2,762 research outputs found

    Qos-aware fine-grained power management in networked computing systems

    Get PDF
    Power is a major design concern of today\u27s networked computing systems, from low-power battery-powered mobile and embedded systems to high-power enterprise servers. Embedded systems are required to be power efficiency because most embedded systems are powered by battery with limited capacity. Similar concern of power expenditure rises as well in enterprise server environments due to cooling requirement, power delivery limit, electricity costs as well as environment pollutions. The power consumption in networked computing systems includes that on circuit board and that for communication. In the context of networked real-time systems, the power dissipation on wireless communication is more significant than that on circuit board. We focus on packet scheduling for wireless real-time systems with renewable energy resources. In such a scenario, it is required to transmit data with higher level of importance periodically. We formulate this packet scheduling problem as an NP-hard reward maximization problem with time and energy constraints. An optimal solution with pseudo polynomial time complexity is presented. In addition, we propose a sub-optimal solution with polynomial time complexity. Circuit board, especially processor, power consumption is still the major source of system power consumption. We provide a general-purposed, practical and comprehensive power management middleware for networked computing systems to manage circuit board power consumption thus to affect system-level power consumption. It has the functionalities of power and performance monitoring, power management (PM) policy selection and PM control, as well as energy efficiency analysis. This middleware includes an extensible PM policy library. We implemented a prototype of this middleware on Base Band Units (BBUs) with three PM policies enclosed. These policies have been validated on different platforms, such as enterprise servers, virtual environments and BBUs. In enterprise environments, the power dissipation on circuit board dominates. Regulation on computing resources on board has a significant impact on power consumption. Dynamic Voltage and Frequency Scaling (DVFS) is an effective technique to conserve energy consumption. We investigate system-level power management in order to avoid system failures due to power capacity overload or overheating. This management needs to control the power consumption in an accurate and responsive manner, which cannot be achieve by the existing black-box feedback control. Thus we present a model-predictive feedback controller to regulate processor frequency so that power budget can be satisfied without significant loss on performance. In addition to providing power guarantee alone, performance with respect to service-level agreements (SLAs) is required to be guaranteed as well. The proliferation of virtualization technology imposes new challenges on power management due to resource sharing. It is hard to achieve optimization in both power and performance on shared infrastructures due to system dynamics. We propose vPnP, a feedback control based coordination approach providing guarantee on application-level performance and underlying physical host power consumption in virtualized environments. This system can adapt gracefully to workload change. The preliminary results show its flexibility to achieve different levels of tradeoffs between power and performance as well as its robustness over a variety of workloads. It is desirable for improve energy efficiency of systems, such as BBUs, hosting soft-real time applications. We proposed a power management strategy for controlling delay and minimizing power consumption using DVFS. We use the Robbins-Monro (RM) stochastic approximation method to estimate delay quantile. We couple a fuzzy controller with the RM algorithm to scale CPU frequency that will maintain performance within the specified QoS

    On the Practical use of Variable Elimination in Constraint Optimization Problems: 'Still-life' as a Case Study

    Full text link
    Variable elimination is a general technique for constraint processing. It is often discarded because of its high space complexity. However, it can be extremely useful when combined with other techniques. In this paper we study the applicability of variable elimination to the challenging problem of finding still-lifes. We illustrate several alternatives: variable elimination as a stand-alone algorithm, interleaved with search, and as a source of good quality lower bounds. We show that these techniques are the best known option both theoretically and empirically. In our experiments we have been able to solve the n=20 instance, which is far beyond reach with alternative approaches

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids

    Exact and heuristic allocation of multi-kernel applications to multi-FPGA platforms

    Get PDF
    FPGA-based accelerators demonstrated high energy efficiency compared to GPUs and CPUs. However, single FPGA designs may not achieve sufficient task parallelism. In this work, we optimize the mapping of high-performance multi-kernel applications, like Convolutional Neural Networks, to multi-FPGA platforms. First, we formulate the system level optimization problem, choosing within a huge design space the parallelism and number of compute units for each kernel in the pipeline. Then we solve it using a combination of Geometric Programming, producing the optimum performance solution given resource and DRAM bandwidth constraints, and a heuristic allocator of the compute units on the FPGA cluster.Peer ReviewedPostprint (author's final draft

    Planificación consciente de la contención y gestión de recursos en arquitecturas multicore emergentes

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 14-12-2021Chip multicore processors (CMPs) currently constitute the architecture of choice for mosto general-pùrpose computing systems, and they will likely continue to be dominant in the near future. Advances in technology have enabled to pack an increasing number of cores and bigger caches on the same chip. Nevertheless, contention on shared resources on CMPs -present since the advent of these architectures- still poses a big challenge. Cores in a CMP typically share a last-level cache (LLC) and other memory-related resources with the remaining cores, such as a DRAM controller and an interconnection network. This causes that co-running applications may intensively compete with each other for these shared resources, leading to substantial and uneven performance degradation...Los procesadores multinúcleo o CMPs (Chip Multicore Processors) son actualmente la arquitectura más usada por la mayoría de sistemas de computación de propósito general, y muy probablemente se mantendrían en esa posición dominante en el futuro cercano. Los avances tecnológicos han permitido integrar progresivamente en el mismo chip más cores y aumentar los tamaños de los distintos niveles de cache. No obstante, la contención de recursos compartidos en CMPs {presente desde la aparición de estas arquitecturas{ todavía representa un reto importante que afrontar. Los cores en un CMP comparten en la mayor parte de los diseños una cache de último nivel o LLC (Last-Level Cache) y otros recursos, como el controlador de DRAM o una red de interconexión. La existencia de dichos recursos compartidos provoca en ocasiones que cuando se ejecutan dos o más aplicaciones simultáneamente en el sistema, se produzca una degradación sustancial y potencialmente desigual del rendimiento entre aplicaciones...Fac. de InformáticaTRUEunpu

    Algorithms for Graph-Constrained Coalition Formation in the Real World

    Get PDF
    Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both their individual and collective goals. In this paper, we focus on a special case of coalition formation known as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. We propose a novel representation of this problem based on the concept of edge contraction, which allows us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic functions called m+am+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic scenarios, using a real-world dataset consisting of the energy consumption of a large number of households in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems of agents (i.e., with more than 2700 agents).Comment: Accepted for publication, cite as "in press
    corecore