36 research outputs found

    The Use of Agricultural Robots in Orchard Management

    Full text link
    Book chapter that summarizes recent research on agricultural robotics in orchard management, including Robotic pruning, Robotic thinning, Robotic spraying, Robotic harvesting, Robotic fruit transportation, and future trends.Comment: 22 page

    Machine Vision-Based Crop-Load Estimation Using YOLOv8

    Full text link
    Labor shortages in fruit crop production have prompted the development of mechanized and automated machines as alternatives to labor-intensive orchard operations such as harvesting, pruning, and thinning. Agricultural robots capable of identifying tree canopy parts and estimating geometric and topological parameters, such as branch diameter, length, and angles, can optimize crop yields through automated pruning and thinning platforms. In this study, we proposed a machine vision system to estimate canopy parameters in apple orchards and determine an optimal number of fruit for individual branches, providing a foundation for robotic pruning, flower thinning, and fruitlet thinning to achieve desired yield and quality.Using color and depth information from an RGB-D sensor (Microsoft Azure Kinect DK), a YOLOv8-based instance segmentation technique was developed to identify trunks and branches of apple trees during the dormant season. Principal Component Analysis was applied to estimate branch diameter (used to calculate limb cross-sectional area, or LCSA) and orientation. The estimated branch diameter was utilized to calculate LCSA, which served as an input for crop-load estimation, with larger LCSA values indicating a higher potential fruit-bearing capacity.RMSE for branch diameter estimation was 2.08 mm, and for crop-load estimation, 3.95. Based on commercial apple orchard management practices, the target crop-load (number of fruit) for each segmented branch was estimated with a mean absolute error (MAE) of 2.99 (ground truth crop-load was 6 apples per LCSA). This study demonstrated a promising workflow with high performance in identifying trunks and branches of apple trees in dynamic commercial orchard environments and integrating farm management practices into automated decision-making

    Tree Trunk Detection of Eastern Red Cedar in Rangeland Environment with Deep Learning Technique

    Get PDF
    Uncontrolled spread of eastern red cedar invades the United States Great Plains prairie ecosystems and lowers biodiversity across native grasslands. The eastern red cedar (ERC) infestations cause significant challenges for ranchers and landowners, including the high costs of removing mature red cedars, reduced livestock forage feed, and reduced revenue from hunting leases. Therefore, a fleet of autonomous ground vehicles (AGV) is proposed to address the ERC infestation. However, detecting the target tree or trunk in a rangeland environment is critical in automating an ERC cutting operation. A tree trunk detection method was developed in this study for ERC trees trained in natural rangeland environments using a deep learning-based YOLOv5 model. An action camera acquired RGB images in a natural rangeland environment. A transfer learning method was adopted, and the YOLOv5 was trained to detect the varying size of the ERC tree trunk. A trained model precision, recall, and average precision were 87.8%, 84.3%, and 88.9%. The model accurately predicted the varying tree trunk sizes and differentiated between trunk and branches. This study demonstrated the potential for using pretrained deep learning models for tree trunk detection with RGB images. The developed machine vision system could be effectively integrated with a fleet of AGVs for ERC cutting. The proposed ERC tree trunk detection models would serve as a fundamental element for the AGV fleet, which would assist in effective rangeland management to maintain the ecological balance of grassland systems

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Line-based deep learning method for tree branch detection from digital images

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.jag.2022.102759. © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensePreventive maintenance of power lines, including cutting and pruning of tree branches, is essential to avoid interruptions in the energy supply. Automatic methods can support this risky task and also reduce time consuming. Here, we propose a method in which the orientation and the grasping positions of tree branches are estimated. The proposed method firstly predicts the straight line (representing the tree branch extension) based on a convolutional neural network (CNN). Secondly, a Hough transform is applied to estimate the direction and position of the line. Finally, we estimate the grip point as the pixel point with the highest probability of belonging to the line. We generated a dataset based on internet searches and annotated 1868 images considering challenging scenarios with different tree branch shapes, capture devices, and environmental conditions. Ten-fold cross-validation was adopted, considering 90% for training and 10% for testing. We also assessed the method under corruptions (gaussian and shot) with different severity levels. The experimental analysis showed the effectiveness of the proposed method reporting F1-score of 96.78%. Our method outperformed state-of-the-art Deep Hough Transform (DHT) and Fully Convolutional Line Parsing (F-Clip).This research was funded by CNPq (p: 433783/2018–4, 310517/2020–6, 314902/2018–0, 304052/2019–1 and 303559/2019–5), FUNDECT (p: 59/300. 066/2015, 071/2015) and CAPES PrInt (p: 88881.311850/2018–01). The authors acknowledge the support of the UFMS (Federal University of Mato Grosso do Sul) and CAPES (Finance Code 001). This research was also partially supported by the Emerging Interdisciplinary Project of Central University of Finance and Economics

    Design, Integration, and Field Evaluation of a Robotic Blossom Thinning System for Tree Fruit Crops

    Full text link
    The US apple industry relies heavily on semi-skilled manual labor force for essential field operations such as training, pruning, blossom and green fruit thinning, and harvesting. Blossom thinning is one of the crucial crop load management practices to achieve desired crop load, fruit quality, and return bloom. While several techniques such as chemical, and mechanical thinning are available for large-scale blossom thinning such approaches often yield unpredictable thinning results and may cause damage the canopy, spurs, and leaf tissue. Hence, growers still depend on laborious, labor intensive and expensive manual hand blossom thinning for desired thinning outcomes. This research presents a robotic solution for blossom thinning in apple orchards using a computer vision system with artificial intelligence, a six degrees of freedom robotic manipulator, and an electrically actuated miniature end-effector for robotic blossom thinning. The integrated robotic system was evaluated in a commercial apple orchard which showed promising results for targeted and selective blossom thinning. Two thinning approaches, center and boundary thinning, were investigated to evaluate the system ability to remove varying proportion of flowers from apple flower clusters. During boundary thinning the end effector was actuated around the cluster boundary while center thinning involved end-effector actuation only at the cluster centroid for a fixed duration of 2 seconds. The boundary thinning approach thinned 67.2% of flowers from the targeted clusters with a cycle time of 9.0 seconds per cluster, whereas center thinning approach thinned 59.4% of flowers with a cycle time of 7.2 seconds per cluster. When commercially adopted, the proposed system could help address problems faced by apple growers with current hand, chemical, and mechanical blossom thinning approaches

    RS-Net: robust segmentation of green overlapped apples

    Get PDF
    Fruit detection and segmentation will be essential for future agronomic management, with applications in yield estimation, growth monitoring, intelligent picking, disease detection and etc. In order to more accurately and efficiently realize the recognition and segmentation of apples in natural orchards, a robust segmentation net framework specially developed for fruit production is proposed. This model was improved for the more challenging problem which segments the overlapped apples from the monochromatic background regardless of various corruptions. The method extends Mask R-CNN by embedding an attention mechanism for focusing more on the informative pixels but also suppressing the noise caused by adverse factors (occlusions, overlaps, etc.), which could be more suitable and robust for operating in complex natural environment. Specifically, the Gaussian non-local attention mechanism is transplanted into Mask R-CNN for refining the semantic features generated continuously by residual network and feature pyramid network, then the model forward processing based on the balanced feature levels and finally segments the regions where the apples are located. Experimental results verify the hypothesis of current work and show that the proposed method outperforms other start-of-the-art detection and segmentation models, the AP box and AP mask metric values have reached 85.6% and 86.2% in a reasonable run time, respectively, which can meet the precision and robustness of vision system in agronomic managemen

    Robotic Crop Interaction in Agriculture for Soft Fruit Harvesting

    Get PDF
    Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics goal for the past several decades. Limiting grower reliance on uncertain seasonal labour is an economic driver of this, but the ability of robotic systems to treat each plant individually also has environmental benefits, such as reduced emissions and fertiliser use. Over the same time period, effective grasping and manipulation (G&M) solutions to warehouse product handling, and more general robotic interaction, have been demonstrated. Despite research progress in general robotic interaction and harvesting of some specific crop types, a commercially successful robotic harvester has yet to be demonstrated. Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft fruit, such as plums, present problems for many of the techniques employed for their more robust relatives and require special focus when developing autonomous harvesters. Adapting existing robotics tools and techniques to new fruit types, including soft skinned varieties, is not well explored. This thesis aims to bridge that gap by examining the challenges of autonomous crop interaction for the harvesting of soft fruit. Aspects which are known to be challenging include mixed obstacle planning with both hard and soft obstacles present, poor outdoor sensing conditions, and the lack of proven picking motion strategies. Positioning an actuator for harvesting requires solving these problems and others specific to soft skinned fruit. Doing so effectively means addressing these in the sensing, planning and actuation areas of a robotic system. Such areas are also highly interdependent for grasping and manipulation tasks, so solutions need to be developed at the system level. In this thesis, soft robotics actuators, with simplifying assumptions about hard obstacle planes, are used to solve mixed obstacle planning. Persistent target tracking and filtering is used to overcome challenging object detection conditions, while multiple stages of object detection are applied to refine these initial position estimates. Several picking motions are developed and tested for plums, with varying degrees of effectiveness. These various techniques are integrated into a prototype system which is validated in lab testing and extensive field trials on a commercial plum crop. Key contributions of this thesis include I. The examination of grasping & manipulation tools, algorithms, techniques and challenges for harvesting soft skinned fruit II. Design, development and field-trial evaluation of a harvester prototype to validate these concepts in practice, with specific design studies of the gripper type, object detector architecture and picking motion for this III. Investigation of specific G&M module improvements including: o Application of the autocovariance least squares (ALS) method to noise covariance matrix estimation for visual servoing tasks, where both simulated and real experiments demonstrated a 30% improvement in state estimation error using this technique. o Theory and experimentation showing that a single range measurement is sufficient for disambiguating scene scale in monocular depth estimation for some datasets. o Preliminary investigations of stochastic object completion and sampling for grasping, active perception for visual servoing based harvesting, and multi-stage fruit localisation from RGB-Depth data. Several field trials were carried out with the plum harvesting prototype. Testing on an unmodified commercial plum crop, in all weather conditions, showed promising results with a harvest success rate of 42%. While a significant gap between prototype performance and commercial viability remains, the use of soft robotics with carefully chosen sensing and planning approaches allows for robust grasping & manipulation under challenging conditions, with both hard and soft obstacles
    corecore