7 research outputs found

    Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels

    Get PDF
    BACKGROUND: Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. METHODS: We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. RESULTS: The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. CONCLUSION: The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management

    Investigating the impact of supervoxel segmentation for unsupervised abnormal brain asymmetry detection

    Get PDF
    Several brain disorders are associated with abnormal brain asymmetries (asymmetric anomalies). Several computer-based methods aim to detect such anomalies automatically. Recent advances in this area use automatic unsupervised techniques that extract pairs of symmetric supervoxels in the hemispheres, model normal brain asymmetries for each pair from healthy subjects, and treat outliers as anomalies. Yet, there is no deep understanding of the impact of the supervoxel segmentation quality for abnormal asymmetry detection, especially for small anomalies, nor of the added value of using a specialized model for each supervoxel pair instead of a single global appearance model. We aim to answer these questions by a detailed evaluation of different scenarios for supervoxel segmentation and classification for detecting abnormal brain asymmetries. Experimental results on 3D MR-T1 brain images of stroke patients confirm the importance of high-quality supervoxels fit anomalies and the use of a specific classifier for each supervoxel. Next, we present a refinement of the detection method that reduces the number of false-positive supervoxels, thereby making the detection method easier to use for visual inspection and analysis of the found anomalies.</p

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    WIFI BASED INDOOR POSITIONING - A MACHINE LEARNING APPROACH

    Get PDF
    Navigation has become much easier these days mainly due to advancement in satellite technology. The current navigation systems provide better positioning accuracy but are limited to outdoors. When it comes to the indoor spaces such as airports, shopping malls, hospitals or office buildings, to name a few, it will be challenging to get good positioning accuracy with satellite signals due to thick walls and roofs as obstacles. This gap led to a whole new area of research in the field of indoor positioning. Many researches have been conducting experiments on different technologies and successful outcomes have beenseen. Each technology providing indoor positioning capability has its own limitations. In this thesis, different radio frequency (RF) and non-radio frequency (Non-RF) technologies are discussed but focus is set on Wi-Fi for indoor positioning. A demo indoor positioning app is developed for the Technobothnia building at the University of Vaasa premises. This building is already equipped with Wi-Fi infrastructure. A floor plan of the building, radio maps and a fingerprinting database with Wi-Fi signal strength measurements is created with help of tools from HERE technology. The app provides real-time positioning and routing as a future visitor tool. With the exceeding amounts of available data, one of the highly popular fields is applying Machine Learning (ML) to data. It can be applied in many disciplines from medicine to space. In ML, algorithms learn from the data and make predictions. Due to the significant growth in various sensor technologies and computational power, large amounts of data can be stored and processed. Here, the ML approach is also taken to the indoor positioning challenge. An open-source Wi-Fi fingerprinting dataset is obtained from Tampere University and ML algorithms are applied on it for performing indoor positioning. Algorithms are trained with received signal strength (RSS) values with their respective reference coordinates and the user location can be predicted. The thesis provides a performance analysis of different algorithms suitable for future mobile implementations

    Brain tumour segmentation based on extremely randomized forest with high-level features

    No full text
    Gliomas are among the most common and aggressive brain tumours. Segmentation of these tumours is important for surgery and treatment planning, but also for follow-up evaluations. However, it is a difficult task, given that its size and locations are variable, and the delineation of all tumour tissue is not trivial, even with all the different modalities of the Magnetic Resonance Imaging (MRI). We propose a discriminative and fully automatic method for the segmentation of gliomas, using appearance-and context-based features to feed an Extremely Randomized Forest (Extra-Trees). Some of these features are computed over a non-linear transformation of the image. The proposed method was evaluated using the publicly available Challenge database from BraTS 2013, having obtained a Dice score of 0.83, 0.78 and 0.73 for the complete tumour, and the core and the enhanced regions, respectively. Our results are competitive, when compared against other results reported using the same database.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the project UID/EEA/04436/2013. Brain tumour image data used in this article were obtained from the MICCAI 2013 Challenge on Multimodal Brain Tumour Segmentation. The challenge database contain fully anonymized images from the Cancer Imaging Atlas Archive and the BraTS2012 challenge.info:eu-repo/semantics/publishedVersio

    Supervised learning-based multimodal MRI brain image analysis

    Get PDF
    Medical imaging plays an important role in clinical procedures related to cancer, such as diagnosis, treatment selection, and therapy response evaluation. Magnetic resonance imaging (MRI) is one of the most popular acquisition modalities which is widely used in brain tumour analysis and can be acquired with different acquisition protocols, e.g. conventional and advanced. Automated segmentation of brain tumours in MR images is a difficult task due to their high variation in size, shape and appearance. Although many studies have been conducted, it still remains a challenging task and improving accuracy of tumour segmentation is an ongoing field. The aim of this thesis is to develop a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from multimodal MRI images. In this thesis, firstly, the whole brain tumour is segmented from fluid attenuated inversion recovery (FLAIR) MRI, which is commonly acquired in clinics. The segmentation is achieved using region-wise classification, in which regions are derived from superpixels. Several image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomised trees (ERT) classifies each superpixel into tumour and non-tumour. Secondly, the method is extended to 3D supervoxel based learning for segmentation and classification of tumour tissue subtypes in multimodal MRI brain images. Supervoxels are generated using the information across the multimodal MRI data set. This is then followed by a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The information from the advanced protocols of diffusion tensor imaging (DTI), i.e. isotropic (p) and anisotropic (q) components is also incorporated to the conventional MRI to improve segmentation accuracy. Thirdly, to further improve the segmentation of tumour tissue subtypes, the machine-learned features from fully convolutional neural network (FCN) are investigated and combined with hand-designed texton features to encode global information and local dependencies into feature representation. The score map with pixel-wise predictions is used as a feature map which is learned from multimodal MRI training dataset using the FCN. The machine-learned features, along with hand-designed texton features are then applied to random forests to classify each MRI image voxel into normal brain tissues and different parts of tumour. The methods are evaluated on two datasets: 1) clinical dataset, and 2) publicly available Multimodal Brain Tumour Image Segmentation Benchmark (BRATS) 2013 and 2017 dataset. The experimental results demonstrate the high detection and segmentation performance of the III single modal (FLAIR) method. The average detection sensitivity, balanced error rate (BER) and the Dice overlap measure for the segmented tumour against the ground truth for the clinical data are 89.48%, 6% and 0.91, respectively; whilst, for the BRATS dataset, the corresponding evaluation results are 88.09%, 6% and 0.88, respectively. The corresponding results for the tumour (including tumour core and oedema) in the case of multimodal MRI method are 86%, 7%, 0.84, for the clinical dataset and 96%, 2% and 0.89 for the BRATS 2013 dataset. The results of the FCN based method show that the application of the RF classifier to multimodal MRI images using machine-learned features based on FCN and hand-designed features based on textons provides promising segmentations. The Dice overlap measure for automatic brain tumor segmentation against ground truth for the BRATS 2013 dataset is 0.88, 0.80 and 0.73 for complete tumor, core and enhancing tumor, respectively, which is competitive to the state-of-the-art methods. The corresponding results for BRATS 2017 dataset are 0.86, 0.78 and 0.66 respectively. The methods demonstrate promising results in the segmentation of brain tumours. This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. In the experiments, texton has demonstrated its advantages of providing significant information to distinguish various patterns in both 2D and 3D spaces. The segmentation accuracy has also been largely increased by fusing information from multimodal MRI images. Moreover, a unified framework is present which complementarily integrates hand-designed features with machine-learned features to produce more accurate segmentation. The hand-designed features from shallow network (with designable filters) encode the prior-knowledge and context while the machine-learned features from a deep network (with trainable filters) learn the intrinsic features. Both global and local information are combined using these two types of networks that improve the segmentation accuracy
    corecore