1,854 research outputs found

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Segmentation of Infant Brain Using Nonnegative Matrix Factorization

    Get PDF
    This study develops an atlas-based automated framework for segmenting infants\u27 brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant\u27s brain at the isointense age (6-12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov-Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI

    A novel diffusion tensor imaging-based computer-aided diagnostic system for early diagnosis of autism.

    Get PDF
    Autism spectrum disorders (ASDs) denote a significant growing public health concern. Currently, one in 68 children has been diagnosed with ASDs in the United States, and most children are diagnosed after the age of four, despite the fact that ASDs can be identified as early as age two. The ultimate goal of this thesis is to develop a computer-aided diagnosis (CAD) system for the accurate and early diagnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists of three main steps. First, the brain tissues are segmented based on three image descriptors: a visual appearance model that has the ability to model a large dimensional feature space, a shape model that is adapted during the segmentation process using first- and second-order visual appearance features, and a spatially invariant second-order homogeneity descriptor. Secondly, discriminatory features are extracted from the segmented brains. Cortex shape variability is assessed using shape construction methods, and white matter integrity is further examined through connectivity analysis. Finally, the diagnostic capabilities of these extracted features are investigated. The accuracy of the presented CAD system has been tested on 25 infants with a high risk of developing ASDs. The preliminary diagnostic results are promising in identifying autistic from control patients

    Reconstruction par tractographie des fibres de la matière blanche chez l'adulte sain ou souffrant de lésions neurologiques

    Get PDF
    Le cerveau est l'un des organes les plus complexes et les plus méconnus du corps humain. Grâce à l'imagerie par résonance magnétique (IRM) et plus précisément l'imagerie de diffusion, il est maintenant possible de reconstruire la connectivité de la matière blanche. Avec le temps ou la maladie, le cerveau peut subir des altérations pouvant modifier la connectivité de la matière blanche. Il est important de prendre en compte ces altérations pour pouvoir effectuer des analyses précises des connexions cérébrales.\\ La majorité des algorithmes utilisés dans le domaine de l'imagerie cérébrale sont développés avec des images provenant de sujets jeunes et sains. Cependant, la réalité de la recherche appliquée et de la clinique est tout autre. Les outils utilisés doivent donc être modulaires, que ce soit pour le traitement d'un sujet sain, âgé ou souffrant d'une pathologie.\\ Premièrement, cette thèse présente une mise en contexte. Ensuite, cette thèse s'intéresse au développement de méthodes pour la tractographie en milieu pratique et d'outils automatisés de traitement de l'IRM de diffusion (IRMd). Le guide sur la tractographie en milieu pratique est un chapitre de livre qui a pour but de former et conseiller les chercheurs cliniciens pour l'obtention d'un tractogramme répondant à leurs besoins. Les outils développés dans cette thèse sont composés d'un algorithme de traitement de l'IRMd automatisé appelé TractoFlow, ainsi que d'un outil de segmentation robuste aux lésions de matière blanche liées au vieillissement appelé DORIS. TractoFlow permet d'obtenir un tractogramme à partir des images d'IRMd brute facilement, rapidement et de manière reproductible. Notre second algorithme, DORIS, permet d'obtenir une segmentation des tissus cérébraux en 10 classes à partir des mesures de l'IRMd tout en améliorant la qualité de la tractographie anatomiquement contrainte. En guise de discussion, cette thèse présente deux projets futurs: DORIS adapté aux lésions et la tractographie adaptative au tissu sous-jacent. DORIS adapté aux lésions à pour but d'ajouter une 11ème classe afin de segmenter les lésions liées à la sclérose en plaque. Ensuite la tractographie adaptive présente une nouvelle manière de reconstruire les fibres de matière blanche en adaptant les paramètre de reconstruction suivant le tissu traversé. Cette thèse vise donc à remplir 2 objectifs: le premier est de pouvoir traiter et analyser la connectivité cérébrale chez des sujets jeunes, des sujets âgés ou souffrant d'une pathologie, le second est de répondre aux besoins du milieu clinique et de la recherche appliquée en étant simple et modulaire. Finalement, cette thèse conclue en présentant l'impact des différents outils sur la communauté et en discutant de ma vision du futur de l'IRMd et de la tractographie.\

    Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator.

    Get PDF
    Deep brain stimulation (DBS) for Parkinson\u27s disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS

    Integrated navigation and visualisation for skull base surgery

    Get PDF
    Skull base surgery involves the management of tumours located on the underside of the brain and the base of the skull. Skull base tumours are intricately associated with several critical neurovascular structures making surgery challenging and high risk. Vestibular schwannoma (VS) is a benign nerve sheath tumour arising from one of the vestibular nerves and is the commonest pathology encountered in skull base surgery. The goal of modern VS surgery is maximal tumour removal whilst preserving neurological function and maintaining quality of life but despite advanced neurosurgical techniques, facial nerve paralysis remains a potentially devastating complication of this surgery. This thesis describes the development and integration of various advanced navigation and visualisation techniques to increase the precision and accuracy of skull base surgery. A novel Diffusion Magnetic Resonance Imaging (dMRI) acquisition and processing protocol for imaging the facial nerve in patients with VS was developed to improve delineation of facial nerve preoperatively. An automated Artificial Intelligence (AI)-based framework was developed to segment VS from MRI scans. A user-friendly navigation system capable of integrating dMRI and tractography of the facial nerve, 3D tumour segmentation and intraoperative 3D ultrasound was developed and validated using an anatomically-realistic acoustic phantom model of a head including the skull, brain and VS. The optical properties of five types of human brain tumour (meningioma, pituitary adenoma, schwannoma, low- and high-grade glioma) and nine different types of healthy brain tissue were examined across a wavelength spectrum of 400 nm to 800 nm in order to inform the development of an Intraoperative Hypserpectral Imaging (iHSI) system. Finally, functional and technical requirements of an iHSI were established and a prototype system was developed and tested in a first-in-patient study
    corecore