenario, the maximal
penalty with respect to unpopular shifts is set to
4, whereas in the flexible scenario it is set to 8
(=gmax).

B. Savings

Table II contains the lower and upper bounds for
both the NSP and the GNSP. In the NSP, a surgery
schedule is generated randomly. The resulting workload
pattern contains the (fixed) right-hand side values of
the coverage constraints. Then, the NSP is solved using
column generation. In the GNSP, new surgery schedules
(and hence resulting workload patterns) are generated
during search if needed. We distinguish between the
flexible and the hard constrained scenario. To give an
idea of the variability, the detailed bounds are provided
for the first 9 and the last 9 problems of the problem set.

The last line contains the average bounds over the whole
set. Observe that the name of each problem (dijklm n)
contains the information about the surgery scheduling
subproblem:i stands for the setting of the first factor in
Table I (0 for the first setting, 1 for the second),j for
the second one, etc. . . , andn for the iteration number.

From these results one may conclude the following.
First have a look at the upper bounds, which are after all
the solutions that will be worked with. Although it is not
guaranteed that the upper bound will be better (one might
be lucky in the NSP and find the same or even a better
overall integer solution), the upper bounds for the GNSP
are generally better than those for the NSP. We compared
them using a one-tailed paired T-test. The extremely
small p-values obtained indicate that the differences are
statistically significant both for the flexible and for the
hard constrained case. The same results are obtained for
the lower bounds. Unlike the upper bounds, the GNSP
lower bounds are of course guaranteed to be at least as
good as the NSP lower bounds.

When comparing the lower bounds for the NSP with
the upper bounds for the GNSP, both scenarios entail
different conclusions. The average lower bound for the
NSP is lower than the average upper bound for the GNSP
in the flexible scenario, whereas the reverse is true in the
hard constrained scenario. Both differences turned out
to be significant using a one-tailed paired T-test (again
extremely small p-values). This observation can easily
be explained. The stricter the collective agreement rules,
the harder it is to nicely fit the nurse rosters into the
required workload pattern in the NSP. As the workload
pattern can be adapted in the GNSP, the GNSP includes
more possible savings in the case of severe collective
agreement requirements.

C. Interpretation of the savings

In the previous section we concluded that integrating
the surgery scheduling process with the nurse scheduling
process may yield important savings in terms of required
nurses to hire. In this section we identify the source of
these savings. Therefore, we provide an answer to the
question: ’Where lies the waste if one is considering the
surgery schedule (and hence the workload distribution)
as being fixed?’ It turns out that the origin of the waste
is twofold.

First of all, an unfavorable workload pattern may
contain many workload demands that slightly exceed the
workforce ofx nurses, but that are dramatically inferior
to the workforce ofx + 1 nurses. In terms of thedik’s
one could think of manydik’s having a small decimal
part, like e.g. 6.1, 8.2, 4.05 etc. . . This type of waste is

330 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

TABLE II

LOWER AND UPPER BOUNDS FOR THENSPAND THE GNSP

Flexible scenario Hard constrained scenario

NSP GNSP NSP GNSP

Nr. Problem lb ub lb ub lb ub lb ub

1 d000000 15 17 13 15 19 19 16 17

2 d000001 26 28 25 27 34 35 31 31

3 d000002 25 27 23 25 32 32 28 29

4 d000010 40 42 39 41 49 50 47 48

5 d000011 45 47 44 46 54 54 52 53

6 d000012 94 96 92 94 112 113 109 110

7 d000100 34 36 32 35 43 43 40 40

8 d000101 40 42 38 40 49 50 47 47

9 d000102 28 30 26 27 34 35 32 33

. .

88 d111010 96 98 94 96 114 115 112 113

89 d111011 99 102 97 99 119 120 116 116

90 d111012 122 125 119 121 145 146 142 143

91 d111100 83 85 80 82 101 102 96 96

92 d111101 111 113 109 111 138 139 132 132

93 d111102 58 60 56 58 73 74 67 68

94 d111110 252 254 249 252 303 304 296 297

95 d111111 119 122 116 119 143 144 139 140

96 d111112 135 137 131 133 162 163 156 157

Average 70.18 72.43 68.33 70.44 86.07 86.73 81.91 82.61

referred to as the waste due to the workforce surplus per
shift. In many hospitals this kind of waste is taken care
of by simply schedulingx nurses instead ofx+1 nurses
during those shifts. The result is a group of overworked
nurses and an almost for sure decrease in the quality
of care. This illustrates how the GNSP approach can
also be very useful for optimizing qualitative instead of
quantitative objectives.

Secondly, waste also originates from the inflexibility
of the roster lines, due to strict general agreement
requirements. Because of this, no set of roster lines can
be found that perfectly fit with the workload demand.
This source of waste is further referred to as waste due
to the inflexibility of roster lines.

Table III gives an overview of the importance of both
sources of waste. Hereby, we again distinguish between
the flexible scenario and the hard constrained scenario.
For each scenario there are three columns. The first
column contains the total waste in terms of overstaffing
in the NSP compared with the GNSP. These numbers are
obtained by subtracting the upper bounds for the GNSP
from those for the NSP. The second and third column
indicate the parts of this total waste that are due to the
workforce surplus per shift and to the inflexibility of
roster lines. These numbers can easily be calculated as

follows. Firstly, for both the NSP and the GNSP we make
the sum of the (integral) demands of the chosen workload
pattern. Call this number the total required workforce
(=

∑

i∈I di for the NSP and
∑

i∈I

∑

k∈K dikzk for
the GNSP). Next, divide this number by the workforce
per nurse (= fmax in our application). This gives the
minimal number of nurses that would be needed and
can be obtained in the case of fully flexible roster lines.
The difference between these numbers for the NSP and
GNSP is the waste due to the workforce surplus per shift.
The difference between the total waste and the waste due
to the workforce surplus per shift is the waste due to the
inflexibility of roster lines. Observe that these wastes
may be negative (e.g. the waste due to workforce surplus
per shift for problem d000002 is -1). This situation
occurs when the gain with respect to one source of
waste is so large that the best found solution for the
GNSP includes a limited sacrifice with respect to the
other source of waste.

The results in Table III clearly indicate that the im-
portance of the source of waste strongly depends on the
strictness of the general agreement requirements. The
stricter these requirements are, the larger is the share of
the waste due to the inflexibility of the roster lines.

Jeroen Belïen and Erik Demeulemeester 331

TABLE III

INTERPRETATION OF THE SAVINGS

Flexible scenario Hard constrained scenario

Waste due to Waste due to Waste due to Waste due to

Total workforce surplus inflexibility of Total workforce surplus inflexibility of

Nr. Problem waste per shift roster lines waste per shift roster lines

1 d000000 2 1.2 0.8 2 1.2 0.8

2 d000001 1 1.2 -0.2 4 1.4 2.6

3 d000002 1 2 -1 3 1 2

4 d000010 1 1.2 -0.2 2 0.6 1.4

5 d000011 2 1 1 1 0.2 0.8

6 d000012 2 1.6 0.4 3 0 3

7 d000100 1 1.4 -0.4 3 1 2

8 d000101 1 1.6 -0.6 3 1.6 1.4

9 d000102 1 1.8 -0.8 2 -0.6 2.6

. .

88 d111010 2 1.4 0.6 2 0.6 1.4

89 d111011 2 1.8 0.2 4 0.2 3.8

90 d111012 1 2.2 -1.2 3 0.2 2.8

91 d111100 2 1.6 0.4 6 0.8 5.2

92 d111101 2 0.8 1.2 7 0.6 6.4

93 d111102 1 2 -1 6 1.8 4.2

94 d111110 2 1.2 0.8 7 0.2 6.8

95 d111111 2 1.8 0.2 4 -0.6 4.6

96 d111112 1 2 -1 6 0.6 5.4

Average 1.58 1.43 0.16 4.11 0.28 3.84

D. Computational results

Table IV and Table V contain the computational
results for the flexible respectively hard constrained
scenario. For the NSP, both the computation time and
the number of generated roster lines are given. For the
GNSP also the number of generated demand patterns
and the number of nodes in the branch-and-bound tree
are provided.

Obviously, the required computation times for the
GNSP exceed those for the NSP. However, taking into
account the explosion of the feasible solution space
for the GNSP compared to the NSP, the increase in
computation time is rather small. We can conclude that
column generation is an excellent technique for solving
the GNSP.

If we compare the flexible scenario with the hard
constrained scenario, a couple of things attract the
attention. First of all, observe that for the NSP the
computation times for the flexible scenario surpass those
for the hard constrained scenario, whereas for the GNSP
the computation times for the hard constrained scenario
exceed those for the flexible scenario. For the NSP this
difference is statistically significant (extremely small p-
value for a two-tailed paired T-test) and easy to explain.

In the flexible scenario much more legal roster lines exist
and hence much more roster lines with negative reduced
cost are found during the search process (on average
207.25 versus 106.07). Moreover, the time needed to
price out a new roster line is also larger since the feasible
state space contains more legal states.

For the GNSP the difference in computation time is
not statistically significant at the 5% level (p-value of
0.113 for a two-tailed paired T-test). As again the number
of generated roster lines is significantly smaller (very
small p-value for a two-tailed paired T-test), the higher
computation times for the constrained scenario must be
produced by the higher number of generated workload
patterns and the higher number of nodes in the branch-
and-bound tree. The differences in number of generated
workload patterns and in nodes in the branch-and-bound
tree are found to be significant (very small p-values for
two-tailed paired T-tests). This can easily be explained
as follows. In the flexible scenario, it is unlikely that
an extra workload pattern improves the overall solution.
Thanks to the flexibility in the roster lines, an already
very good solution can be found using a limited set
of workload patterns. In the hard constrained case on
the other hand, the inflexibility of the roster lines might

332 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

obstruct the detection of a good solution. In this case, it
is far more likely that adding a new workload pattern
improves the overall solution. We can conclude that
the GNSP is easier to solve if the collective agreement
requirements are less strict, whereas the reverse is true
for the NSP.

As a final remark we note that a large part of the
computation time goes to the calculation of an overall
feasible solution in order to detect an upper bound after
each move in the branch-and-bound tree in the GNSP
and at the end of the column generation process in the
NSP.

TABLE IV

COMPUTATIONAL RESULTS FOR THE FLEXIBLE SCENARIO

NSP GNSP

Roster Roster Workload

Nr. Problem Time (s) lines Time (s) lines patterns Nodes

1 d000000 43484 150 44422 183 2 0

2 d000001 44063 174 51000 196 2 0

3 d000002 46423 235 45438 213 2 0

4 d000010 44078 173 46000 221 2 0

5 d000011 43829 167 45172 190 2 0

6 d000012 44844 212 48829 238 3 0

7 d000100 45266 211 70359 274 2 0

8 d000101 46311 237 185623 535 17 8

9 d000102 44594 208 166892 640 32 13

. .

88 d111010 44390 213 47984 243 2 0

89 d111011 44953 228 52031 257 2 0

90 d111012 44734 230 56438 280 2 0

91 d111100 46203 252 358811 555 30 15

92 d111101 45265 238 1765257 815 128 59

93 d111102 47359 200 423125 507 28 14

94 d111110 46360 347 69266 381 2 0

95 d111111 45719 243 59063 319 2 0

96 d111112 45048 237 251970 512 14 6

Average 44146.04 207.25 99008.57 310.31 5.93 1.95

TABLE V

COMPUTATIONAL RESULTS FOR THE HARD CONSTRAINED

SCENARIO

NSP GNSP

Roster Roster Workload

Nr. Problem Time (s) lines Time (s) lines patterns Nodes

1 d000000 453 46 66953 263 8 4

2 d000001 500 70 55359 304 18 6

3 d000002 422 64 11781 111 2 0

4 d000010 468 77 609 81 2 0

5 d000011 453 74 687 95 3 0

6 d000012 672 120 782 127 2 0

7 d000100 4250 113 216064 470 79 43

8 d000101 953 113 323236 448 129 47

9 d000102 750 80 201970 459 102 39

. .

88 d111010 2125 122 1656 130 2 0

89 d111011 1531 126 2625 146 2 0

90 d111012 1610 149 2109 159 2 0

91 d111100 1938 123 456191 439 58 17

92 d111101 1500 152 1228851 508 92 45

93 d111102 5438 101 102470 310 10 1

94 d111110 8000 251 12265 264 2 0

95 d111111 4859 143 19359 185 2 0

96 d111112 4922 153 1809557 600 221 83

Average 1215.52 106.07 153927.85 226.05 28.08 10.81

IX. CONCLUSIONS AND FURTHER RESEARCH

This paper presents an integrated approach for build-
ing nurse and surgery schedules. It has been shown
how the column generation technique, often employed
for solving nurse scheduling problems, can easily be
extended to cope with this integrated approach. The
approach involves the solution of two types of pricing
problems, the first one is solved with a standard dynamic
programming recursion, the second one by aims of a
state-of-the-art mixed integer programming optimizer. A
constraint branching scheme has been proposed to drive
the solution into integrality with respect to the workload
patterns while the integrality of the roster lines was left
out of the scope of this paper. Finally, some techniques
were presented that helped to improve the computational
efficiency of the branch-and-price algorithm.

Our computational results indicate that considerable
savings could be achieved by using this approach to build
nurse and surgery schedules. We simulated problems
for a large range of surgery scheduling instances and
distinguished between a flexible and a hard constrained
scenario with respect to the collective agreement require-
ments. Our conclusions can be summarized as follows.
First of all, column generation is a good technique to

Jeroen Belïen and Erik Demeulemeester 333

deal with the extra problem dimension of modifying
surgery schedules. Secondly, the obtained gains originate
from two sources of waste: waste due to the workforce
surplus per shift and waste due to the inflexibility of
roster lines. Thirdly, unlike the NSP, the GNSP turns out
to become harder to solve when the collective agreement
requirements are more strict.

Obviously, in real-life hospital environments it is not
so easy to modify the master surgery schedule. As the
surgery schedule can be considered to be the main engine
of the hospital, it not only has an impact on the workload
distribution for nurses, but also on several other re-
sources throughout the hospital. Think for instance about
anaesthetists, equipment, radiology, laboratory tests and
consultation. This observation yields a negative as well
as a positive note for the reasoning in this paper. The neg-
ative note is that the possible savings obtained through
integrating the nurse and the surgery scheduling process
are in real-life probably much smaller, due to the smaller
flexibility with which surgery schedules can be modified.
The positive note is that not only savings in nurse staffing
costs are possible, but also in other related resource
types, by integrating the scheduling of these resources
with the surgery scheduling process. This is probably
the main contribution of this paper. This work clearly
shows the benefits of integrating scheduling processes
in health care environments and moreover proposes a
methodology for implementing the heart of a supporting
ICT infrastructure.

Possible topics for further research include the ap-
plication of this approach in a real-world environment
involving a detailed report on the experienced merits and
pitfalls. From a theoretical point of view, it would be
interesting to elaborate this technique for one or more
of the other resource types stated above.

ACKNOWLEDGEMENTS

We acknowledge the support given to this project by
the Fonds voor Wetenschappelijk Onderzoek (FWO) -
Vlaanderen, Belgium under contract number G.0463.04.

REFERENCES

[1] H. Alfares and J. Bailey, “Integrated project task and manpower
scheduling,”IIE Transactions, vol. 29, pp. 711–718, 1997.

[2] H. Alfares, J. Bailey, and W. Lin, “Integrating project oper-
ations and personnel scheduling with multiple labor classes,”
Production Planning & Control, vol. 10, pp. 570–578, 1999.

[3] M. N. Azaiez and S. S. Al Sharif, “A 0-1 goal programming
model for nurse scheduling,”Computers and Operations Re-
search, vol. 32, pp. 491–507, 2005.

[4] J. F. Bard, C. Binici, and A. H. deSilva, “Staff scheduling at
the United States Postal Service,”Computers and Operations
Research, vol. 30, pp. 745–771, 2003.

[5] J. F. Bard and H. W. Purnomo, “A column generation-based
approach to solve the preference scheduling problem for nurses
with downgrading,”Socio-Economic Planning Sciences, vol. 39,
pp. 193–213, 2005.

[6] ——, “Preference scheduling for nurses using column genera-
tion,” European Journal of Operational Research, vol. 164, pp.
510–534, 2005.

[7] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savels-
bergh, and P. H. Vance, “Branch-and-price: Column genera-
tion for solving huge integer programs,”Operations Research,
vol. 46, pp. 316–329, 1998.

[8] N. Beaumont, “Scheduling staff using mixed integer program-
ming,” European Journal of Operational Research, vol. 98, pp.
473–484, 1997.

[9] J. Beliën and E. Demeulemeester, “Integer programming for
building robust surgery schedules,” Katholieke Universiteit Leu-
ven, Department of Applied Economics, Research Report OR
0446, 2004.

[10] J. T. Blake and M. W. Carter, “A goal programming approach to
strategic resource allocation in acute care hospitals,”European
Journal of Operational Research, vol. 140, pp. 541–561, 2002.

[11] J. T. Blake, F. Dexter, and J. Donald, “Operating room man-
ager’s use of integer programming for assigning block time
to surgical groups: A case study,”Anesthesia and Analgesia,
vol. 94, pp. 143–148, 2002.

[12] A. Caprara, M. Monaci, and P. Toth, “Models and algorithms
for a staff scheduling problem,”Mathematical Programming,
vol. 98, pp. 445–476, 2003.

[13] B. Cheang, H. Li, A. Lim, and B. Rodrigues, “Nurse roster-
ing problems - A bibliographic survey,”European Journal of
Operational Research, vol. 151, pp. 447–460, 2003.

[14] F. Dexter and A. Macario, “Changing allocations of operating
room time from a system based on historical utilization to one
where the aim is to schedule as many surgical cases as possible,”
Anesthesia and Analgesia, vol. 94, pp. 1272–1279, 2002.

[15] A. Guinet and S. Chaabane, “Operating theatre planning,”Int.
J. Production Economics, vol. 85, pp. 69–81, 2003.

[16] E. W. Hans, “Resource loading by branch-and-price tech-
niques,” Ph.D. Dissertation, Twente University Press, Enschede,
The Netherlands, 2001.

[17] W. L. Hughes and S. Y. Soliman, “Short-term case mix manage-
ment with linear programming,”Hospital and Health Services
Administration, vol. 30, pp. 52–60, 1985.

[18] B. Jaumard, F. Semet, and T. Vovor, “A generalized linear
programming model for nurse scheduling,”European Journal
of Operational Research, vol. 107, pp. 1–18, 1998.

[19] E. Litvak and M. C. Long, “Cost and quality under managed
care: Irreconcilable differences?”The American Journal of
Managed Care, vol. 6, pp. 305–312, 2000.

[20] A. J. Mason and M. C. Smith, “A nested column generator
for solving rostering problems with integer programming,”
in International Conference on Optimisation: Techniques and
Applications, 1998, pp. 827–834.

[21] A. Mehrotra, K. E. Murphy, and M. A. Trick, “Optimal shift
scheduling: A branch-and-price approach,”Naval Research Lo-
gistics, vol. 47, pp. 185–200, 2000.

[22] H. E. Miller, W. P. pierskalla, and G. J. Rath, “Nurse schedul-
ing using mathematical programming,”Operations Research,
vol. 24, pp. 857–870, 1976.

[23] D. M. Ryan and B. A. Foster, “An integer programming ap-
proach to scheduling,” inComputer Scheduling of Public Trans-
port Urban Passenger Vehicle and Crew Scheduling, A. Weren,
Ed. North-Holland, Amsterdam, 1981, pp. 269–280.

[24] USDHHS, Projected supply, demand and shortages of regis-
tered nurses: 2000-2020. National Center for Health Work-

334 ORP3, VALENCIA. SEPTEMBER 6-10, 2005

force Analysis. US Department of health and Human Services,
Rockville, MD, 2002.

[25] M. Van den Akker, H. Hoogeveen, and S. L. van de Velde,
“Combining column generation and lagrangian relaxation to
solve a single-machine common due date problem,”INFORMS
Journal on Computing, vol. 14, pp. 37–51, 2002.

[26] F. Vanderbeck, “On Dantzig-Wolfe decomposition in integer
programming and ways to perform branching in a branch-and-
price algorithm,”Operations Research, vol. 48, pp. 111–128,
2000.

[27] F. Vanderbeck and L. A. Wolsey, “An exact algorithm for IP
column generation,”Operations Research Letters, vol. 19, pp.
151–159, 1996.

[28] D. M. Warner, “Scheduling nursing personnel according to
nursing preferences: A mathematical programming approach,”
Operations Research, vol. 24, pp. 842–856, 1976.

[29] E. N. Weiss, “Models for determining estimated start times and
case orderings in hospital operating rooms,”IIE Transactions,
vol. 22, pp. 143–150, 1990.

