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Abstract 

 

Medical imaging plays an important role in clinical procedures related to cancer, such as 

diagnosis, treatment selection, and therapy response evaluation. Magnetic resonance imaging 

(MRI) is one of the most popular acquisition modalities which is widely used in brain tumour 

analysis and can be acquired with different acquisition protocols, e.g. conventional and 

advanced. Automated segmentation of brain tumours in MR images is a difficult task due to 

their high variation in size, shape and appearance. Although many studies have been 

conducted, it still remains a challenging task and improving accuracy of tumour segmentation 

is an ongoing field. The aim of this thesis is to develop a fully automated method for detection 

and segmentation of the abnormal tissue associated with brain tumour (tumour core and 

oedema) from multimodal MRI images. 

In this thesis, firstly, the whole brain tumour is segmented from fluid attenuated inversion 

recovery (FLAIR) MRI, which is commonly acquired in clinics. The segmentation is achieved 

using region-wise classification, in which regions are derived from superpixels. Several image 

features including intensity-based, Gabor textons, fractal analysis and curvatures are 

calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust 

classification. Extremely randomised trees (ERT) classifies each superpixel into tumour and 

non-tumour. Secondly, the method is extended to 3D supervoxel based learning for 

segmentation and classification of tumour tissue subtypes in multimodal MRI brain images. 

Supervoxels are generated using the information across the multimodal MRI data set. This is 

then followed by a random forests (RF) classifier to classify each supervoxel into tumour core, 

oedema or healthy brain tissue. The information from the advanced protocols of diffusion 

tensor imaging (DTI), i.e. isotropic (p) and anisotropic (q) components is also incorporated to 

the conventional MRI to improve segmentation accuracy. Thirdly, to further improve the 

segmentation of tumour tissue subtypes, the machine-learned features from fully convolutional 

neural network (FCN) are investigated and combined with hand-designed texton features to 

encode global information and local dependencies into feature representation. The score map 

with pixel-wise predictions is used as a feature map which is learned from multimodal MRI 

training dataset using the FCN. The machine-learned features, along with hand-designed 

texton features are then applied to random forests to classify each MRI image voxel into 

normal brain tissues and different parts of tumour.  

The methods are evaluated on two datasets: 1) clinical dataset, and 2) publicly available 

Multimodal Brain Tumour Image Segmentation Benchmark (BRATS) 2013 and 2017 dataset. 

The experimental results demonstrate the high detection and segmentation performance of the 
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single modal (FLAIR) method. The average detection sensitivity, balanced error rate (BER) 

and the Dice overlap measure for the segmented tumour against the ground truth for the clinical 

data are 89.48%, 6% and 0.91, respectively; whilst, for the BRATS dataset, the corresponding 

evaluation results are 88.09%, 6% and 0.88, respectively. The corresponding results for the 

tumour (including tumour core and oedema) in the case of multimodal MRI method are 86%, 

7%, 0.84, for the clinical dataset and 96%, 2% and 0.89 for the BRATS 2013 dataset. The 

results of the FCN based method show that the application of the RF classifier to multimodal 

MRI images using machine-learned features based on FCN and hand-designed features based 

on textons provides promising segmentations. The Dice overlap measure for automatic brain 

tumor segmentation against ground truth for the BRATS 2013 dataset is 0.88, 0.80 and 0.73 

for complete tumor, core and enhancing tumor, respectively, which is competitive to the state-

of-the-art methods. The corresponding results for BRATS 2017 dataset are 0.86, 0.78 and 0.66 

respectively. 

The methods demonstrate promising results in the segmentation of brain tumours. This 

provides a close match to expert delineation across all grades of glioma, leading to a faster and 

more reproducible method of brain tumour detection and delineation to aid patient 

management. In the experiments, texton has demonstrated its advantages of providing 

significant information to distinguish various patterns in both 2D and 3D spaces. The 

segmentation accuracy has also been largely increased by fusing information from multimodal 

MRI images. Moreover, a unified framework is present which complementarily integrates 

hand-designed features with machine-learned features to produce more accurate segmentation. 

The hand-designed features from shallow network (with designable filters) encode the prior-

knowledge and context while the machine-learned features from a deep network (with 

trainable filters) learn the intrinsic features. Both global and local information are combined 

using these two types of networks that improve the segmentation accuracy. 
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Chapter 1 

1 Introduction 

 

1.1 Problem statement 

The incidence rate of brain related tumours in the United Kingdom has been estimated to be 

approximately 11,000 cases in 2014 from which 46% were primary brain tumour (“Cancer 

Research UK,” n.d.). Although the relative occurrence of brain cancer is low compared to 

other types of adult cancers1, they affect significantly the lives of the people more than other 

types of cancer (“Cancer registration statistics, England Statistical bulletins - Office for 

National Statistics,” n.d.). 

Brain tumours can arise from abnormal growth of the cells inside the brain or can develop 

from cells that have spread to the brain from a cancer elsewhere. There are a wide variety of 

brain tumour types that are classified according to their cell of origin. The primary tumours 

are those started within the brain. The majority of primary brain tumours originate from glial 

cells (termed glioma) and are classified by their histopathological appearances using the World 

Health Organisation (WHO) system into low grade glioma (LGG) and high grade glioma 

(HGG). 

Medical imaging modalities are used for detection and assessment of tumours. Among 

different imaging modalities, magnetic resonance imaging (MRI) is one of the most widely 

used modalities for clinical diagnosis, treatment selection, prognosis and to aid surgery and 

radiotherapy planning (Fink et al., 2015). Due to the multimodal nature of MRI, which will be 

explained in Chapter 2, there are a range of image types and contrasts that enable a subtle 

radiological assessment of tumour type. 

Delineation of the tumour boundary and assessment of tumour size are needed for patient 

management in terms of treatment planning and monitoring treatment response (Eisele et al., 

2016), and current guidelines incorporate the use of conventional MR images (C-MRI) (Niyazi 

et al., 2016; Wen et al., 2010). C-MRI can also be useful to help define the target volumes for 

radiotherapy planning of high-grade gliomas (Aslian et al., 2013; Niyazi et al., 2016). Tumour 

assessment requires accurate full 3D volume measurement of the tumour which is obtained by 

manually drawing around the region of interest (ROI). Manual segmentation  around tumour 

margins on a slice-by-slice basis is time-consuming and can take 12 minutes or more per 

                                                      
1 The percentage of brain tumour was 3% of total cancer cases in the UK in 2014 (“Cancer Research 

UK,” n.d.). 
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tumour, with semi-automatic methods taking 3 to 5 minutes (Aslian et al., 2013; Odland et al., 

2015). Furthermore, a human has limitations in detecting the visual features of the image 

which increases the risk of human error in manual segmentation. Therefore, an automated 

segmentation that is not subject to operator subjectivity may be beneficial (Aslian et al., 2013), 

especially for the large-sized MRI data.  

 

1.2 Motivations 

Using computer-aided procedures for medical diagnosis and treatment tasks is a fast-growing 

field of research nowadays. Computer based analysis and measurements of medical images 

help the clinicians to obtain the measures and identifications faster and more accurate. Medical 

image analysis plays an important role in clinical procedures related to brain tumours by 

providing clinicians with automated (or semi-automated) computing tools to help them in 

diagnosis and treatment tasks. For brain tumours, accurate segmentation may aid the fast 

(approximately 5 minutes for each patient image) and objective measurement of tumour 

volume and also find patient-specific features that aid diagnosis and treatment planning 

(Gordillo et al., 2013). However, automated segmentation of brain tumours is a very 

challenging task due to their high variation in size, shape and appearance (e.g. image 

uniformity and texture) (Patel and Tse, 2004).   

Many segmentation methods have been proposed for brain tumour segmentation which will 

be reviewed in Chapter 3. Despite much effort being devoted to the segmentation problem, 

brain tumour segmentation remains an ongoing research topic.  

Most of the existing studies on brain tumour segmentation are performed on conventional MRI 

protocols, which are based on qualitative image intensities. Considering the advanced MR 

acquisition protocols, i.e. diffusion tensor imaging (DTI), in the segmentation process may 

provide more useful information to increase the accuracy. The isotropic (p) and anisotropic 

(q) diffusion components derived from DTI (Peña et al., 2006) provide parameters that relate 

to the microstructure of the brain tissues. The hypothesis of combining DTI and C-MRI is that 

they may provide quantitative features that increase the classification accuracy and improve 

tumour segmentation results. Furthermore, many LGG tumours do not show contrast 

enhancement hence conventional images are used to define the tumour extent and volume. A 

study has shown that LGG volume and growth rate can be used to assess whether patients are 

at risk with tumours likely to undergo an early malignant transformation (Rees et al., 2009). 

Using advanced MR techniques may tackle this problem which should be investigated by 

combining and comparing to the conventional MR protocols.  
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Learning based segmentation techniques require a lot of training data which increases the 

complexity and computing time and memory. Since most segmentation algorithms are based 

on pixel classification in single/multiple images, in the case of multimodal MR images, the 

large number of voxels to be processed will significantly increase computational burden. 

Partitioning the images into small subregions with homogenous properties will decrease the 

data dimensionality by decreasing the feature space. 

Due to the recent advances in deep neural networks (DNNs) in recognition of the patterns in 

the images, most of the recent tumour segmentations have focused on deep learning methods. 

Amongst DNNs, the methods based on deep convolutional neural networks (CNNs) has 

recently provided the best performance in the computer vision and brain tumour segmentation 

competitions. The CNNs can learn the image patterns in different levels of hierarchy and 

resolutions. However, the CNNs are, in fact, classifiers which have been used for whole-image 

classification (Krizhevsky et al., 2012) or local tasks such as object detection (Sermanet et al., 

2013). For the task of image segmentation in the pixel resolution level, CNNs have been 

modified by adding pre- or post-processing blocks (Hariharan et al., 2014). However, these 

approaches have limitations of lacking a whole end-to-end learning, since the additional blocks 

are independent from CNN training process. Recently, fully convolutional networks (FCN) 

have been suggested for dense (i.e. per-pixel) classification with the advantage of end-to-end 

learning (Long et al., 2015), without requiring those additional blocks in CNN-based 

approaches. FCN can take an input image with any size, yielding the hierarchy of the features, 

and provide dense prediction with input-matching size. Despite the advantage of dense pixel 

classification, FCN-based methods still have limitations of considering the local dependencies 

in higher resolution (pixel) level. The loss of data, which occurs in the pooling layers, results 

in coarse segmentation. This limitation will be addressed in this thesis by incorporating high 

resolution hand-designed textural features which consider local dependencies of the pixel. 

Texton feature maps (Arbelaez et al., 2011) provides significant information on multi-

resolution image patterns in both spatial and frequency domains. This is an inspiration to 

combine texton features to a partially end-to-end learning process in order to improve the 

segmentation. The term “partially” is considered for end-to-end learning since the proposed 

method in this thesis is trained on a pretrained model, which will be discussed later in Chapter 

6. 

Most classification-based techniques have proposed and/or optimised the hand-designed 

features, while deep learning based methods automatically learn the features from the images. 

A hypothesis is that combining both hand-designed and machine-learned features encodes 

global information and local dependencies into feature representation, which results in more 

accurate segmentation.  
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1.3 Aims and objectives 

The aim of this research is to develop automatic image processing techniques to accurately 

detect and segment the brain tumour tissue subtypes from multimodal MR images, including 

conventional and advanced acquisition techniques. This thesis will focus on statistical learning 

based medical image segmentation using hand-designed and machine-learned features. 

To achieve this aim, the following objectives are considered:   

 Developing and validating an automated method for a single MRI modality to segment 

the abnormal tumour part from the normal brain tissues. 

 Building a generic framework which combine both C-MRI and DTI to incorporate 

information from multimodal clinical MRI images. Since each imaging protocol contains 

specific features from the tissues, merging them together may provide more accurate 

segmentation of tumour tissue subtypes.  

 Exploring a new feature representation which combines hand-designed features (e.g. 

texton) considering local dependencies, and machine-learned features (from FCN) which 

provides better object localisation, for accurate segmentation of brain tumours.  

 Evaluating the proposed algorithms by conducting experiments on different datasets, i.e. 

a clinical dataset, which are acquired from St George’s Hospital Trust London, and a 

publicly available dataset of Multimodal Brain Tumour Image Segmentation Benchmark 

(BRATS) (“BRATS :: The Virtual Skeleton Database Project,” n.d.; Kistler et al., 2013; 

Menze et al., 2015). 

 

1.4 Contributions 

The main contribution of this thesis can be summarised as follows 

 Developing a fully-automated learning based method for detection and segmentation of 

the abnormal tissue associated with brain tumours as defined by the T2 hyperintensity from 

Fluid Attenuated Inversion Recovery (FLAIR) MRI as a single protocol (Chapter 4). The 

previous methods have used multi-protocols to perform the automatic segmentation (Davy 

et al., 2014; Havaei et al., 2017), while this thesis introduced a method that uses one single 

protocol to segment the tumour. However, this single-modality method is suitable for 

segmentation of the whole tumour. Further segmentation of the tumour tissue subtypes 

requires more protocols, which will be discussed later chapters.  

 Incorporating advanced MR acquisition protocols, i.e. DTI alongside with C-MRI for 

accurate segmentation of brain tumours by fusing the image intensities and features into 

a unified framework. The isotropic (p) and anisotropic (q) diffusion components derived 
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from DTI (Peña et al., 2006), which are related to the microscopic structures of the tissues, 

provide more information about tumour structure which improves the multi-class tumour 

segmentation (Chapter 5). Using DTI protocols in segmentation of brain tumour via 

superpixel analysis and random forest classification is one of the novelties of this thesis. 

 Proposing a unified framework for partitioning the multimodal MR images into small 

clusters (e.g. supervoxels) by incorporating the MR volumetric characteristics, i.e. voxel 

dimension and slice thickness. The previous methods (Su et al., 2013) have used the pixels 

in the raw slices without considering the voxel characteristics. The information from 

multimodal images is combined to produce supervoxel boundaries across multiple image 

protocols. The advantage of the supervoxel based method is that the required computation 

for classification in the new feature space can be significantly reduced (Chapter 5).  

 Proposing the histogram of texton descriptors particularly for  superpixels/supervoxels 

using Gabor filters as one of the main features, since they are able to distinguish various 

textural patterns in the image. The previous methods based on superpixel histogram 

(Fulkerson et al., 2009) have not used texton at a superpixel level. The previous texton-

based method (Yu et al., 2012) has used Gaussian filter banks. The related works, which   

used the histogram of Gabor filter responses as the representation of the features (Yi and 

Su, 2014), suggested using fixed-sized non-overlapping blocks of the images. In this 

thesis, flexible superpixel patches are used instead of the fixed blocks. Textons were 

calculated using a set of Gabor filters with different sizes and orientations, to increase the 

performance for classification of brain tumour superpixels (Chapter 4) and supervoxels 

(Chapter 5). Also, another novelty of texton features in Chapter 5 is using 3D Gabor filter 

banks for MRI volumetric datasets.  

 Proposing a novel fully automatic learning based segmentation method, by applying hand-

designed and machine-learned features to the state-of-the-art random forest (RF) 

classifier. The machine-learned FCN based features detect the coarse region of the tumour 

while the hand-designed texton descriptors consider the spatial features and local 

dependencies to improve the segmentation accuracy (Chapter 6). The previous Gabor-

based CNN methods either fused the Gabor filters to the architecture of CNN (Luan et al., 

2017) or used the feature maps from the Gabor filters as an input to the network (Yao et 

al., 2016). In this thesis, the Gabor-based textons features are considered as a 

neighbourhood system in the pixel level to compensate the loss of information that occurs 

in the pooling layers of the FCN.  

 

The current research has resulted in 5 papers (one published journal, one journal under 

revision, one magazine, and two conferences) that are listed in Appendix 1. 
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1.5 Thesis Structure 

Chapter 2 describes the clinical background of the brain tumour segmentation in MRI images. 

The focus will be on MRI acquisition technique which is common for brain tumour clinical 

tasks. Different MRI modalities will be explained. The datasets which are used for evaluation 

will be described followed by the evaluation protocols for brain tumour segmentation.  

Chapter 3 presents the technical literature review on brain tumour segmentation using different 

MRI modalities. The chapter will also analyse specifically the related research work which 

use the most common publicly available MRI dataset specialised for the field of brain tumour 

segmentation, i.e. Brain Tumor Image Segmentation Benchmark (BRATS), and the relevant 

challenge, i.e. Medical Image Computing and Computer Assisted Intervention (MICCAI).  

Chapter 4 investigates single modality learning based brain tumour segmentation using hand-

designed features. FLAIR is used to detect the tumour since it is the most common clinically 

acquired protocol to detect and segment complete tumour structure. The texton map will be 

generated from the FLAIR image, from which texton histogram is calculated for each 

superpixel and will then be used as one of the main features. Extremely randomised trees 

(ERT) classifier will be investigated which is a powerful classifier that can deal with high 

dimensional features and large-sized unbalanced data.   

Chapter 5 investigates multimodality brain tumour segmentation in three-dimensional space 

using hand-designed features. The texton histogram and feature maps are calculated for the 

supervoxels from the 3D image volume. The segmentation of brain tumour is developed 

further to its tissue subtypes, i.e. core and oedema, by defining multi-object classification 

problem. Effect of advanced MR imaging techniques (DTI) is also investigated and compared 

to conventional MRI protocols.  

Chapter 6 introduces using the combination of hand-designed and machine-learned feature for 

learning based segmentation of brain tumours. The machine-learned features are extracted 

from the FCN. The main idea is to overcome the drawbacks of machine-learned features by 

considering the local dependencies which are obtained by hand-designed textural features. The 

algorithm is also further extended to the segmentation of more details from the tumour 

structures, i.e. oedema, necrosis, enhancing and non-enhancing tumour cores. This will also 

make the method comparable with other state-of-the-art work which are using the public 

datasets.  

Chapter 7 summarises the thesis and provides the discussion and conclusion, and presents the 

future directions.   
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Chapter 2 

2 Clinical Background 

 

2.1 Introduction 

Application of medical imaging for brain tumour diagnosis has developed over the past 

decades. The aim of brain tumour imaging is to identify the location and size of the tumour. 

This will help the clinical tasks such as diagnosis, surgical and radiotherapy planning. It is also 

used to evaluate the treatment results, e.g. follow up study after treatment.  

Regarding the developments in MRI systems, they are now widely used for brain tumour 

patient evaluation tasks (Jenkinson et al., 2007). The advantages of MRI compared to other 

techniques, such as computed tomography (CT) images can be summarised as: high contrast 

between the soft tissues, higher resolution than CT, and non-ionising radiation.  

MRI sequences are generally classified into “conventional” and “advanced”. Conventional 

MRI (C-MRI) techniques provide qualitative images of the tissues. Advanced MRI images 

provide quantitative or semi-quantitative measurements of the brain tissues. In this chapter, 

firstly the conventional MRI will be introduced followed by its application in brain tumour 

diagnosis. Then, the advanced MRI techniques on diffusion imaging will be explained.   

2.2 Brain Tissues 

The brain is the most complex organ of the body and it consists of many parts. The most 

distinguished parts in MR images are Grey Matter (GM), White Matter (WM) and 

Cerebrospinal Fluid (CSF). GM is the major component of the brain. It consists of mostly body 

cells and few myelinated axons. WM contains myelinated axons and glial cells. CSF is a clear 

fluid exists in ventricular system inside and around the brain and spinal cord. 

 

2.3 Conventional MRI  

Magnetic resonance (MR) is defined as the result of interaction between the magnetic moment 

of a nucleus spin and an external magnetic field. Three types of magnets are used to create the 

MR signal and are electromagnet, permanent magnet, and superconducting magnet. 

Superconducting magnets are extensively used in modern MR scanners which can produce 

very strong fields of up to 8 Tesla. In current clinical application, the strength of 1.5 to 3 Tesla 

are used.  
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2.3.1 The Physics behind MRI 

MRI utilises the properties of spin to acquire images. The atom elements, i.e. protons, neutrons 

and electrons, spin around a central axis. Nuclei with an odd mass number (MR active nuclei), 

such as hydrogen (H1), create a net nonzero spin which acquire a magnetic moment. Their 

magnetic moment will align their axis of rotation when they are exposed to an external 

magnetic field.  

When no magnetic field is applied to a MR active nuclei, the magnetic moment of the nuclei 

is oriented in random directions. Therefore, the net magnetic field will be zero. By applying 

an external magnetic field of B0, the nuclei will align along the flux lines of field.  

When a hydrogen nucleus is exposed to an external magnetic field, a secondary spin will be 

added to its normal spin which is like wobbling around its magnetic moment around B0. This 

spin is called “precession” and forces the magnetic moments to have a circular precessional 

path at precessional frequency speed which is called “Larmor frequency”. 

 

2.3.2 Resonance  

Resonance is occurred when a radiofrequency (RF) pulse (“excitation” pulse) is applied at the 

same energy of precessing hydrogen nuclei at angle of 90 degrees to the field B0. At the 

resonance, two phenomena will occur which are energy absorption and phase coherence.  

In the presence of external magnetic field (B0), the number of spin-up and spin-down nuclei 

are equal (Figure 2-1-(a)). The net magnetisation vector (NMV) lies in the transverse (X-Y) 

plane (90), which is known as “flip angle”. The hydrogen nuclei absorb energy from the RF 

pulse. This will increase the number of high energy (spin-down) nuclei (Figure 2-1-(b)). The 

magnitude and duration of the RF pulse affect the magnitude of the flip angle. By increasing 

the magnetic field B0 the required energy for generating resonance will also increase. It should 

be noted that, the Figure 2-1 shows a schematic representation of NMV before and after 

applying the RF pulse to the MR active nuclei. 

Phase coherence occurs at resonance when the magnetic moment of hydrogen is aligned in the 

same position of the processional route around the magnetic field B0. This is also called in-

phase (coherent). It results in a superimposed magnetic vector in the X-Y plane which is 

depicted in Figure 2-1-(d) which is called transverse magnetisation. 
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a b 

  

c d 

Figure 2-1 Effect of applying RF pulse when the nuclei is exposed to the external magnetic 

field. NMV which is related to the spin-up and spin-down nuclei: a) without application of RF 

pulse, and b) when a RF pulse is applied the number of spin-down (high energy) nuclei 

increases which results in a NMV. Phase coherence: c) out of phase or incoherent in the 

absence of RF pulse, and d) in-phase or coherent when applying the RF pulse at Larmor 

frequency. 

 

2.3.3 MR Signal Generation 

To create a MR signal, a strong and constant magnetic field is applied to the target sample or 

tissue. As explained in Section 2.3.2, resonance produces in-phase magnetisation precessing 

in the transverse plane. This magnetisation can induce a voltage when it cuts across the receive 

coil which creates the MR signal. The magnitude of the signal is related to the amount of 

magnetisation in the transverse plane and the frequency of the signal is equal to Larmor 

frequency.  

After termination of the RF pulse, the nuclei will lose the energy obtained from the RF pulse 

and the NMV tries to realign with the external magnetic field B0. The magnetisation in 

longitudinal plane increases which is known as recovery and has exponential properties. 

Meanwhile, the magnetisation in the transverse plane decreases exponentially which is known 

as “decay”. The induced voltage magnitude in the receiver coil will decrease during the decay 

which is called free induction (FID) signal. The effect of applying RF pulse and creating the 

FID signal is depicted in Figure 2-2. 
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Figure 2-2 Effect of applying RF pulse and generating the FID signal, high energy or spin-

down (red) and low energy or spin-up (blue). 

 

2.3.4 Relaxation  

During the relaxation phase, the hydrogen nuclei will discard the energy that was absorbed 

when RF was applied. As a result, the NMV returns back to the initial B0 and the magnetic 

moments of hydrogen nuclei lose their coherency. The longitudinal magnetisation is recovered 

by the recovery process which is called T1 recovery. And the transverse magnetisation is 

decayed by the process T2 decay. Figure 2-3 presents the recovery and decay processes.  

 

   

a b 

Figure 2-3 a) T1 recovery curve which represents exponentially increasing longitudinal 

magnetisation. T1 recovery is the time taken for 63% of the longitudinal magnetisation (Mz) 

to recover b) T2 decay curve which represents the decay of magnetisation in transverse plane 

(Mxy) after switching off the RF pulse. T2 relaxation is the time taken for 63% of the transverse 

magnetisation to be faded. 

 

T1 Recovery 

When nuclei release their energy, which is called spin-lattice relaxation, it results in T1 

recovery. This leads the magnetic moments of nuclei to recover longitudinal magnetisation. 
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The recovery is exponential with T1 relaxation time which is the recovery time constant 

(Figure 2-3 (a)). The relaxation time is defined as the time taken for 63% of the longitudinal 

magnetisation to recover. T1 depends on the inherent characteristics of the tissue and the 

magnetic field strength.  

T2 Decay 

When the nuclei transfer the energy to the surrounding nuclei the result is a T2 decay which is 

the interaction of nuclear magnetic fields between the corresponding nucleus. The decay 

process will cause loss of magnetisation in the transverse plane which is also called spin-spin 

relaxation. The decay is exponential with T2 relaxation time which is the decay time constant 

(Figure 2-3 (b)). T2 decay time is defined as the time taken for 63% of the transverse 

magnetisation to be faded. T2 also depends on the inherent characteristic of the tissue and the 

magnetic field strength and is usually 5 to 10 times faster than T1 recovery time. 

 

2.3.5 Tissue Contrast 

By using a specific pulse sequence, the relaxation properties can be controlled which results 

in tissue contrast. The pulse sequence itself can be controlled by a combination of RF pulses, 

signal sampling and the time periods (Sprawls, 2000). Figure 2-4 shows a RF sequence in the 

upper area.  

 

Figure 2-4 RF sequence and the FID induced signal. TR and TE are related to the repetition 

time and echo time, respectively. 

 

RF pulses generate spin excitation of the nuclei and can manipulate them and a signal echo 

can be obtained. Magnetic field gradients can select the slice to be imaged and spatially encode 

the induced signal in the receiver coil. The frequency and phase of the received signal are 

encoded to obtain the location information. The intensity of the voxel in the MR image is 
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determined by three components which are: the number of protons in the voxel or “proton 

density”, T1 recovery,  T2 decay.  

Repetition time (TR) 

TR presents the time from the beginning of applying the RF pulse to the beginning of the next 

pulse which is measured in milliseconds. It also specifies the relaxation time which is 

applicable between the end of the first RF pulse and the next one which determines the amount 

of T1 relaxation (Figure 2-4).  

Echo time (TE) 

Echo time is the time from the beginning of the RF pulse to the peak time of the FID signal 

and is measured in milliseconds (Figure 2-4). It also specifies the decay time of transverse 

magnetisation which determines the amount of T2 relaxation. T1 and T2 properties depend on 

the tissue’s inherent energy, the density of the molecules, and how the molecular wobbling 

rate matches the Larmor frequency of hydrogen. Optimal tissue contrast can be determined by 

adjusting the TE and TR properties of the MR sequence for specific imaging protocols and 

clinical applications. Table 1 presents these properties. Table 1 presents T1 and T2 relaxation 

times for brain tissues at a magnetic field of 1 Tesla. Figure 2-5 presents the weighting of 

magnetic resonance images for different MR protocols. Figure 2-6 shows the effect of TE and 

TR on signal intensity for brain tissues. Different protocols can be obtained by determining 

these times. 

 

Table 2-1 T1 and T2 times for the brain tissues at magnetic field of B0 = 1 Tesla.  

 Tissue T1 (ms) T2 (ms) 

Water 2500 2500 

Grey matter 900 90 

White matter 500 100 

Fat 200 100 

CSF 2000 300 
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Figure 2-5 Weighting of MR imaging modalities. Mixed contrast is not used The image is 

recreated from (“MRI Signal weighting (T1, T2, PD) and sequences parameters,” n.d.). 

 

  

a b 

Figure 2-6 Signal intensity of brain tissues against: a) repetition time (TR), b) echo time (TE). 

The plots are from the Reference (McRobbie et al., 2006). 

 

2.3.6 Conventional MRI Protocols 

The conventional MRI protocols are generated using the tissue properties and TE and TR 

which were explained in Section 2.3.5 and Figure 2-5. The following sections will explain the 

C-MRI acquisition details. 

T1-weighted 

T1-weighted protocol is obtained when both TE and TR are short. This protocol usually 

provides excellent contrast between fluids, water-based tissues and fat-based tissues. In the 

case of brain images, it presents good contrast between GM and WM. In the brain tumour 

microstructures, the nuclei spins are influenced greatly by relaxation after 90 degree RF 

excitation. For the tissues without those microstructures, such as free fluids, the relaxation is 

slower. By selecting a low TR value (around 500 ms), three tissue types, i.e. CSF, brain tissue 

and fat will be clearly separable. In a T1-weighted image, the CSF appears hypointense, while 
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the brain tissues (GM and WM) appear with medium intensity and fat has considerable 

hyperintense values. Contrast agents can be injected to the patients to help increase the 

specificity by providing an extra set of images with different contrast which will be explained 

in the following section. 

Contrast-enhanced T1-weighted  

The contrast of the T1-weighted image can be improved by applying a contrast agent which is 

based on low molecular weight such as gadolinium (Gd). The electron configuration of the 

Gd3+ ion makes the molecule highly paramagnetic, and therefore enhances the relaxation. 

When the water molecules interact with the Gd ion, the T1 value is shorter which results in 

hyperintense appearance in the T1-weighted images.  

The idea of using contrast-enhancing agents for brain tumour imaging is that their molecules 

do not pass the blood vessel barriers inside the healthy brain tissues and remain inside the 

vessels. Malignant primary brain tumours cause damage to the blood brain barriers, thus the 

contrast agent comes out of vessels and leaks into the tissue space. The affected region will 

have shorter T1 which results in outstanding hyperintensity appearance on the T1-weighted 

images.  

The evaluation of both contrast-enhanced and non-contrast T1-weighted images is very 

important to distinguish between the lesions with bright T1 properties, i.e. fat, blood, and 

protein-containing lesions, from the contrast-enhanced ones (Ginat and Meyers, 2012). 

Contrast-enhanced T1-weighted protocol will be referred as T1-contrast in the following 

sections. 

T2-weighted 

T2-weighted protocol is obtained when both TE and TR are long. Regarding the T2 values of 

brain tissues, this protocol provides a good distinction between those brain parts, i.e. GM, 

WM, CSF, and scalp fat (Roberts and Mikulis, 2007).   

In the fluid spaces of tissues with higher mobility, the spin interactions occur in shorter times 

with slower loss of transverse coherence which leads to longer T2 time. On the other hand, for 

more constrained structures such as dense population of cells, the spin interactions are longer 

with faster loss of transverse coherence, which leads to shorter T2 time. Generally, in T2-

weighted images, fluids appear with high intensity, whilst water- and fat-based tissues are mid-

grey. Most of the tumours damage the microstructures of brain which prolong the T2 values 

of the affected tissue.  
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FLAIR 

A FLAIR image is created by applying a 180o RF pulse instead of 90o one, to increase the 

dynamic range of T1-weighted images (Figure 2-7). The 180o pulse will fully invert the 

longitudinal magnetisation (Mz) of all the underlying tissue opposite the B0, and therefore is 

called an “inverting pulse”. Therefore, Mz starts at a negative initial value and passes the zero 

value, which is also known as “null point”, and occurs at the time 𝑡𝑛𝑢𝑙𝑙  =  0.69 T1. A standard 

imaging sequence starting with a 90o RF excitation pulse will be applied at the time after the 

inversion pulse which is known as the recovery time (TI). The sequence of these pulses is 

shown in Figure 2-7-(a). At a specific time t, the different tissue intensities will be scaled by 

the value of Mz. By fixing the t to the null point of a specific tissue, e.g. CSF, the signal 

intensity of that tissue will be “suppressed” or scaled to zero. Since CSF has the longest T1, 

the FLAIR image will have the properties of a T2-weighted image while improving the 

separation of lesions with similar properties to CSF in a T2-weighted image. In other words, 

FLAIR protocol produces a T2-weighted image with a suppressed CSF signal, which makes 

it the most commonly protocol used for diagnosis of the non-enhancing lesions in brain 

tumours. TI controls the extent of separation in T1 (Figure 2-7-(b)) and hence the image 

contrast. 

 

  

a b 

Figure 2-7 Illustration of FLAIR imaging pulses and T1 recovery. a) the echo-pulse sequence 

of inversion recovery, b) The longitudinal magnetisation and its effect on the T1 recovery of 

different tissues. The images are recreated from (“Inversion recovery,” n.d.).   

 

Proton Density  

Proton density (PD) is obtained when TE is short and repetition time TR is long. This provides 

images based on minimising the impact of T1 and T2 differences. Therefore, PD can be 

considered as an intermediate sequence between T1- and T2-weighted which has less contrast 

compared to both protocols. The tissues with higher concentration of protons appear with 
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higher intensities in the image. For the case of brain imaging, the PD is not common nowadays 

and FLAIR is used instead (Simha et al., 2012).  

Figure 2-8 shows different C-MRI images acquired for a normal brain.  

 

a 

 

b 

 

c 

 

d 

 

e 

 

Figure 2-8 Example of C-MRI images for normal brain: a) FLAIR, b) T1-weighted, c) T2-

weighted, d) T1-contrast, and e) PD. 
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2.3.7 Limitations of Conventional MRI 

Conventional MRI modalities have two main limitations which are related to the spatial 

resolutions and contrast. During MR measurement time, which is 10-100 ms, the movement 

of water molecules is about 10 μm, which is considered as MR image resolution. This is not 

achievable in practice since water signal from this resolution is weak so cannot be 

distinguished from noise. A very long scanning time is required in order to detect such a weak 

signal and is not applicable in biological studies which restrict the actual resolution.  

The signal intensity of MRI is a greyscale value for each voxel which is acquired from the 

detected signal from protons of water molecule. Considering two separate anatomical regions 

with different properties, if they appear in one voxel, they will not be distinguishable with this 

contrast limitation of conventional MRI protocols, analysis of the related biological 

interpretations will be difficult. 

 

2.4 Diffusion MR Imaging  

To overcome the limitations of C-MRI, several advanced MR modalities have been developed 

such as diffusion, functional MRI (fMRI), and spectroscopy. Diffusion imaging modalities are 

of the most important advanced MRI techniques in neuroradiology (Huisman, 2010), which 

will also be investigated in this study alongside with conventional MR techniques. The most 

important types of diffusion MRI are diffusion weighted (DWI) and diffusion tensor imaging 

(DTI). The following sections are dedicated to description of the concept of diffusion and how 

MR images are generated based on the diffusion of water molecules in the brain structures.  

 

2.4.1 Magnetic Resonance Diffusion 

Diffusion is defined as the result of microscopic random thermal movements, which are also 

known as Brownian motion. The principle of diffusion imaging is based on the diffusion of 

water molecules in the brain which is determined by several factors such as type of tissue, 

temperature and microenvironmental structure of the surrounding area (Huisman, 2010). The 

magnitude and direction of diffusion of a water molecule is determined by the geometry of the 

environment which includes the water mass. In the case of brain microstructure, this is useful 

since they have very small size boundaries which can be determined by calculating the water 

tensor. These boundaries cannot be identified by conventional MRI.  

Diffusion has two different types: isotropic and anisotropic. The displacement of molecules 

can be modelled by a sphere when the water molecules move randomly in all directions. The 
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diffusion can be described by a single value, D, which is known as the isotropic constant 

(Figure 2-9 (a)). In the case the molecules are restricted by their surrounding environment, 

their diffusion occurs along axes (anisotropic). Therefore, the molecular displacements can be 

model by an ellipsoid (Figure 2-9 (b)).   

Diffusion-weighted (DW) sequences are generated by adding two magnetic field gradients 

while varying the magnetic field linearly across the tissue. The precessional frequency is 

related to the magnetic field strength, therefore the gradient will impose a precessional 

frequency which is position dependent. The spins acquire a phase while they are precessing 

over a duration of time. By applying a gradient with the same size and duration but with 180o 

(refocusing RF pulse), the phase will be reversed. Figure 2-10 shows a diffusion pulse 

sequence which is used to detect the diffusion signal.  

 

 

a 

 

 

b 

Figure 2-9 Schematic illustration for isotropic and anisotropic diffusion of water molecule in: 

a) the free space (isotropic), and b) restricted to tissue (anisotropic) 

 

Figure 2-10 Spin-echo sequence in diffusion weighted imaging. The shaded rectangles show 

the gradient pulses which induce (left block) and reverse (right block) the phase shift. The 

image is recreated from (Winston, 2012).  
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Phase depression depends on the strength (G), duration (δ), and time intervals (Δ) of the 

gradient field which are presented in Figure 2-10. The measure of sensation to diffusion, b-

value (in s/mm2), is calculated using the diffusion gradient characteristics and the Stejskal-

Tanner equation 

𝑏 =  (𝛾𝐺𝛿)2(∆ −
𝛿

3
) (2-1) 

where γ is the gyromagnetic ratio. The diffusion is measured by comparing the voxel signal 

intensity between low and high DW which corresponds to low and high b-values, respectively. 

The following section will explain the details of diffusion-weighted imaging.   

 

2.4.2 Diffusion Weighted Imaging 

The diffusion images are generated by comparing the images acquired with low and high b-

values, which are often 0 and 1000 s/mm2, respectively (Huisman, 2010). The image acquired 

with b = 0 s/mm2 is not sensitised for diffusion and is termed S0. This image is equivalent to a 

T2-weighted image without diffusion-weighting. The DW image, Sb, is acquired with a known 

b-value (e.g. b = 1000 s/mm2) and the same TE. The diffusion constant, D, of a voxel is then 

calculated using  

𝑆𝑏

𝑆0
=  𝑒−𝑏𝐷 (2-2) 

The calculated value of D in Equation (2-2) corresponds to diffusion in one direction. By 

measuring the diffusion in several directions, the signal loss versus S0 is measured and reflects 

the displacement in the corresponding direction of gradient.  

 

2.4.3 Imaging Using the Diffusion Tensor  

A tensor of size 3 × 3 is used to characterise the diffusion ellipsoid by modelling the coefficient 

along different directions and is called the diffusion tensor, D.  

𝑫𝑖,𝑗 =  [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] . (2-3) 

 

The diffusion tenor is symmetric with diagonal elements representing the mobility rate in each 

direction and non-diagonal elements representing the correlation between the orthogonal 

directions. 
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When the water molecules are moving freely, their motion will be random in all directions. 

Therefore, the displacement of the molecules is modelled by a sphere with a diameter which 

is determined by D. The centre of the sphere remains in the same position without moving.  

The anisotropic diffusion ellipsoid is described by three principal axes which are perpendicular 

to each other which are also called eigenvectors. The magnitudes and the directions of these 

axes are determined by the corresponding eigenvalues and eigenvectors, respectively. 

Therefore, six measurements are required to describe the anisotropic ellipsoid which are λi 

iϵ{1,2,3} and vi, iϵ{1,2,3}. 

  

 

a b 

Figure 2-11 Isotropic and anisotropic diffusion, their eigenvalues and corresponding 

directions. a) isotropic diffusion, and b) anisotropic diffusion. 

2.4.4 DTI Measures 

The diffusion parameters of the voxels are represented by 3D ellipsoids, which are difficult to 

be visualised for the whole brain. For the purpose of visualisation and to make them 

comprehendible by human observers, 2D scalar isotropic and noninotropic maps are used. 

Isotropic Diffusion Maps 

The magnitude of diffusion can be measured by the summation of the diagonal elements of D, 

or trace of the tensor  

𝑇𝑟 (𝑫) =  𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧 . (2-4) 

Tr(D) is orientation invariant which means that it is not sensitive to the orientations of 

microstructures or cells. 

The most basic measure of the diffusion is the mean diffusivity (MD) which is also known as 

the apparent diffusion coefficient. MD is calculated using  
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𝑀𝐷 =
𝑡𝑟 (𝑫)

3
 , (2-5) 

which can be considered equivalent to  

𝑀𝐷 =
𝜆1+𝜆2+𝜆3

3
 . (2-6) 

The map of isotropic diffusion provides a measure for the content of diffusivity without 

considering the directional properties of the diffusion.  

Anisotropic Diffusion Maps 

Measuring the diffusion anisotropy provides the directional characteristics of DW images. 

Several formulations have been proposed for measuring the diffusion anisotropy (Pierpaoli et 

al., 1996). A simple representation of the anisotropy is the ratio of the longest and shortest 

axes of the ellipsoid (λ1/λ3) which shows the elongation of the ellipsoid. The most common 

measure for anisotropy is fractional anisotropy (FA) which is calculated using 

𝐹𝐴 =  √
3

2
 
√(𝜆1−𝜆2)2+(𝜆2−𝜆3)2+(𝜆1−𝜆3)2

√𝜆1
2+𝜆2

2+𝜆3
2

 . (2-7) 

which is a scalar value in the range [0, 1]. The zero value represents pure isotropic while 1 is 

related to pure anisotropic diffusion.  

The scalar map of the whole brain can be generated by calculating MD and FA for each voxel. 

Therefore, the diffusion images are visualised similar to C-MRI with greyscale 2D slices.  

 

2.4.5 Decomposition of Tensor 

A tensor has nine elements in 3D space. To reduce the dimensionality of tensor, transformation 

is used to create a single scalar value. Also, more detailed measure of the tensor can be 

extracted by decomposing the diffusion tensor into its components, i.e. isotropic and 

anisotropic. An advanced decomposition technique for visualising more scalar measures  for 

the tensor is proposed by Peña et al. (Peña et al., 2006) which will be explained in the 

following. The tensor in Equation (2-3) is firstly decomposed using  

𝐷𝑖𝑗 = 𝐷𝐼𝑖𝑗 + [𝐷𝑖𝑗 − 𝐷𝐼𝑖𝑗] , (2-8) 

where Iij is the identity tensor. Regarding to Equation (2-8), the diffusion tensor is decomposed 

into two separate tensors. By considering the components as P and Q terms, Equation (2-8) 

can be rewritten as   
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𝐷𝑖𝑗 = 𝑃𝑖𝑗 + 𝑄𝑖𝑗 , (2-9) 

where P and Q represents the isotropic tensor and the deviatoric tensor, respectively. In other 

word, the decomposed tensors are  

𝑃 = 𝐷𝐼𝑖𝑗 , (2-10) 

𝑄 = 𝐷𝑖𝑗 − 𝐷𝐼𝑖𝑗 . (2-11) 

The magnitude of these tensors represents the isotropic (p) and anisotropic (q) components of 

the tensor which are calculated using  

𝑝 = √3𝑀𝐷 , (2-12) 

𝑞 = √(𝜆1 − 𝑀𝐷)2 + (𝜆2 − 𝑀𝐷)2 + (𝜆3 − 𝑀𝐷)2 , (2-13) 

where MD is calculated from Equation (2-6).  

Figure 2-12 shows DTI protocols (i.e. p- and q-map) for the same patient which was shown in 

Section 2.3.6 (Figure 2-8). 

  

a b 

Figure 2-12 MRI different protocols: a) p-map and b) q-map. 

 

2.5 Brain Tumours  

Brain tumours are caused by abnormal and uncontrolled growth of the cells inside the brain or 

spinal canal. The primary tumours are those started in the brain and are categorised in four 

main types: Gliomas, Meningioma, Pituitary adenomas and Nerve sheath tumours. The most 
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popular grading system for tumours is that suggested by the World Health Organisation 

(WHO). Regarding to the WHO grading system, the tumours are graded from I to IV, 

corresponding to least advanced to the most advanced diseases, respectively (Louis et al., 

2007). The most recent WHO classification of tumours was presented in 2016 (Louis et al., 

2016) which is the revised version of the 4th edition (Louis et al., 2007). Most brain tumours 

cause oedema that is a swelling around the tumour and occurs when fluid enters the brain 

tissue (Papadopoulos et al., 2004).  

 

2.5.1 Low-grade Glioma 

Low-grade glioma (LGG) are related to the primary central nervous system (CNS) neoplasm 

which is considered as the origin of the glial cell. They can be considered in WHO grade I and 

II categories which are less developed and tend to be more benign and have better prognosis. 

LGG includes many types of tumour with their own specific characteristics and treatments 

(Perry, 2003). The most common types of LGG tumours are astrocytomas, 

oligodendrogliomas and oligoastrocytomas which have more invasive and malignant 

properties (Cavaliere et al., 2005).  

LGG tumours have a wide range of imaging features which are related to their histological 

categories. LGG are hyper-intense on T2-weighted images and may appear with diffuse 

indistinguishable boundaries or focal shapes with clear borders. In this kind of tumour, a cyst 

may appear in the image and usually they have little oedema. Contrast imaging can enhance 

the appearance of 15-39% of LGG (Shaw et al., 2002). Grade III or grade IV tumours may 

also appear as LGG with the error rate of up to 30% (Scott et al., 2002). LGG are usually 

infiltrative which invade the normal brain tissue far from the tumour core in microscopic scale. 

Figure 2-13 shows examples of LGG tumours in C-MRI and DTI protocols. 
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d e f 

Figure 2-13 MRI images of low-grade glioma: a) FLAIR, b) T1-contrast, c) T2-weighted, d) 

PD, e) p-map, f) q-map. 

 

2.5.2 High-grade Glioma 

High-grade glioma (HGG) are the most aggressive type of glial tumours and tend to be 

malignant. They correspond to the WHO grade III and grade IV categories. The may be located 

in the cerebral hemisphere with infiltrate the sounding brain without causing substantial 

destruction. Therefore, the may cause enlargement of the affected brain structure. Some of 

them may have poorly distinguishable boundaries and their necrosis may include up to 80% 

of the tumour volume.   

In the MRI images, the HGGs appear as a heterogeneous mass with a surrounding oedema. 

They often have a necrosis in the central region with extensive oedema. Necrosis which is 

related to cellular membrane breakdown and oedema which related to increasing in 

extracellular water reduce the restriction which results in increasing the diffusivity. Advanced 

MRI techniques such as DWI, DTI, and dynamic contrast-enhanced MRI are increasingly used 

for the clinical HGG related tasks (Young, 2007). Several studies (Peña et al., 2006; Price et 

al., 2007, 2004; Wang et al., 2009) show that the metrics p and q can distinguish the 
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differences between tumour and normal brain tissues in terms of microstructural abnormalities 

related to tumour infiltration (Price et al., 2004). Figure 2-14 shows examples of HGG tumours 

in C-MRI and DTI protocols. 

 

   

a b c 

   

d e f 

Figure 2-14 MRI images of high-grade glioma: a) FLAIR, b) T1-contrast, c) T2-weighted, d) 

PD, e) p-map, f) q-map. 

 

2.6 Datasets Used in the Thesis 

Two datasets are used in this study to develop the algorithm and establish a comprehensive 

evaluation and comparison with other methods in the literature. The first dataset is the clinical 

data and the second set is publicly available data. The following subsections will describe the 

details of data acquisition, manual delineation and clinical evaluation protocols.  

2.6.1 Clinical Dataset 

The clinical dataset is obtained from St George’s Hospital Trust, London. There are two 

reasons to use this dataset. Firstly, alongside with the conventional MRI, the clinical dataset 

contains DTI protocols which are not included in the common publicly available dataset. 

Secondly, the original image properties from the clinical acquisition are preserved, different 
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from the public dataset which is interpolated and resized. The following sections will describe 

the conventional and DTI dataset, respectively. 

C-MRI Clinical Dataset 

The clinical patient data were acquired using a GE Signa Horizon LX 1.5T MRI system (GE 

Healthcare, Milwaukee, WI, USA). The imaging machine was equipped with a maximum field 

gradient strength of 22 mT/m and using a quadrature head coil.  

A cohort consisting of 19 patients were used, each with a brain tumour. The dataset consists 

of 6 grade II tumours, 3 grade III tumours, and 10 grade IV tumours. Patient ages at the time 

of scanning ranged from 22 to 73 (mean 54), and consisted of 7 females and 12 males. 

The FLAIR sequence images were acquired in the axial plane with a field of view (FOV) 240 

× 240 mm2, matrix size 256 × 256 and 5 mm slice thickness with no slice gap. The acquisition 

parameters were TE= 133 ms, TR = 9000 ms, and TI = 2200 ms. 

T1-weighted images were acquired in the axial plane with a field of view (FOV) 240 × 240 

mm2, matrix size 256 × 256 and 2.8 mm for T1 with no slice gap. The acquisition parameters 

were TE = 14 ms, TR = 600 ms, bandwidth = 122.1 Hz.  

T1-contrast images were acquired with intravenously administered contrast agent, 0.1 

mmol/kg gadoterate meglumine, Dotarem. 

T2-weighted images were acquired in the axial plane using a dual echo sequence with TR = 

3500 ms and TE=14/98 ms and FOV of either 220 × 220 mm2 or 240 × 240 mm2, a 256 × 256 

acquisition matrix, and 29 slices with 5 mm thickness (Jones et al., 2012).  

DTI Clinical Dataset 

DTI data were acquired using a diffusion-weighted spin-echo echo-planar imaging sequence. 

As explained in Section 2.4.2, b0 acquisition was made without diffusion gradients (i.e. b=0 

s/mm2). Diffusion weighted images were acquired using b=1000 s/mm2 with 12 gradient 

directions (Barrick and Clark, 2004). The FOV was 240 × 240 mm2 with a 96 × 96 acquisition 

matrix. In total 50 contiguous slices (2.5 mm in-plane resolution) were acquired with a slice 

thickness of 2.8 mm. TR and TE were 8 secs and 88 ms, respectively. The data was interpolated 

to a 256 × 256 matrix. The diffusion parameters p and q for isotropic and anisotropic diffusion 

respectively were calculated as proposed by Peña et al. (Peña et al., 2006) and explained in 

Section 2.4.5. 
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The multimodal dataset containing DTI protocols consists of 11 brain tumour patients from 

which 2 are grade III, and 9 are grade IV). Patient ages at the time of scanning ranged from 33 

to 73 years (mean age 53 and standard deviation 7).  

Clinical Ground Truth 

The ground truths (GT) are provided by a trained human expert. The annotation protocol and 

the corresponding GT labels are as follows  

0- Healthy brain tissues and background 

1- Oedema, which boundaries are drawn using the FLAIR images. Oedema appears hyper-

intense in the FLAIR images. 

2- Tumour core, which boundaries are drawn using T1-contrast images. Enhancing tumour 

appears hyper-intense and necrosis appears with low intensity in T1-contrast images.  

Figure 2-15 shows sample of tumour tissues, which are overlapped on FLAIR and p-map 

protocols. 

 

Figure 2-15 Brain tumour tissues (oedema and core) from the clinical dataset. Left) manual 

ground truth overlaid separately for each tissue on FLAIR (oedema) and DTI p-map (core) 

protocols. Right: the schematic illustration of the tissues.  
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2.6.2 MICCAI-BRATS Dataset 

The publicly available MICCAI-BRATS 2013  dataset, which was provided by Virtual 

Skeleton Database (VSD), has provided a standard and unique evaluation procedure to enable 

the researchers and academics to fairly compare the methods and also interpret the comparison 

of different methods. The first BRATS dataset was released in 2012. The training dataset for 

both BRATS 2012 and 2013 are the same, while their challenge datasets are different. 

Therefore, if an experiment is performed on any of the BRATS 2012 or 2013 training dataset, 

it can be compared to the other one. The most recent MICCAI-BRATS dataset was released 

in 2017 (Bakas et al., 2017a; Bakas et al., 2017b, Bakas et al., 2017c). The most accurate 

method proposed in this thesis (Chapter 6) will then be evaluated on BRATS 2017 challenge 

dataset. It should be noted that the BRATS 2015 was not used in this thesis for the reason that 

the corresponding ground truth was provided by interpolation of the selected manually 

annotated slices. Since the clinical dataset was segmented manually for all slices, it was 

deemed difficult to conduct a fair comparison.  

C-MRI Public Dataset 

The total patient dataset, which were used from BRATS 2013 challenge, consists of 40 multi-

contrast MR scans of glioma patients. They are divided into training and testing datasets.  For 

those training set, the ground-truths are provided by a trained human expert (Menze et al., 

2015). The annotated training dataset consists of 30 patient MRI scans of which 20 are HGG 

and 10 are LGG. The test dataset consists of 10 cases with LGG. For each patient data, T1, 

T2, FLAIR, and post-Gadolinium T1 MR images are available. Data were acquired from 

multi-centres and using different scanners with different field strengths (1.5 T and 3T). 

BRATS 2017 dataset, consists of 285 training (including 210 HGG and 75 LGG) and 46 

validation patient cases.  

The dataset has been already skull-removed, registered and interpolated by the BRATS 

challenge organisers.  

BRATS Ground Truth 

The ground truths provided by VSD system are four tumour structures which are annotated by 

experts which are labelled as follows: oedema, necrosis non-enhancing tumour, enhancing 

tumour, other tissues and background. 

The BRATS challenge dataset was annotated by a team of 5 trained radiologists who drew 

outlines of the tumour structures in the axial slices. 3D slicer software (“3D Slicer,” 2017) was 

used to perform the segmentation. They segmented every third slice and the outlines were 

interpolated using region growing and a final visual correction was carried out by the experts. 

The annotation from the experts were then fused together to obtain a single segmentation and 
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decrease the inter-observer error. The annotation fusing was accomplished by a voting 

approach in which the highest class was assigned (i.e. the class that at least 50% of the 

observers agree on). The 30 training dataset was segmented by four observers and the 2013 

test set was segmented by one observer.  

The protocol for manual annotation of tumour structures in BRATS challenge is described 

below: 

1) Oedema was segmented from T2 and FLAIR images. T2 was used for the initial 

segmentation and then FLAIR was used to check the extension of oedema and discriminate it 

from other tissues such as necrosis and ventricles.  

2) The complete tumour core which includes all three tumour structures was segmented using 

hyper-intensity regions in T1-contrast with the heterogeneous region of hyper-intense and 

hypo-intense lesion in T1.  

3) The enhancing core of tumour was segmented using T1-contrast using thresholding on the 

complete tumour core region segmented in part 2 which results in keeping the Gadolinium and 

subtracting the necrosis tissue. The threshold levels were determined individually for each 

case by visual inspection. 

4) Necrosis or fluid-filled core was segmented using T1-contrast in the low-intensity structures 

inside the enhancing tumour which was segmented in part 3. For the rare haemorrhages the 

same label was considered.  

5) Non-enhancing core was considered as the remaining part of the complete tumour core 

which were not detected in parts 3 and 4, therefore they were obtained by subtracting the 

corresponding regions from the complete tumour. 

 

2.7 Evaluation Protocol 

The clinical dataset was evaluated using binary- and multi-label classification as follows: (1) 

“complete tumour” which includes oedema and tumour core, and (2) Tumour core. 

The VSD evaluation system categorised and grouped the tumour structures into three non-

overlapped regions that are suggested to better represent the clinical application tasks (Menze 

et al., 2015). The tumour regions in BRATS 2013 and 2017 challenges are as follows: (1) 

“complete tumour” which includes all the four structures, (2) “tumour core” which includes 

necrosis, enhancing and non-enhancing, and (3) “active tumour” which includes the enhancing 
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tumour only and is unique to HGG patients. It should be noted that in the BRATS 2017 dataset, 

the enhancing and the necrosis were merged together to form one class label. 

Evaluation and comparison with the state-of-the-art methods is an important part of any newly 

proposed research work. The evaluation approach in the field of brain tumour segmentation is 

comparing to the ground-truths which are provided by the expert.  

 

2.7.1 Evaluation of Classification  

Regarding the true class and estimated class labels, the following categories can be considered: 

 TP: Number of abnormal data classified correctly as abnormal.  

 TN: Number of normal data classified correctly as normal. 

 FP: Number of normal data classified incorrectly as abnormal. 

 FN: Number of abnormal data classified incorrectly as normal. 

Table 2-2 illustrates the above-mentioned classification categories.  

 

Table 2-2 The classification evaluation categories. 

 
Predicted Class 

Normal Abnormal 

True 

Class 

Normal 
True Positive 

(TP) 

False Negative 

(FN) 

Abnormal 
False Positive 

(FP) 

True Negative 

(TN) 

 

For assessment of the classification, the following standard five measures, i.e. accuracy, 

precision, sensitivity, specificity, and balanced error rate (BER), are calculated using 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2-14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (2-15) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , (2-16) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 , (2-17) 

 𝐵𝐸𝑅 =  1 − 0.5 ×
Sensitivity+Specificity

100
, (2-18) 

 

2.7.2 Evaluation of Segmentation  

Several studies have used different combinations of tumour parts for evaluation of their 

methods. This makes it difficult to compare different methods which used different tumour 

parts. The most common tumour parts are provided by the BRATS challenge organisers. The 

methods which used their standard can be compared fairly and more accurately. It should be 

noted that, in the specific case of BRATS challenge dataset, the segmented masks were 

uploaded to the VSD website and evaluated by the corresponding online system (blind test). 

Several methods have been used for evaluation of segmentation results, including Dice 

similarity score (DSC), sensitivity, and positive predictive value (PPV). Figure 2-16 shows the 

segmented regions which are used for evaluation of the segmentation method. 

 

Figure 2-16 Schematic illustration of the regions which are used for evaluation of the 

segmentation, i.e. Dice score, PPV and sensitivity. Red boundaries represent the manual 

annotation (ground truth) and the blue areas represent the boundaries of the segmented region 

using the automated methods.   

DSC (Dice, 1945) is the common overlap measure for evaluation of the segmentation, which 

is also the main evaluation metric in BRATS challenge (Menze et al., 2015). DSC represents 

the overlap between the manual and segmented volumes/masks which is defined as 

𝐷𝑆𝐶 =  
2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
 . (2-19) 
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DSC can also be calculated by  

𝐷𝑆𝐶 =   
2|𝑀⋂𝑆|

|𝑀|+|𝑆|
   (2-20) 

where, M and S are the manual and proposed segmentation masks, respectively. Range of Dice 

scores are 0 to 1 with closer to 1 representing better segmentation. 

PPV is defined as 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (2-21) 

which is a measure of the number of false positives and true positives. 

 

2.8  Clinical Expectations 

The results of an automatic segmentation method need to be accurate and reproducible for 

measuring the tumour size and its changes over time. Volumetry of the tumour is very 

important for clinical tasks such as diagnosis, treatment planning and patient monitoring. In 

order to measure an accurate volumetry, the operator should be able to outline the tumour and 

distinguish between different tumour tissue subtypes. This task requires a significant skill and 

expertise in tumour diagnostic and handling the corresponding computer tools (Meier et al., 

2016).  

Manual tumour delineation is a time consuming task. With the current tools, the average time 

of manual segmentation is approximately 10 minutes per tumour (Egger et al., 2013).  

The agreement between the result of automatic segmentation and the manual ground truth is 

calculated by overlap measures such as Dice similarity score. It is difficult define a specific 

value to qualify the agreement criterion. However, Egger et al. (Egger et al., 2013) suggested 

that a Dice score of 0.88 is an acceptable agreement between a segmentation method and 

clinical ground truth.  

An accurate segmentation can be used to calculate the volumetric size and bidimensional 

measure of a tumour. Bidimensional measure is used for response assessment of high-grade 

glioma in current clinical guidelines (Chinot et al., 2013). 
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2.9 Summary 

This chapter provided the clinical background for brain tumour segmentation in MRI. The 

conventional and DTI MRI acquisition techniques were explained. Each modality provides a 

specific characteristic of the tissue which may be not apparent in other protocols. The 

application of different MR protocols in brain tumour segmentation were explained by 

emphasising the importance of DTI imaging techniques which provide more information about 

the microstructure of the brain tissues. Clinical and publicly available datasets were described 

which will be used for the experiments followed by the evaluation protocols. The next chapter 

will explain and discuss the related work in the field of brain tumour segmentation using 

different MRI modalities.  
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Chapter 3 

3 Literature Review 

 

3.1 Introduction 

As discussed in Chapter 2, MRI is the most common diagnosis modality for brain tumour 

studies (Wen et al., 2010), therefore MRI imaging modality research in this field will be 

reviewed. Different brain tumour types were explained in Chapter 2. Gliomas are the most 

common primary brain tumour with the occurrence rate of 70% in adults with malignant 

tumours (Bauer et al., 2013), which will be investigated in this thesis. There are a number of 

grand challenges provided for the task of brain tumour segmentation from MR images. The 

most popular challenge is BRATS (“MICCAI BRATS - The Multimodal Brain Tumor 

Segmentation Challenge,” n.d.)  in conjunction with MICCAI conference series (Menze et al., 

2015). The research work and the challenge trend will also be reviewed.   

The aim of image segmentation is to partition the image into regions which in medical imaging 

may correspond to the tissue type, structure or function (Bauer et al., 2013). Segmentation of 

a brain tumour in MRI is a challenging task due to the complicated tumour properties and 

inherent MR imaging characteristics. In terms of brain tumour structures, they usually appear 

with different texture and irregular boundaries. As discussed in Chapter 2, the tumour borders 

may be unclear and discontinuous due to infiltration. In terms of MR image characteristics, 

there are several limitations which make the segmentation a challenging task. For example, 

the contrast agent dosage and the acquisition time may affect the tumour appearance in the 

image and provide different intensities for the same tissue. The slice thickness (Z direction) of 

image acquisition is usually higher than the in-plane resolutions (X and Y directions) which 

causes partial volume effects. To detect more detailed tumour structures, using different 

modalities is essential. In this case, the accurate registration of different modalities is very 

crucial and a challenging task which will affect the final segmentation results.   

The MRI brain tumour segmentation techniques have been reviewed by Angelini et al. 

(Angelini et al., 2007), Bauer et al. (Bauer et al., 2013), and Gordillo et al. (Gordillo et al., 

2013). However, the studies are still growing and many improvements have been achieved 

recently owning to the significant advances in learning-based methods (Kamnitsas et al., 2017) 

especially deep learning (Havaei et al., 2017).  Therefore, this chapter provides an overview 

of the state-of-the-art methods in the field especially the learning-based methods.  

In the literature, different categorisation for the segmentation techniques are suggested. Bauer 

et al. divided the brain tumour segmentation algorithms into automatic and semi-automatic 
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approaches (Bauer et al., 2013). Gordillo et al. (Gordillo et al., 2013) categorised the tumour 

segmentation methods into supervised and unsupervised approaches. Menze et al. categorised 

the segmentation techniques into generative and discriminative models (Menze et al., 2015). 

The following sections are organised mainly based on the categories suggested by Gordillo et 

al. (Gordillo et al., 2013). However, the supervised techniques, i.e. the segmentation methods 

based on classical classifiers and deep learning will be explained and discussed in more detail.  

 

3.2  Unsupervised Methods 

Unsupervised segmentation techniques are used when the images are unlabelled. They can be 

performed based on features from anatomic or image-based objective measures (Gordillo et 

al., 2013). The aim of unsupervised methods based on an anatomic objective measure is to 

segment the image into anatomical meaningful regions. The unsupervised methods based on 

image-based features are evaluating the regions which have similar image features, e.g. 

intensity, texture, etc. These methods are stronger in handling more complicated segmentation 

tasks, e.g. subparts of heterogenous tumours (Gordillo et al., 2013). However, the lack of prior 

knowledge in brain tumour segmentation tasks makes them challenging for these type of 

methods (Popuri et al., 2012).  Some popular unsupervised methods, e.g. k-means and fuzzy 

c-means (FCM), will be explained in the following sections. 

 

3.2.1 K-Means Clustering 

The aim of k-means clustering is to partition a set of observations (x1, x2, …xN) into k clusters 

S = {S1, S2, …, Sk}. K-means is an iterative algorithm, in which the centre of clusters (c1, c2, 

…, ck) are updated to find the optimum clusters, and is initialised by randomly selecting k data 

points as initial cluster centres. The objective is choosing the centres so that to minimise the 

function  (Hartigan and Wong, 1979)  

J = ∑ ∑  ‖𝑥𝑖 − 𝑐𝑗‖
2

𝑥𝑖∈𝑆𝑗

 

𝑘

𝑗=1

  , (3-1) 

where the centre of clusters, cj, is calculated from 

𝑐𝑗 =  
1

|𝑆𝑗|
∑ 𝑥𝑖

𝑥𝑖∈𝑆𝑗

  . (3-2) 

In MRI brain images with unclear or infiltrative tumour boundaries, it is difficult to decide if 

a voxel belongs to which tissue class. To tackle this problem, integrating fuzzy concepts to the 

algorithms such as k-means may improve the segmentation results. 
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3.2.2 Fuzzy C-Means 

Fuzzy c-means incorporates the fuzzy concept to k-means, in which each data point can belong 

to more than one cluster. The data points have sets of weights that indicate the degree of their 

belonging to the clusters. The weights are represented by W = wij, where wij is the degree of 

data point xi belonging to the cluster j with the centroid cj. The centroid is the mean of all 

points weighted by wij, and calculated using (Bezdek et al., 1984) 

𝑐𝑗 =  
∑ 𝑤𝑖𝑗

𝑚𝑁
𝑖=1  .  𝑥𝑖

∑ 𝑤𝑖𝑗
𝑚𝑁

𝑖=1

  , (3-3) 

where m is the fuzzy partition exponent which controls the degree of fuzzy overlap (m ≥ 1). 

The objective function, which should be minimised, is calculated using  

J𝐹𝐶𝑀 = ∑ ∑ 𝑤𝑖𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗‖

𝐶

𝑗=1

𝑁

𝑖=1

  , (3-4) 

where C is the number of clusters and wij is calculated using  

𝑤𝑖𝑗 =
1

∑ (
‖𝑥𝑖 − 𝑐𝑗‖
‖𝑥𝑖 − 𝑐𝑘‖

)

2
𝑚−1

𝑐
𝑘=1

  . 
(3-5) 

FCM  is a popular unsupervised technique in the field of image processing, especially for brain 

tumour segmentation (Kong et al., 2006). Firstly, a set of tissue classes of the brain and tumour 

should be predetermined. Then, a membership value is assigned to each voxel related to the 

tissue classes, based on the features such as intensity, texture, etc. The algorithm performance 

depends on the initialisation and selecting accurate cluster centres.  

FCM clustering was firstly used by Phillips et al. (Phillips et al., 1995) for tumour 

segmentation, and later was applied to multimodal MR images (Clark et al., 1998). Later on, 

other researchers  developed the FCM-based methods using priori knowledge (Fletcher-Heath 

et al., 2001),  defining spatial constraints (Hsieh et al., 2011), etc. Some other methods 

combined FCM with other independent segmentation methods (Helen and Kamaraj, 2015; 

Rajendran, A. and Dhanasekaran, 2012) to improve the segmentation results. Despite its 

advantages, FCM is not efficient in segmenting the tumour in MR images. It is sensitive to 

noise and the number of clusters should be predefined by the user.  

3.2.3 Challenges of Unsupervised Segmentation 

Unsupervised methods have three main disadvantages (Gordillo et al., 2013) which can be 

summarised as follows. Firstly, the number of clusters often should be predefined which 

results in a semi-automatic approach. Although some algorithms may automatically find the 
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number of classes during grouping the pixels, still it remains a challenging task. Secondly, if 

higher number of clusters are chosen, the tumour regions may be partitioned into several 

subparts. Thirdly, the lack of prior knowledge, e.g. shape or intensity, make the segmentation 

challenging. However, the unsupervised methods can be used for tumour detection rather than 

accurate tumour segmentation (Kamnitsas et al., 2017). 

 

3.3 Improving Segmentation with Probabilistic Approach 

The standard clustering and classification methods consider the image pixel data as 

independent and identically distributed (IID). The images often have homogenous regions, in 

which the pixels have similar properties, e.g. intensity, texture, etc., which can be used as 

contextual constraints for the prediction model. Probabilistic approaches consider the label of 

one pixel being dependent on the probability of adjacent pixels. Although the probabilistic 

approaches are mentioned in this section, they also can be used to improve the supervised 

methods (Section 3.4). 

 

3.3.1 Markov Random Fields 

Markov random field (MRF) is a probabilistic approach which has been widely applied in 

medical image analysis (Lee et al., 2005). The main point of using an MRF (Kindermann 

1980) is that it takes into account the spatial information and neighbourhood dependencies 

between the voxels. It means that if a voxel is classified as one particular class, e.g. tumour or 

nontumour, then its neighbours have more probability to have the same label.  

A set of observed image features x = {x1, x2, …, xN} and the corresponding labels y = {y1, y2, 

…, yN} are considered. The probability of the labelling, given the observed feature is defined 

as p(y|x). The aim is to relabel the image and find new labels 𝑦̂ that maximise this probability. 

This is called maximum a posteriori (MAP) estimate 

𝑦̂ = arg max
𝑦

𝑝(𝑦|𝑥) . (3-6) 

 Bayes’ theorem is written as   

𝑝(𝑦|𝑥) ∝  𝑝(𝑥|𝑦)𝑝(𝑦), (3-7) 

where the first term is likelihood and the second term is a prior. Assuming that the probabilities 

have a factorised form, then the term p(x|y) will have the following form 

𝑝(𝑥|𝑦) = ∏ 𝑝(𝑥𝑖|𝑦𝑖) .

𝑖

 (3-8) 
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The maximal subgraphs of pixel connections that are fully connected are called cliques. The 

potential function of clique c can be written as 𝜓𝑐(𝑦𝑐|𝜃𝑐). This can be any non-negative 

function. The joint distribution is proportional to the product of the clique potentials.  

The Hammersley-Clifford theory states that a strict positive distribution (e.g. p(y) > 0) with 

the Markov properties can be factorised per cliques (Murphy, 2012) 

𝑝(𝑦|𝜃) =  
1

𝑍(𝜃)
∏ 𝜓𝑐(𝑦𝑐|𝜃𝑐)

𝑐∈𝐶

 , (3-9) 

where C is the set of all the maximal cliques, and Z(θ) is the partition function which is defined 

by 

𝑍(𝜃) =  ∑ ∏ 𝜓𝑐(𝑦𝑐|𝜃𝑐)

𝑐∈𝐶𝑦

 . (3-10) 

A random field is an MRF when it follows the Gibbs distribution which is  

𝑝(𝑦|𝜃) =  
1

𝑍(𝜃)
exp(− ∑ E (𝑦𝑐|𝜃𝑐)

𝑐

)  ,  (3-11) 

where E(yc) is the energy of variables in the clique c. The potential function now can be written 

as  

𝜓𝑐(𝑦𝑐|𝜃𝑐) = exp(− 𝐸(𝑦𝑐|𝜃𝑐)) . (3-12) 

The advantage of considering spatial information with MRF is reducing the effect of noise and 

the clusters overlap on the segmentation results (Gordillo et al., 2013; Tran et al., 2005). They 

also can represent complex dependencies between data, which provides higher accuracy in the 

field of brain tumour segmentation (Lee et al., 2005). Capelle et al. (Capelle et al., 2000) 

suggested that modelling the brain tissues with Gaussian mixture models followed by an MRF 

removes the need for postprocessing stages, e.g. morphological operations. Gering et al. 

(Gering et al., 2002) developed a method to build a multilayer framework of MRF in which 

the layers consist of information from voxel intensity, spatial coordinates, structural coherence 

and user input. Doyle et al. (Doyle et al., 2013) applied hidden MRF to the BRATS 2013 

challenge dataset and obtained good results which will be mentioned in Section 3.6  

(Table 3-1).  
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3.3.2 Conditional Random Fields  

Conditional random field (CRF) is discriminative alternative and a variant of MRF (Lafferty 

et al., 2001), which also takes the context of neighbouring observation into account. In CRF, 

the clique likelihoods are conditioned on the features of the input (Murphy, 2012) 

𝑝(𝑦|𝑥, 𝑤) =  
1

𝑍(𝑥, 𝑤)
∏ 𝜓𝑐(𝑦𝑐|𝑥, 𝑤)

𝑐

 . (3-13) 

The likelihoods are often assumed having a log-linear form 

𝜓𝑐(𝑦𝑐|𝑥, 𝑤) =  exp (𝑤𝑐
𝑇𝑓(𝑥, 𝑦𝑐)) , (3-14) 

where 𝑓(𝑥, 𝑦𝑐) is the feature vector based on the input and the local set of the clusters yc.  

Therefore, it could avoid explicitly modelling the distribution over the observation. In the case 

of images with complex structure, such as brain tumour tissues with complex anatomic shapes, 

such a distribution is normally not easy to be modelled. CRF allows a flexible modelling of 

complex dependencies between features of voxel and its label and between the labels of the 

adjacent elements. 

MRF and CRF have been widely used for classification, texture feature extraction and 

modelling the image intensity inhomogeneities (Gordillo et al., 2013). 

 

3.4 Supervised Methods 

Supervised approaches are based on extraction of the features from the images and creating 

models based on the relationship between the image features and the pixel/voxel classes. A 

vast variety of features can be used, such as voxel intensity, histogram, and texture of the 

images. Using hand-designed features is common for the task of brain tumour segmentation 

based on classifiers. 

In general, the supervised classification procedure is comprised of two main stages, i.e. 

training and testing. In the training stage, the model learns from the feature vector that is fed 

to the classifier to discriminate between different tissue classes. The model also adjusts its 

internal parameters or weights. In the testing stage, the unlabelled dataset, which is also called 

the “testing dataset”, is fed to the trained model, then the MR image voxels are assigned to 

one of the classes.    

The source of the training and testing dataset is a very important factor which affects the 

performance of the classifier, and can be categorised into patient-specific and inter-patient 

(Gordillo et al., 2013). In patient-specific approaches, the model is trained based on the 



40 

 

 

labelled slices from one patient and the testing is performed on the unlabelled slices from the 

same patient. The inter-patient approach consists of training the model on labelled images 

from several patients and testing the trained classifier on a different patient from the testing 

dataset but for the same tumour type (Cobzas et al., 2007). This approach is the common 

method in the brain tumour segmentation in MR images and the relevant challenges, such as 

BRATS challenge (Menze et al., 2015).   

 

3.4.1 Support Vector Machines  

SVMs (Schölkopf and Smola, 2002) are efficient powerful classifiers for IID data, which have 

been used in many segmentation applications. The SVM finds the best hyperplane for 

separation of the classes, which presents the largest margin between them. The margin is 

defined as the maximum distance, in which in the best-case scenario, the data points of the 

different classes are separable in the feature space. The hyperplane for dimension d can be 

written as  

𝑾𝑿 − 𝑏 = 0 , (3-15) 

where W is a weight vector (W ϵ Rd) and b is bias (real numbers). The hyperplanes can be 

found for the classes, 𝑦𝑖 ∈ {−1, +1}, such that 

{
𝑾𝑇𝑥𝑖 + 𝑏 ≥  +1     𝑖𝑓 𝑦𝑖 = +1

𝑾𝑇𝑥𝑖 + 𝑏 ≤  +1     𝑖𝑓 𝑦𝑖 = −1
 . (3-16) 

The terms in Equation (3-16) can be combined together and written as 

𝑦𝑖(𝑾𝑇𝑥𝑖 + 𝑏)  ≥  +1 . (3-17) 

In the SVM problem, the aim is to find the hyperplane (Equation (3-15)) subject to the 

constraints in Equation (3-17) with the largest margins. The hyperplane should separate the 

features with the minimal error (i.e. maximum distance from the clusters’ closest points). This 

problem can be formulated for linearly separable cases with the following quadratic 

programming problem (Shawe-Taylor and Cristianini, 2004)  

min 
1

2
 ‖𝑾‖2 , 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑖(𝑾𝑇𝑥𝑖 + 𝑏)  ≥  +1 , ∀𝑖 , 

(3-18) 

In the case of linearly non-separable data, a set of loose variables, 𝜉𝑖, are introduced in the 

constraint. Therefore, the objective function in Equation (3-18) can be written as    
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.  

min 
1

2
 ‖𝑾‖2 + 𝐶𝑆𝑉𝑀 ∑ 𝜉𝑖

𝑁

𝑖=1

 , (3-19) 

where CSVM defines the constraint for misclassification error and subject to  

𝑦𝑖(𝑾𝑇𝑥𝑖 + 𝑏) = 1 − 𝜉𝑖  ,   𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁 . (3-20) 

The quadratic programming problem can be solved using Lagrange multipliers, 𝛼𝑖  ∈ 𝑅. 

Therefore, W can be written as   

𝑾 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

 , (3-21) 

where 𝑥𝑖 are non-zero values and 𝛼𝑖 are the support vectors. The decision boundary is 

calculated using the support vectors by solving  

max (
𝛼

∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗  )

𝑁

𝑖=1

 , (3-22) 

subject to  

∑ 𝛼𝑖𝑦𝑖 = 0   and   0 ≤ 𝛼𝑖 ≤ 𝐶𝑆𝑉𝑀 

𝑁

𝑖=1

 . (3-23) 

  

The learned parameters, i.e. 𝛼𝑖 and b, are then used to label the data point by using the sign of 

the decision function  

𝑦̂(𝑥) =  sgn(∑ 𝛼𝑖

𝑁

𝑖=1

𝑦𝑖(𝑥. 𝑥𝑖) + 𝑏)  . (3-24) 

Ruan et al. (Ruan et al., 2007) applied an SVM classifier for a limited number of MRI 

modalities for segmentation of brain tumours. Their method could detect the whole tumour 

region without segmenting the tissue subtypes. They further developed their method by using 

feature selection to slightly improve the segmentation accuracy (Ruan et al., 2011). Cai et al. 

(Cai et al., 2007) and Verma et al. (Verma et al., 2008) used intensity-based features from 

different MRI modalities including C-MRI and DTI and fed them to SVM for a voxel basis 

classification. Their methods were developed for multiclass segmentation of healthy and brain 
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tumour tissues. Lee et al. (Lee et al., 2008) proposed using SVM to classify the MR image 

voxels and applying a CRF as spatial regularisation. Bauer et al. (Bauer et al., 2011) proposed 

a SVM based classification which is regularised by hierarchical CRF which utilised prior 

knowledge from tissue neighbourhood system probabilities. 

Wu et al. (Wu et al., 2014) used superpixel features in a CRF framework to detect brain 

tumours. In their method, multimodal MR images were first segmented into superpixels, and 

then a multi-level Gabor wavelet was used for feature extraction from the superpixels. A SVM 

classifier is then used with an affinity metric model followed by a CRF to segment the tumour 

with maximum spatial smoothness.  

 

3.4.2 Random Forests 

RF is based on ensemble of decision trees, and classifies using a bagging process. A decision 

tree is so named because it is based on a decision model that can be presented as a tree-like 

graph. Decision trees can be used for both classification and regression tasks. They were first 

introduced by Breiman et al. (Breiman et al., 1984) and named as Classification and 

Regression Trees (CART). The algorithms which are based on CART are considered among 

the best performing classification techniques (Wu et al., 2008). The RF algorithm will be 

explained in Chapter 4 (Section 4.2.7). 

Zikic et al. (Zikic et al., 2012) suggested using context-aware features and decision forests 

classifiers for multi-structure classification of brain tumours from multimodal MR images. 

They utilised spatial regularisation with a smoothing constraint to eliminate the need for post-

processing. Bauer et al. (Bauer et al., 2012) proposed an energy minimisation procedure based 

on a CRF. The energy consists of sum of the singleton potentials and pairwise potentials which 

is minimised in a hierarchical way based on the output from a classifier. They used RF and 

used the probabilistic output of the RF to control the spatial regularisation of their CRF. The 

feature set included: first order features: mean, variance, skewness, kurtosis, energy, and 

entropy. The features were extracted from fixed sized local patches and the intensity gradient 

statistics in that neighbourhood, and symmetry features from across the sagittal plane. 5-fold 

cross-validation was used on training dataset for HGG and LGG separately. The parameters 

were selected for the algorithm empirically. They compared their method to the procedure 

which used SVM as a classifier instead of RF (Bauer et al., 2011). However, their method has 

difficulties in segmentation of the testing dataset that was very different from the training set.  

Germia et al. (Geremia et al., 2012) also proposed the idea of creating synthetic images related 

to brain tumour in order to train the regression forests to improve to effectiveness of the 
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classifier. They developed their method by proposing spatially adaptive RF (Geremia et al., 

2013). Their method performed a hierarchical segmentation from coarse to fine segmentation. 

Tustison et al. (Tustison et al., 2013) proposed using morphological and contextual features 

to better discriminate the homogeneity of the tumour. They also suggested using MRF to 

encourage the spatial regularisation. They later proposed a method in which the output of the 

first RF classifier was used to improve the second segmentation stage (Tustison et al., 2014).  

Festa et al. (Festa et al., 2013) used RF with different image features which were voxel based. 

Their RF parameters were 50 number of trees and tree depth 25. The RF parameters were set 

using leave-one-out cross-validation of the training dataset. For testing on the BRATS training 

set, they used leave-one-out cross-validation. The training data points were downsampled and 

divided to half normal brain tissue and half for tumour and oedema to make the data balanced 

for more accurate classification. The feature sets included intensities (mean, sum, median and 

intensity range) from different patch sizes, context features, edge density and local binary 

partition. Meier et al. (Meier et al., 2014a) proposed a semi-supervised RF method in which 

the classification was pixel-wise and based on patient-specific procedure. Amiri et al., (Amiri 

et al., 2016) proposed a deep RF-based hybrid method in which a SVM stage is cascaded to 

refine the final segmentation. Although their reported results of brain tumour segmentation 

were comparable to other RF-based methods, they did not outperform other machine learning 

based approaches.   

One advantage of the tree classifiers is that they are easy to interpret. However, for larger trees 

the interpretations become more difficult. RF can handle unbalanced and a large number of 

data. Since the recent classification problems include a large dataset, this advantage of RF is 

more highlighted in the recent machine learning tasks. In terms of predictors, it can manage 

mixed types of predictor, i.e. numerical and categorical. In terms of attributes, it can somehow 

do feature selection. RF can handle multi-class classification tasks and also provide a 

probabilistic output (Criminisi et al., 2012).  

State-of-the-art supervised learning techniques based on RF indicated promising performance 

in the field of brain tumour segmentation (Rao et al., 2015). They also provided promising 

results and best performance in challenges such as BRATS (Tustison et al., 2014). However, 

their limitations in modelling capabilities makes their segmentation results to be outperformed 

by state-of-the-art  deep CNN methods (Kamnitsas et al., 2017).  
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3.5 Deep Convolutional Neural Networks 

A CNN is a supervised technique with powerful model capability which recently has been 

widely used in learning tasks. Since one of the main contributions of this thesis is based on a 

deep CNN, it is represented with details as a separate subsection. CNN methods are based on 

learning the features automatically from the raw data or images. A deep CNN learns the 

hierarchy of the features from different complexity levels (Bengio et al., 2013). The main 

difference with other methods is that instead of designing the features that require special 

knowledge, the attention is on designing the architecture of the model (LeCun et al., 2015). 

Recently, the methods based on deep CNNs present powerful performance compared to 

classical classification methods. Deep CNN techniques have strong modelling capabilities and 

are able to learn highly discriminative features. Kamnitsas et al. (Kamnitsas et al., 2017) 

suggested that the features based on deep CNN often outperform those which are predefined 

and hand-designed.  

Multilayer Neural Networks 

To describe the CNN, firstly multilayer neural networks are explained. The architecture of a 

multilayer neural network is comprised of many simple units to which most or all of them are 

subject to learning. These units establish a nonlinear mapping from the input toward the output.  

The last layer, which is a fully connected layer is called “output layer” and typically provides 

the class of the data. The units between the input and output layer are called the “hidden 

layers”. 

A multi-layer neural network transforms the input data in a nonlinear way to create the class 

of the data in the output which are then linearly separable. Figure 3-1 presents an illustrative 

overview of this concept. The architecture of the network in Figure 3-1 consists of one input 

layer, one hidden layer and one output layer. As can be seen, the regular grid in the input space 

(left panel) is transformed in the hidden layer (middle panel) so that it is linearly separable. 

The actual networks consist of several layers with hundreds of thousands of units.  

 

Figure 3-1 An illustrative overview of neural network concept of non-linear distortion of the 

input space to make them linearly separable. The network architecture consists of one input 

layer, one hidden layer and one output layer. The panels are reproduced from (Colah, 2017). 
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Setting up a deep network (i.e. with the depth of 5 to 20 layers) will lead to a system which is 

sensitive to very small details of the objects and at the same time they are invariant to 

differences such as background position and intensity contrast (LeCun et al., 2015). 

 

3.5.1 Introduction to CNN 

The idea of convolutional neural networks is to perform an end-to-end classification, in which 

the inputs are the image pixels and the output is the class of that image. CNNs are designed 

for processing multiarray data, such as natural images (colour images), medical images 

(multimodal MRI), etc. Therefore, CNN consists of units which has three dimensions: width, 

height, and channels. An illustration of the 3D architecture of a CNN is presented in Figure 3-2.  

As can be seen, every layer of the CNN transforms the 3D input of the layer to a 3D output 

array. Furthermore, the units in each layer are arranged in 3D structure, i.e. width, height, and 

channels. 

 

Figure 3-2 A general 3D illustration of a CNN architecture. It consists of 3D input layer 

(image), two 3D hidden layers, and 3D output array. The units of the second hidden layer are 

also illustrated that they are arranged in 3D structure. Inspired and reproduced from (“CS231n 

Convolutional Neural Networks for Visual Recognition,” 2017)  

Layers of a CNN 

The architecture of a CNN is typically comprised of a series of stages. The first stage contains 

two layer types which are convolutional layers and pooling layers. Each layer consists of 

feature maps with units within them. Different layers of a CNN are explained in the following.  

Input Layer: The input layer holds the raw multi-array input data. In the case of MRI data, the 

width and height of the input layer are similar to the multimodal MR image spatial dimension 

in one slice, and the depth (third dimension) is equal to the number of MR channels, i.e. 

protocols.   
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Convolutional Layer: The convolutional layer (CONV) is the main part of a CNN with most 

computational contribution of learning. In a convolutional layer the units are connected to the 

local patches of the previous layer via a set of weights which are called “filter kernels”. The 

outputs of the previous unit are convolved with the kernel of the current convolutional layer 

and create the output. This means the output of a CONV layer is locally connected to the local 

regions in the input using dot product between the CONV weights and that local input region.   

The result of convolution is a feature map. When the filter is slid over the width and height of 

the input, the result is a 2D filter map in which every output element is the filter response at 

every spatial position of the input. Every CONV consists of a set of filters, and each of them 

produce a 2D feature map. By concatenating these filter maps along the depth (third 

dimension), the output volume is created.  

The sliding step of the filter is called “stride”. Convolutional layers usually utilise stride 1, 

which means the filter is sliding one pixel in every iteration. Applying stride more than 1 

generates smaller size output and is computationally more effective. However, stride more 

than 2 is not common in practice. 

Convolution will result in decreasing the filter response dimension compared to the input array 

spatial dimensions. To make them similar size, it is suggested to add zeros to the spatial 

margins of the input array, which is called “zero-padding”.  

The outputs of this weighted summations are passed through a noninear function. The most 

popular nonlinear function is rectified linear unit (ReLU) which is represented by 

𝑓(𝑧) = max (𝑧, 0). (3-25) 

The benefit of ReLU is that it can learn faster in networks with a large number of layers, which 

make it suitable for deep learning procedures.  

Pooling Layer: The pooling layer (POOL) merges the features with similar semantic 

properties into one feature value. It can be considered as a down-sampling layer along with 

the spatial dimensions in X and Y directions. A CONV or several CONVs are generally 

followed by a pooling layer. The pooling unit obtains the input from patches that are shifted 

by more than one array. The result reduces dimensionality and is less dependent on small 

shifts. It also reduces the number of parameters in the model.  

Max-pooling is a common pooling operation in which commutes the maximum value of a 

local patch in one feature map. The common window for max-pooling is 2 × 2. Figure 3-3 

shows an example of a max-pooling layer with filter size 2 and stride 2.  
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Figure 3-3 A max-pooling example with kernel size 2 × 2 and stride 2. 

 

The pooling layer makes the network invariant with respect to small changes of each level of 

feature such as intensity or position in the previous layers. However, Springenberg et al. 

(Springenberg et al., 2014) suggested that future CNNs will use less or no pooling layers.   

Fully Connected Layer (FC): The difference between FC and CONV is that in a CONV, the 

units are connected locally to the input, inspiring the concept of parameter sharing. Whilst in 

a fully connected layer, the unit is connected to whole input region, which means all the units 

are connected to the outputs of the previous layer. The FC layer eventually generates the 

classes of the data.  

Architecture of CNN 

In the previous sections the main layers of a CNN were categorised as: CONV, POOL, and 

FC. It should be noted that, the nonlinear function of ReLU is also mentioned when it is 

attached to a layer, i.e. CONV_ReLU. The common architecture of a CNN is comprised of 

blocks in which few CONV_ReLU layers are followed by POOL layers. These blocks are 

repeated until the image has a small spatial size. The last block is then connected to a FC layer 

which creates the class label. This pattern is presented in Figure 3-4.  
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Figure 3-4 General overview of CNN architecture.  

 

The images have properties which deep learning benefits from. The images are comprised of 

hierarchies, which means that higher-level features are generated by combining lower-level 

features which creates the hierarchies. In other words, small local edges (the lowest level 

feature) form the local patterns, and those local patterns create more general patterns which at 

the end create the objects in the images.   

 

3.5.2 State-of-the-art CNN architectures 

Recent CNN architectures have 10 to 20 layers of ReLUs, hundreds of millions of weights and 

billions of connections within the network (LeCun et al., 2015). Training such a huge network 

model is supposed to be very time-consuming. Thanks to the developments in computer 

hardware and software, and using parallel processing with parallelised hardware, i.e. GPU 

computing, the training time has decreased dramatically in recent years.   

Several architectures are proposed for designing a CNN and will be explained in the following 

subsections. The most popular grand challenge for research on CNN methods for object 

detection and image classification is ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC) (Russakovsky et al., 2015). The state-of-the-art CNN architectures obtain 

promising results in the competition.  

LeNet 

The first applicable architecture of CNN was proposed by LeCun et al. (LeCun et al., 1998) 

to read the zip codes digits, etc., which is known as LeNet (“MNIST Demos on Yann LeCun’s 

website,” n.d.). In this architecture, the layers have single CONV which is followed by a 

POOL.  
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AlexNet 

The first popular architecture of CNN, applicable in the field of computer vision, was proposed 

by Krizhevsky et al. (Krizhevsky et al., 2012), which is known as AlexNet. The model was 

the winner of ImageNet ILSVRC challenge 2012. AlexNet is a developed version of LeNet 

with more layers. Also, CONVs are connected after each other and then fed to a POOL. 

AlexNet architecture consists of five CONV layers, some of which were followed by max-

pooling, and three FCs. 

ZFNet 

ZFNet architecture was proposed by Zeiler and Fergus (Zeiler and Fergus, 2014), which was 

the winner of ILSVRC 2013. The ZFNet architecture is a developed version of AlexNet, in 

which the size of middle CONVs was expanded, smaller stride and filter size in the first layer 

was used. CONV has kernel size of 7 × 7 with stride 2. The max-pooling has size of 3 × 3 with 

stride 2. The CONV structure is repeated for five layers. The last part of the ZFNet architecture 

consists of two FCs.  

GoogleNet 

GoogleNet was proposed by Szegedy et al. (Szegedy et al., 2015), from Google, which was 

the winner of ILSVRC 2014. They reduced the number of parameters in the network by 

introducing “inception module” which approximates the optimal local sparse structure from 

dense components. The structure of an inception module is presented in Figure 3-5.  

 

 

Figure 3-5 The structure of inception module proposed in (Szegedy et al., 2015). 

 

They also replace FC by average-pooling in the last layer which decreases a large number of 

parameters. This architecture consists of 3 CONVs, and 18 inception layers. Max-pooling is 

used as the POOL layer.  
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VGGNet 

VGGNet was proposed by Simonyan and Zisserman (Simonyan and Zisserman, 2014), from 

Oxford Visual Geometry Group, in which they suggested that the depth of the network has an 

important effect on the performance of the model. The main characteristic of VGG was the 

convolution and pooling kernel size. All the CONVs consisted of 3 × 3 convolution with stride 

1 and zero-padding 1. At the POOL, max-pooling size of 2 × 2 with stride 2 and zero-padding 

0 were used.  The main concern about VGGNet was that using a large number of parameters 

and memory makes it computationally expensive, which has been tackled by using recent high 

performance computers and parallel processing. They proposed different architectures with 

11, 13, 16, and 19 layers. The 19-layers structure (VGG19) provided a slightly better 

performance compared to 16-layers (VGG16), however it is computationally more expensive. 

Therefore, VGG16 was suggested to be the better architecture which consists of 16 

Convolutional/FC layers.  

ResNet 

He et al. (He et al., 2016) proposed the architecture of residual networks (ResNet) which was 

the winner of ILSVRC 2015. They suggested using skip connections alongside with batch 

normalisation. They also eliminate the FC at the end of the network. ResNet is considered 

amongst the extremely deep architectures. However, the ResNet architecture involves a very 

large number of parameters and is computationally expensive.  

Deconvolutional NN 

Typical convolutional networks eradicate mid-level information of the edges in the images 

such as intersections, parallelism, etc. Deconvolution networks were introduced by Zeiler et 

al. (Zeiler et al., 2010) in order to consider these level of features and were able to learn them. 

The main idea was using deconvolution operations and unpooling that are depicted in 

Figure 3-6. 

 

Figure 3-6 Deconvolution and unpooling compared to convolution and pooling (Noh et al., 

2015).  
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Noh et al. proposed a CNN architecture based on deconvolutional layers (DeCONV) for 

semantic segmentation of images (Noh et al., 2015). Their proposed architecture was a 

modification of the VGG16 model and performed an end-to-end pixel-wise classification. The 

overall architecture of the deconvolutional CNN is presented in Figure 3-7. As can be seen, 

the architecture consists of two main parts, i.e. convolutional and deconvolutional networks. 

The left side of the architecture in Figure 3-7 is a convolutional network and derived from the 

VGG16 net structure which has 13 convolutional layers and 2 FC layers. The right side of the 

architecture in Figure 3-7 is the mirrored version of the convolutional side and consists of 

DeCONVs and unpooling layers.  

The deconvolutional part of the architecture provides a coarse-to-fine structure of the 

segmented object, which was reconstructed from the convolutional part.  

 

 

Figure 3-7 The architecture of deconvolutional neural network which was proposed by (Noh 

et al., 2015). 

 

Fully Convolutional Networks 

Long et al. (Long et al., 2015) proposed fully convolutional networks (FCN) for segmentation 

of images. The convolution operations are used in the last layer of a CNN to extend it for 

semantic segmentation. A skip layer (SKIP) architecture is introduced which combines the 

semantic information from the deep layers and finer appearance information from the shallow 

layers. It was also suggested to utilise upsampling instead of POOL. Therefore, the resolution 

of the output can be increased which results in finer segmentation. The image features that are 

learned from FCN will be used in this thesis. To provide a consistent explanation of the 

method, a detailed structure of FCN will be explained in Chapter 6. Long et al. (Long et al., 

2015) compared the FCN structure based on different networks, e.g. AlexNet, VGG (16- and 
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19-layers) and GoogleNet. They concluded that VGG16 provides the best results and 

performance.  

U-Net 

Ronnenberger et al. (Ronneberger et al., 2015) proposed the U-Net architecture which was an 

extension of FCN (Long et al., 2015) for end-to-end segmentation of the image. The main 

characteristic of U-Net is using data augmentation to train the network more efficiently. This 

enables the model to be trained efficiently with less number of training samples. U-Net also 

does not include any FC layers. The structure of a U-Net is depicted in Figure 3-8, which has 

in total 23 layers. The left side of the network architecture is a typical CNN and is called 

“contracting” path. This part has two 3 × 3 CONVs with 0 zero-padding followed by ReLU. 

Each block also includes a max-pooling of kernel size 2 × 2 with stride 2.  The right side of 

the U-Net performs upsampling and is called “expansive” path. This part includes upsampling 

of the feature map, each followed by a convolution with kernel size 2 × 2 which is called up-

convolution. The feature maps are concatenated with a cropped feature map from the 

contracting side. Then, they are followed by two CONVs with kernel size 3 × 3 and two 

ReLUs. 

 

Figure 3-8 Architecture of the U-Net which is proposed by (Ronneberger et al., 2015) 

Discussion of Recent CNNs 

LeNet, AlexNet, ZFNet, GoogleNet, and VGG are the state-of-the-art image classification 

nets. ZFNet is derived from AlexNet, both nets split an input into two main channels (colour, 

and grey-level). The VGG verifies that a small kernel can provide better performance than 

using a large kernel. Although the de-convolutional NN was proposed as a visualisation tool 

to understand the CNN, it was employed to implement pixel-wise prediction (semantic 

segmentation). FCN combines the semantic and appearance information which provides finer 

segmentation.   
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3.5.3 CNN for Brain Tumour Segmentation 

The CNNs were firstly used for speech recognition (Waibel et al., 1989) and document reading 

(LeCun et al., 1998) by introducing one-dimensional time-delay neural networks. Then other 

applications of CNNs in optical character recognition and handwriting recognition were 

developed (Simard et al., 2003). They were also developed for natural image processing 

including recognition of objects such as face (Lawrence et al., 1997) and hand (Vaillant et al., 

1994). CNNs have been applied for several image processing tasks, especially image 

segmentation and detection, since the early 2000s (LeCun et al., 2015). These applications 

include segmentation of biomedical images (Ning et al., 2005), face detection (Taigman et al., 

2014), human bodies (Tompson et al., 2015), etc.   

CNN-based methods have been recently adopted by researchers in the field of brain tumour 

segmentation. Rao et al. (Rao et al., 2015) proposed a combination of CNN and RF. In their 

method, the output of the last fully connected layer and the SoftMax of each CNN are fed to a 

RF classifier. Urban et al.(Urban et al., 2014) et al.proposed using a 3D filter as kernels of the 

convolutional layers. The advantage of using 3D filters is that it will take into account the 3D 

connectivity of the original data. On the other hand, it increases the computational time and 

cost. Dvořák et al. (Dvořák and Menze, 2015) proposed structured prediction based on a CNN, 

in which the tumour segmentation is portioned into several binary segmentation subsets. The 

membership of the input to each cluster is predicted by the CNN. 

Zikic et al. (Zikic et al., 2014) used a shallow CNN architecture which comprised of two 

CONVs, max-pooling with stride 3, one FC, and one SoftMax layer. Lyksborg et al. (Lyksborg 

et al., 2015) proposed to stack 2D binary CNNs for segmentation of 3D  MRI images. The 

idea is setting up 2D pipelines for the three MRI orthogonal planes, i.e. sagittal, coronal, and 

axial. Therefore, the final volumetric segmentation mask is obtained by combining the 2D 

outputs of the three pipelines. Since their CNNs are binary, the procedure is performed in a 

multi-level approach to segment different tissues. Furthermore, a post-processing stage of 

cellular seed growing is used to acquire better segmentation results.   

Pereira et al. (Pereira et al., 2016) suggested that using two CONVs with kernel size 3 × 3 

have the same effective receptive fields and fewer weights compared to a single CONV with 

kernel size 5 × 5. One advantage of the smaller kernel sizes is that since they have fewer 

weights, it decreases the overfitting. They proposed two different architectures for different 

tumour types, i.e. HGG and LGG. For LGG, they proposed a CNN with 4 CONVs with kernel 

size 3 × 3, and 3 FCs. While, due to more complex structures of HGG, they proposed a deeper 

network with 6 CONVs and the same kernel size. They compared their method with shallow 

CNN architectures and concluded that a deeper architecture provides better performance. They 
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applied their method on the BRATS challenge dataset and obtained promising results in terms 

of DSC for all the tumour structures. Their segmentation results achieved the first rank in the 

VSD system and remained the first rank at the time of submission of this thesis.  

Davy et al. (Davy et al., 2014) proposed a two-pathway deep network with parallel pipelines. 

One pipeline is “convolutional” and comprised of two CONVs and a MaxOut unit. This 

pipeline is connected directly to patches from the input with fixed size of 32 × 32 and considers 

a wider and more general region of the input. The other pipeline is “fully connected” and 

comprised of a FC and a MaxOut unit. This pipeline is connected with two smaller patches 

from the input with size 5 × 5 and considers more local detail of the image. Finally, the output 

of the two structures is merged together with another FC layer and a SoftMax unit. Havaei et 

al. (Havaei et al., 2017) used the method which was proposed by (Davy et al., 2014) and 

developed an architecture with two stages with different kernel sizes for global and local 

contextual segmentations. The global stage used larger CONV kernel size of 13 × 13, whilst 

the local stage used smaller CONV kernel sizes of 7 × 7 and 5 ×5.  

Kamnitsas et al. (Kamnitsas et al., 2017) proposed 3D CNN with a two-pathway architecture 

to consider different scales of processing the input image. The architecture has 11 layers and 

considers a dense training scheme to decrease the computational cost by including the 

neighbours of a pixel in one pass through the network. They also suggested using a fully 

connected CRF at the output to decrease the false positives. The architecture provides 

promising results which are comparable to the state-of-the-art methods. However, dense 

training may generate highly imbalanced classes that should be investigated in their 

architecture.  

Dong et al. (Dong et al., 2017) used U-Net for segmentation of brain tumours in MRI images. 

Their method uses a state-of-the-art deep CNN architecture that takes the information from 

up-convolution paths, which are applied to both deep and shallow layers. The U-Net provided 

more accurate segmentation compared to other CNN methods, and Chapter 6 will discuss that 

they are comparable to the proposed method in this thesis.   

 

3.6 MICCAI-BRATS Publication Series 

 BRATS challenge is organised in conjunction with the international conference on Medical 

Image Computing and Computer Assisted Interventions (MICCAI) (Menze et al., 2015). The 

state-of-the-art brain tumour segmentation methods have used this grand challenge (also 

known as MICCAI-BRATS) dataset in recent years. As explained in Chapter 2 (Section 2.6.2), 

a publicly available training dataset is shared by the organisers so that different research groups 
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optimise their methods on that dataset. Then, they applied their methods on an independent 

testing dataset in a structured way and evaluated using a predefined common protocol. The 

corresponding results have been published either in the MICCAI proceedings or other high 

impact journals, which are summarised in Table 3-1. 

 

Table 3-1 Summary of MICCAI-BRATS results for the publications related to the literature 

review. The evaluation dataset and Dice scores for the tumour part are provided. The research 

papers are sorted based on the publication year.  

Author Method Year 
Testing 

dataset 

Performance 

(Dice Scores) 

Bauer (Bauer et al., 

2012) 
RF and CRF 2012 Challenge 0.68 0.48 0.57 

Zikic (Zikic et al., 

2012) 

3D input patches are 

interpreted into 2D input 

patches to train a CNN 

2012 Challenge 0.75 0.47 0.56 

Hamamci (Hamamci et 

al., 2012) 

Generative model, uses 

cellular automata to obtain 

tumour probability map 

2012 Challenge 0.72 0.57 0.59 

Reza (Reza and 

Iftekharuddin, 2013) 
Texture features and RF 2013 Challenge 0.83 0.72 0.82 

Zhao (Zhao et al., 

2013) 

Supervoxel and MRF 

classifier with updated 

unary potential 

2013 Challenge 0.84 0.70 0.80 

Cordier (Cordier et al., 

2013)  
3D patch atlas-based  2013 Challenge 0.84 0.68 0.88 

Festa (Festa et al., 

2013) 

Local context features and 

RF 
2013 Challenge 0.72 0.66 0.77 

Doyle (Doyle et al., 

2013) 
Hidden MRF  2013 Challenge 0.71 0.46 0.66 

Meier (Meier et al., 

2014b) 

Appearance and context 

features with RF and CRF 
2014 Challenge 0.82 0.73 0.69 

Davy (Davy et al., 

2014) 

Two-pathway CNN for 

simultaneous local and 

global processing 

2014 Challenge 0.85 0.74 0.68 

Kwon (Kwon et al., 

2014) 

Generative model performs 

joint segmentation and 

registration 

2014 Challenge 0.88 0.83 0.72 
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Author Method Year 
Testing 

dataset 

Performance 

(Dice Scores) 

Tustison (Tustison et 

al., 2014) 

Concatenated RFs; 

asymmetry and first order 

statistical features 

2014 Challenge 0.87 0.78 0.74 

Urban (Urban et al., 

2014) 

3D CNN architecture using 

3D convolutional filters 
2014 Challenge 0.86 0.75 0.73 

Zikci (Zikic et al., 

2014) 

Standard CNN with 5 layer 

and ReLU 
2014 

Training 

(HG) 
0.84 0.74 0.69 

Rao (Rao et al., 2015) 

Four CNNs, one for each 

modality, with their outputs 

concatenated as an input 

into a RF 

2015 - - - - 

Dvorak (Dvořák and 

Menze, 2015) 

Local structured prediction 

with CNN and k-means 
2015 Challenge 0.83 0.77 0.75 

Njeh (Njeh et al., 

2015) 

Graph-cut distribution 

matching 
2015 Training 0.875 - - 

Thiruvenkadam 

(Thiruvenkadam and 

Perumal, 2016) 

Discrete wavelet transform 

and FCM 
2016 Challenge 0.73 0.53 0.35 

Amiri (Amiri et al., 

2016) 

Deep RF and SVM 

refinement 
2016 

Partial 

training 
0.72 - - 

Pereira (Pereira et al., 

2016) 

CNN with small (3x3) 

kernals for deeper 

architecture 

2016 Challenge 0.88 0.83 0.77 

Havaei (Havaei et al., 

2017) 

Cascaded two-pathway 

CNNs for simultaneous 

local and global processing 

2017 Challenge 0.88 0.79 0.73 

Kamnitsas (Kamnitsas 

et al., 2017) 

3D CNN with two-

pathways with fully 

connected CRF 

2017 Challenge* 0.84 0.65 0.62 

Dong et al. (Dong et 

al., 2017) 
U-Net architecture 2017 Training* 0.86 0.86 0.65 

*  Evaluated on BRATS 2015 dataset. The version 2013 is not reported. 
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3.7 Summary and Conclusion 

Most of the brain tumour segmentation techniques used hand-designed features (such as 

texture, etc.) which are fed into a classifier such as SVM, RF, etc. Among the conventional 

classifiers, RFs presents the best segmentation results (Gotz et al., 2014; Menze et al., 2015; 

Pinto et al., 2015). The challenge of supervised approaches is finding a good representation of 

feature, which in the case of hand-designed features requires prior knowledge for designing 

and parameter tuning. Furthermore, many experiments and optimisations are required to be 

conducted to identify the optimum parameters for feature extraction and the optimal classifier. 

Several approaches based on deep CNNs have been proposed in recent years and provide 

promising segmentation results. However, they have the disadvantage of not considering 

sufficient local dependencies. Recent methods have aimed to tackle this limitation to providing 

finer segmentations by modifying the architecture of the CNN (Havaei et al., 2017) or 

combining with other methods such as CRF (Kamnitsas et al., 2017).  

An extensive range of segmentation algorithms are proposed for brain tumour segmentation. 

However, there is no universal method that can handle all segmentation tasks. On the other 

hand, most of the methods are optimised for segmentation using a specific imaging modality. 

This thesis not only investigates the single modality approach, but also looks at a multimodal 

framework. Many of the methods are applied on different datasets so it is difficult to perform 

a general comparison between them. Thanks to the BRATS challenge public dataset and its 

straightforward evaluation protocol, now it is relatively easier to establish a fair comparison 

between the state-of-the-art methods. For this reason, many advanced methods in the field of 

brain tumour segmentation in MRI are compared and discussed in Section 3.6.  
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Chapter 4  

4 Brain Tumour Segmentation using Superpixel in FLAIR MRI 

 

4.1 Introduction 

Delineation of the tumour boundary and assessment of tumour size are needed for patient 

management in terms of treatment planning and monitoring treatment response. Current 

clinical guidelines incorporate the use of both T1-contrast images and T2-weighted/FLAIR 

images (Niyazi et al., 2016; Wen et al., 2010). As explained in Chapter 2, each MRI protocol 

presents specific characteristics of the brain or tumour tissue. Many low-grade gliomas do not 

show contrast enhancement hence T2-weighted/FLAIR images are used to define the tumour 

extent and volume. T2-weighted/FLAIR images can also be useful to help define the target 

volumes for radiotherapy planning of high-grade gliomas (Aslian et al., 2013; Niyazi et al., 

2016). From a technical point of view, using a single protocol as input to solve a binary class 

segmentation problem decreases the complexity of the model due to less data, smaller feature 

dimensionality and no need for image registration. FLAIR is considered for this task as it has 

been in routine clinical use as part of standard diagnosis of brain tumours. Delineation of the 

FLAIR hyperintensity is important to assess low-grade glioma growth (Law et al., 2008), 

define an abnormal region from which imaging features for tumour classification can be 

extracted (Itakura et al., 2015), aid with radiation dose planning (Stall et al., 2010) and assess 

the treatment responses (Cho et al., 2012). Detecting the complete tumour in the image can be 

considered as an initial stage which can be further used for tumour component segmentation 

tasks.   

The motivation of this chapter is to use a single modality approach to detect the complete 

tumour structure in the clinical data. To assess the robustness of the proposed method, it is 

also evaluated on the FLAIR protocol of BRATS 2013 annotated training dataset. 

As mentioned in Chapter 3, the methods in (Pinto et al., 2015) and (Gotz et al., 2014) 

calculated the image features based on each individual voxel, which a fixed size 

neighbourhood around the voxel is considered for the feature extraction. In this chapter, 

instead of using a fixed size neighbourhood, a patch based method using superpixel 

partitioning is investigated for feature extraction and the final segmentation is directly obtained 

from the superpixel’s boundary. This will ensure that the patches are more separable for the 

classifier, since the pixels inside the patch have more similarity compared to the fixed sized 

window suggested in (Pinto et al., 2015) and (Gotz et al., 2014). It will also increase the 
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computational speed of the feature extraction and classification stages compared to the pixel-

wise based approaches which require the corresponding procedures to be performed on all the 

pixels within the input image. 

The idea of using superpixel instead of the pixel-level calculation have been used for object 

classification in the images. Fulkerson et al. (Fulkerson et al., 2009) proposed using the 

superpixel patches of images instead of pixel level classification. They extracted bags of 

features for each superpixel and classify them using SVM. In this thesis, one of the 

contributions including the histogram of textons in the bag of features that is extracted from 

the superpixels. 

Yi and Sun (Yi and Su, 2014)  used the histogram of Gabor filter responses as the 

representation of the features. They suggested that using log-Gabor filters will reduce 

dimensionality and the computation cost. Fixed-sized non-overlapping blocks of the images 

was used in their method to calculate the histogram of Gabor histogram. In this thesis, flexible 

superpixel patches are used instead of the fixed blocks. The flexible boundaries of the 

superpixels create non-overlapping patches that adhere to the image edges.  

Yu et al. (Yu et al., 2012) used the bag of textons and superpixel for unsupervised image 

segmentation. The texton filter bank were comprised of 2D Gaussian filters. In this thesis 

Gabor filters are used which represent more description of spatial and frequency features. 

In this chapter, a fully-automated superpixel based method will be investigated for detection 

and segmentation of the abnormal tissue associated with brain tumours, as defined by the 

hyperintensity from FLAIR MRI. In the proposed method, superpixel partitions are firstly 

calculated to provide accurate boundaries between different tissues. Several non-parametric 

and hand designed image features are then extracted from each superpixel. This will improve 

the accuracy of feature calculation and increase the computation speed. The superpixels are 

then classified using the state-of-the-art ERT which is a powerful classifier that can deal with 

high dimensional features and large-sized unbalanced data. 

A texton is considered as a texture feature for the whole image segmentation. The idea is to 

use the texton histogram of a specific superpixel (which is obtained from the whole image 

texton map) as the main feature for that superpixel. This will be discussed in this chapter.   

The contribution of this chapter can be listed as follows:  

 Investigation of an automated method that provides a close match to expert delineation 

across all grades of glioma using the single commonly used MRI modality i.e. FLAIR. 
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The method could provide a faster segmentation (approximately three times faster) of 

brain tumours, and good agreement with the human expert delineation . 

 Extraction of powerful hand designed features from superpixels instead of common 

pixel-wise feature extraction, with focus on the state-of-the-art texton features.  

 Applying ERT directly to the superpixels instead of all the voxels (Gotz et al., 2014; 

Pinto et al., 2015), which largely reduces the data size for classification. Superpixels 

with the same classification label are grouped together, and are considered as the tissue 

ROI. 

 

4.2 Methodology 

This section will explain the details of the proposed method, which includes extraction of 

features from superpixels and superpixel classification.  

4.2.1  General Overview of Segmentation Methods based on Classifiers 

The segmentation methods which are based on classification of the pixels or voxels consist of 

three main essential stages which are: preprocessing, feature extraction (if necessary followed 

by feature selection), and classification. The majority of the methods in the literature review 

used this pipeline. Firstly, the MR images should be pre-processed prior to the segmentation. 

As the brain tissue has complex structures in MR images, different varieties of features may 

be needed to better distinguish the patterns. To reduce the dimensionality of the feature space, 

a feature selection stage may be needed. Then a classifier is utilised to label the pixels/voxels 

to the corresponding tissues. 

The overall pipeline of the proposed method is depicted in Figure 4-1. The first stage is 

preprocessing and preparation of the data for the main part of the method. Then in the 

superpixel segmentation stage, FLAIR images are partitioned into irregular patches with 

approximately similar size and intensity values. Several hand-designed features are then 

calculated for every superpixel, which include statistical, texton, and shape features. A feature 

selection approach is then applied to find the most significant features. Finally, each superpixel 

is classified using an ERT into binary classes, i.e. tumour and non-tumour. The proposed 

method will be referred as superpixel ERT method (SP_ERT). 
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Figure 4-1 The entire workflow of the proposed SP_ERT method 

 

4.2.2 Preprocessing 

Preprocessing is an important part in MRI brain image segmentation which consists of skull 

stripping, and intensity normalisation. Skull stripping or skull removal is a common 

preprocessing step in most MRI brain segmentation techniques (Menze et al., 2015).  The aim 

of this step is to separate the brain tissue from the skull and non-brain tissues in MRI images. 

The importance of skull removal in MRI brain image analysis is discussed in (Choubey and 

Agrawal, 2012; Shanthi and Kumar, 2007; Zhuang et al., 2006). In this work, the skull is 

removed from all the MRI images using fMRI of the brain (FMRIB) software library (FSL) 

(“FSL,” n.d.) (Jenkinson et al., 2012).  

Intensity normalisation (Madabhushi and Udupa, 2005) is very important in parametric 

approaches to ensure that a unified set of parameters are obtained during parameter tuning. 

They are also important in classification-based segmentations to ensure the features, especially 

those based on intensity values, have the normalised values and share similar dynamic range. 

Before performing normalisation, 1% highest and lowest intensity values for each image are 

eliminated. The 1% highest values correspond to the hyper intensities of the remaining voxels 

related to the skull, while the 1% lowest values correspond to the elimination of the 

background noise. The intensities are initially normalised for each patient image by subtracting 
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the average of intensities of the image and dividing by their standard deviation. Then 

histogram matching algorithm (Nyúl et al., 2000) is applied to ensure that all the data have a 

similar dynamic range. This is to ensure that the corresponding tissues in images, which are 

acquired from MRI machines with different magnetic field strengths (i.e. 1.5 or 3 T), have a 

similar intensity range. One of the patient images is selected and its histogram is considered 

as the reference. Then, the histogram of each patient image is matched to the reference 

histogram (Figure 4-2).  

 

Figure 4-2 The flowchart of histogram matching and linear normalisation to the range [0, 1].  

 

To decrease the bias towards the reference image, a second histogram matching stage is 

performed by calculating the average of new histograms (Nyúl et al., 2000) and treat it as the 

new reference histogram and matching all the histograms including the initial patient image. 

Finally, the dynamic range of the intensities is linearly normalised to the range [0 ,1] 

(Figure 4-2).  

 

4.2.3 Image Patch Types for Feature Extraction 

Most of the image segmentation methods which are based on classification of the pixels used 

a fixed size area around that pixel to calculate the local features. Usually this area is a square 

window in which the centre is the pixel under consideration. Figure 4-3(a) shows a FLAIR 
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image, and the target pixel for feature extraction is shown as a black point. The fixed size 

square window which is illustrated in Figure 4-3(b), is used for extraction of features based on 

local dependencies and the neighbourhood. As can be seen, the square window contains areas 

with different intensities due to the complex structure of brain and tumour. Using image 

patches with flexible boundaries (Figure 4-3(c)), which encompass more homogenous regions, 

may increase the accuracy of feature extraction.  

 

   

   

a b c 

Figure 4-3 Image patch types for local image calculations. a) Fixed-size windows b) 

homogenous patches with flexible boundaries. The bottom row is the zoomed-in view of the 

upper row. 

 

Another advantage of using a flexible homogenous image patch instead of a fixed-size window 

in pixel-wise approaches is that it will significantly reduce the number of calculations. The 

fixed-size patches use the moving window approach in which a window is assigned for each 

individual pixel in the image and then features are calculated for each window (Figure 4-4 (a)). 

Whilst for the flexible homogenous patches, the calculations corresponding to a specific patch 

can be assigned to all the pixels within the patch (Figure 4-4 (b)). 
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a b 

Figure 4-4 Pixel-wise and patch-based calculations schemes. a) pixel-wise, b) patch-based.  

 

4.2.4 Superpixel Segmentation 

Superpixel segmentation partitions the image into flexible patches with approximately similar 

size and intensity values. The simple linear iterative clustering (SLIC) (Achanta et al., 2012) 

method is used in the proposed SP_ERT method. The reason for selection of SLIC is that it 

has few parameters that are flexibly tuned. Hence, the trade-off between those parameters and 

boundary adherence can be controlled. The SLIC method is also computationally and memory 

efficient.  The initial stage of the SLIC superpixel segmentation is gridding the natural colour 

image into equally sized arbitrary patches such as rectangles or squares. In the case of MRI 

FLAIR images, the initial grids are generated for each slice separately. In (Achanta et al., 

2012), it is suggested to use squares as the initial SP grid for natural images. The reason for 

this assumption is that the aspect ratio of the pixel dimensions in natural images is equal to 1, 

which means that the height and width of each pixel is the same. The MR images of the brain 

have identical voxel dimensions in the X and Y directions in each slice. Therefore, the initial 

grids are considered as squares with the side size of S. The geometrical centre of each initial 

segment is considered as the superpixel centre which are then updated in every further 

iteration. Figure 4-5 illustrates the changes in the superpixel configuration in the iterations, 

from the initial to the final SP. 
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Figure 4-5 Clustering the homogenous pixels to one SP, initialling from a regular grid to the 

final homogenous superpixel. It should be noted that the centre of the SP may change in each 

iteration.  

 

The pixels are clustered based on their spatial and intensity distance metrics. The spatial 

distance, ds, between the ith and jth pixel is obtained using: 

𝑑𝑠 =  √(𝑥𝑗 − 𝑥𝑖)2 +(𝑦𝑗 − 𝑦𝑖)2 (4-1) 

where, x and y are the pixel location coordinates. The intensity distance dc between the two 

pixels is defined as: 

𝑑𝑐 =  √(𝐼𝑗 − 𝐼𝑖)
2
 (4-2) 

where, Ii and Ij are the normalized intensity values of the ith and the jth pixel, respectively.  

The overall distance measure D is the combination of the spatial and intensity distances. It is 

calculated using: 

𝐷 = √𝑑𝑐
2 + ( 

𝑑𝑠

𝑆
)

2

𝑚2 (4-3) 

where, m is the compactness coefficient which determines the flexibility of superpixel 

boundaries. A higher value of m increases the effect of spatial distance therefore results in 

more compact segments. A lower value decreases the effect of spatial distance and creates 

more flexible boundaries.  
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Figure 4-6 shows an illustration of the distance calculation for SP segmentation. The distances 

are calculated for a desired pixel, Pi, in order to assign the cluster label to that pixel. The search 

area is restricted around Pi, which is represented as the dashed square.  

The way how compactness factor, m, affects the total distance, D (Equation (4-3)), and 

therefore the SP boundaries, depends on the image intensity values (which determine dc). The 

SP method proposed in (Achanta et al., 2012) is optimised for natural images with the CIELAB 

colour space. The compactness factor in the range [1,40] is suggested for this type of images. 

MRI images have a various range of intensity values, which depend on the tissue and the image 

acquisition parameters. Therefore, it is difficult to set a generic range with the raw FLAIR 

voxel intensities. For this reason, the MRI image intensities used in Equation 2 are normalized 

to the values of [0, 1] to ensure that both the intensity and spatial distances are within the same 

range.  This is also important in the optimisation process when a universal range or value of 

m will be suggested which is applicable to all the new FLAIR images. SP segmentation with 

different compactness factors is shown in Figure 4-7 for a MR image acquired with the FLAIR 

protocol containing a Grade II tumour.  

 

Figure 4-6 Illustration of distance in the SLIC-based superpixel algorithm. SPi presents the 

superpixel, Ci the SP centre and Dpi,Cj the distance between the desired pixel and the SP centres 

in the search area. The dashed square is the restricted search area around the desired pixel, Pi. 
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a b 

 
 

c d 

Figure 4-7  Superpixel segmentation for one slice of the MRI image different compactness 

factors: a) original MRI FLAIR image with a Grade II tumour, b) superpixel segmentation 

with m = 0 and S = 10, c) superpixel segmentation with m = 0.2 and S = 10, d) superpixel 

segmentation with m = 0.5 and S = 10. 

 
a 

 
b 

 
c 

Figure 4-8  Superpixel segmentation for one slice of the MRI image with different window 

sizes: a) original MRI FLAIR image with a Grade II tumour, b) superpixel segmentation with 

S = 10 (initial grids 10 x 10) and m = 0.2, c) superpixel segmentation with S = 20 (initial grids 

20 x 20) and m = 0.2. 

 

Figure 4-8 shows the same image in Figure 4-7, which is partitioned separately to superpixels 

with two different side sizes, S. In Figure 4-8(b) and Figure 4-8(c), the superpixels are 
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extracted with S = 10 and S = 20, respectively. The compactness factor is fixed to m = 0.2 for 

both sizes to show only the effect of size parameter. A good partitioning occurs when the 

segmented regions include homogenous pixels, while the superpixel boundaries adhere to the 

edges in the image. 

At the end of superpixel segmentation, some isolated pixels might appear. The label of these 

pixels is different from their surrounding pixels, which is considered as the noise of the 

superpixels. A post-processing procedure is designed to reduce the isolated pixels. The label 

of the pixels connected to the isolated pixels are counted. Then the isolated pixel is relabelled 

to the major connected class. 

 

4.2.5 Feature Extraction 

Feature extraction algorithms for medical image segmentation are categorised into intensity-

based, texture, and shape features. Most of the features are considered as hand-designed, since 

feature extraction parameters are manually optimised for a specific task. Different types of 

features including intensity statistics, textons and curvature features will be considered to train 

a robust classifier for the detection and segmentation of brain tumour.  

 

Intensity statistical features 

First order intensity statistics (Jain, 1989) are referred as pixel-intensity based features. They 

express the distribution of grey levels within the selected region-of-interest (ROIs) which are 

the superpixels in the present work. For each superpixel, 16 features are calculated which will 

be explained in the following.  

Average intensity feature of a superpixel, SP, is calculated using  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃) =
1

𝑁𝑃
∑ 𝐼𝑆𝑃,𝑖

𝑁𝑃

𝑖=1

 . (4-4) 

where ISP,i is the intensity value of pixel i in the superpixel SP, and NP is the total number of 

pixels within the superpixel. 

Standard deviation (STD) of intensities within the superpixel is calculated using 

𝑆𝑇𝐷(𝑆𝑃) = √
1

𝑁𝑃 − 1
∑|𝐼𝑆𝑃,𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃)|

2

𝑁𝑃

𝑖=1

 . (4-5) 

Variance of intensities within the superpixel is calculated using 
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𝑉𝑎𝑟(𝑆𝑃) =
1

𝑁𝑃 − 1
∑|𝐼𝑆𝑃,𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃)|

2

𝑁𝑃

𝑖=1

. (4-6) 

Coefficient of variance of the pixels is calculated using  

𝐶𝑜𝑉(𝑆𝑃) =
𝑆𝑇𝐷(𝑆𝑃)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃)
 . (4-7) 

Skewness is a measure of asymmetry of the distribution of the intensities around the mean 

value of the superpixel. Skewness for a data with average μ and σ is derived from 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝐸(𝑥 − 𝜇)3

𝜎3
 , (4-8) 

where E is the expectation operator. For the intensities of the pixels within a superpixels, 

skewness is calculated using 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑆𝑃) =

1
𝑁𝑃

∑ (𝐼𝑆𝑃,𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃))
3𝑁𝑃

𝑖=1

𝑆𝑇𝐷(𝑆𝑃)3
 . 

(4-9) 

Kurtosis is a descriptor of the shape of a distribution and a measure of tailedness of the 

distribution of the intensities. Kurtosis for a data generally derived from  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐸(𝑥 − 𝜇)4

𝜎4
 . (4-10) 

For the intensities of the pixels within a superpixels, kurtosis is calculated using 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑆𝑃) =

1
𝑁𝑃

∑ (𝐼𝑆𝑃,𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃))
4𝑁𝑃

𝑖=1

𝑆𝑇𝐷(𝑆𝑃)4
  . 

(4-11) 

Maximum and minimum of the intensities within a superpixel are considered as 𝑀𝑎𝑥(𝑆𝑃) and 

𝑀𝑖𝑛(𝑆𝑃), respectively which are included in the feature vector of that superpixel. The range 

value is calculated using  

𝑅𝑎𝑛𝑔𝑒(𝑆𝑃) = 𝑀𝑎𝑥(𝑆𝑃) − 𝑀𝑖𝑛(𝑆𝑃) . (4-12) 

Median and mode of the intensities of the pixels inside the superpixel are considered as 

𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑃) and 𝑀𝑜𝑑𝑒(𝑆𝑃), respectively which are also included in the feature vector. 

Mean of the absolute deviation is calculated using 

𝑀𝑒𝑎𝑛𝐴𝐷(𝑆𝑃) =
1

𝑁𝑃
∑|𝐼𝑆𝑃,𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃)|

𝑁𝑃

𝑖=1

. (4-13) 
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Median absolute deviation is calculated using 

𝑀𝑒𝑑𝐴𝐷(𝑆𝑃) = 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐼𝑆𝑃,𝑖|𝑖=1,…, 𝑁𝑃
− 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑃))  . (4-14) 

 The third central moment is calculated using  

𝑀𝑜𝑚𝑒𝑛𝑡3(𝑆𝑃) = 𝐸(𝑥 − 𝜇)3 =  
1

𝑁𝑃
∑(𝐼𝑆𝑃,𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑃))

3

𝑁𝑃

𝑖=1

 . (4-15) 

 Interquartile range is calculated using  

𝐼𝑞𝑟(𝑆𝑃) = 𝑄3 − 𝑄1 , (4-16) 

where Q3 is the upper quartile, i.e. the median of the lower half of the intensities, and Q1 is the 

lower quartile, i.e. the median of the lower half of the data. 

Entropy is calculated using  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑃) = − ∑ 𝑝𝑗 . 𝑙𝑜𝑔2(𝑝𝑗)  

𝑁𝑏

𝑗=1

 , (4-17) 

where p is the histogram count of the absolute superpixel values and Nb is the number of 

histogram bins. 

 

Texton Feature  

Brain tissues have complex structures that include both normal and tumorous tissues. 

Therefore, intensity features are not sufficient to accurately detect and segment the tumour. 

To tackle this problem, texture features that work on a higher dimensionality are used to 

improve the accuracy of segmentation. Textons (Leung and Malik, 2001) are among the most 

powerful texture feature extraction (Arbelaez et al., 2011) and are able to distinguish various 

patterns in the image. Textons are small elements of the image, generated by convolution of 

the image, I, with a specific filter bank (F1, F2, …, FNF), i.e. 

𝑅 = [𝐹1 ∗ 𝐼, 𝐹2 ∗ 𝐼 … 𝐹𝑁𝐹 ∗ 𝐼] , (4-18) 

where NF is the number of filters in the filter bank and R is the set of filter responses. Selecting 

the filter type and designing the filter bank is an important stage for texton analysis (Zhang et 

al., 2016). Gabor filters provide strong textural descriptors by considering the local 

dependencies in both spatial and frequency domain (Grigorescu et al., 2002). Therefore, Gabor 

filter (Henriksen, 2007) will be used in this work for texton feature extraction, which is defined 

as  
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𝐺(𝑥, 𝑦; 𝜃, 𝜎, 𝜆, 𝜓, 𝛾) = exp (−
𝑥′2 + 𝛾2𝑦′2

2 𝜎2 ) exp (𝑖 (2𝜋
𝑥′

𝜆
+ 𝜓)) , (4-19) 

where, σ is the standard deviation of Gaussian envelope, γ is the spatial aspect ratio, λ is the 

wavelength of sinusoid and ψ is the phase shift. In Equation (4-19), the terms 𝑥′ and 𝑦′ are 

calculated from the spatial orientation of the filter, θ, defined as 

𝑥′  =   𝑥 cos 𝜃  + 𝑦 sin 𝜃, 

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃. 

(4-20) 

The values that are set for these parameters will be discussed in Section 4.3.3.   

Figure 4-9 shows a set of Gabor filters with different size, directions, and wavelengths of the 

sinusoid. For more detailed representation, the kernels in the filter bank are categorised based 

on different configurations of parameters. 

Assuming the number of filters in the filter bank is NFB, the FLAIR image is convolved with 

all the filters, hence a response vector with length of NFB is generated for each pixel. 

Figure 4-10 shows the filter responses generated from convolution of the FLAIR image with 

the Gabor filters with different parameters. The parameters (i.e. size, direction, and sinusoid 

wavelength) are separated in order to better illustrate the effect of each parameter on the 

response. 

 

 

 

 

 



72 

 

 

  

a b 

  

c d 

Figure 4-9 Set of Gabor filters which are used for texton feature extraction with different 

parameters. a) similar sinusoid wavelengths and different sizes and directions, b) similar 

directions and different sizes and sinusoid wavelengths a) similar sizes and different sinusoid 

wavelengths and directions, d) 3D representation of Gabor kernels with different sinusoid 

wavelengths. 

 

The number of the filter response vectors is the same as the number of the pixels in the image. 

The texton maps are created from the filter bank responses by applying k-means clustering 

which is NFB dimensional.  The number of clusters ktexton is chosen empirically based on the 

number of tissues. The major tissues in a MR image of brain with tumour include WM, GM, 

CSF, core and oedema. Each texton is assigned a texton ID based on the cluster number (i.e. 

k = [1, 2, …,5]). The texton map is a greyscale image with values ranging in the k = [1, 2, 

…,5]. Figure 4-11 shows the process of texton map extraction. The texton feature for 

superpixels is defined as histogram of the texton IDs within that SP. The IDs are then sorted 

ascendingly based on the average FLAIR intensity of the group of pixels within each cluster. 

An example of the texton map and the corresponding texton histogram is illustrated in 
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Figure 4-11. As can be seen, the texton ID histogram of superpixels related to tumour are 

different from those of a normal brain. 

 

Figure 4-10 Filter responses obtained by convolving the image with the Gabor kernels in the 

filter bank separately for different size, direction and sinusoid wavelengths.  
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Figure 4-11 Example of calculating texton IDs for normal brain and tumour. The plots present 

the average texton histogram of the superpixels inside each region, i.e. tumour and normal 

brain. It should be noted that the IDs are sorted based on the initial k-means cluster points. 

This is an illustration example and later the clusters will be sorted ascendingly based on the 

average intensity value of the clusters.  

 

Fractal Features 

Fractal features are calculated based on a segmentation based fractal texture analysis method 

(SFTA) (Costa et al., 2012). In this method, the image is decomposed into a set of binary 

images based on multi-level thresholds which are computed using the Otsu algorithm (Liao et 

al., 2001). The number of thresholds Nthreshold is defined by the user which is the tuneable 

parameter of the fractal analysis. For single modality MRI data, Nthreshold = 3 is selected which 

will be discussed in Section 4.3.3. Thereafter, all the image boundaries are extracted for each 

binary channel using edge detection (Canny, 1986). The fractal features are calculated from 

these binary edge channels which include area, intensity and fractal dimension. Area feature 

is the number of edge pixels in a superpixel. Intensity feature is the mean intensity of image 

pixels corresponding to the edge pixels in a superpixel. Fractal dimension represents the 

complexity of the structure of the image and is calculated from image boundary using 

𝐷0 = lim
𝜀→0

log 𝑁 (𝜀)

log ε−1  , (4-21) 
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where N(ε) denotes the counting of hyper-cubes (rectangles in the case of 2D space) of 

dimension E and length ε. An approximation of fractal distance is obtained from the binary 

images using box counting algorithm (Schroeder, 2009). 

The flowchart of fractal analysis is depicted in Figure 4-12. Figure 4-13 shows fractal features 

including: area, mean intensity and fractal dimension. Figure 4-14 shows an example of fractal 

dimension and mean intensity features calculated from healthy and tumour superpixels from 

one patient data containing a Grade IV glioma. It demonstrates a good separation in feature 

space (mean intensity-fractal dimension) for FLAIR images. 

 

 

Figure 4-12 The flowchart of extracting fractal features from a grade III glioma. 
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Figure 4-13 An example of fractal analysis applied to a Grade III glioma to generate superpixel 

based fractal feature maps: a) FLAIR image with the ground truth of oedema, b) area, c) mean 

intensity, d) fractal dimension. 

 

 

Figure 4-14 Fractal dimension vs. mean intensity for healthy and tumour superpixels 

calculated from one FLAIR MRI data with Grade IV glioma. 

 

Curvature Feature 

Image curvature is a shape-based feature which is computed by the derivatives along x and y 

directions of an image, fx and fy. The image normal at pixel (x, y) is calculated using (Arridge, 

n.d.): 



77 

 

 

𝑵̂(𝑥, 𝑦) =
1

(𝑓𝑥
2+𝑓𝑦

2)
1 2⁄ (

𝑓𝑥

𝑓𝑦
) . (4-22) 

The two-dimensional curvature of the image is the divergence of the normal in Equation (4-22) 

and is calculated using  

Curv =
𝑓𝑥𝑥𝑓𝑦

2+𝑓𝑦𝑦𝑓𝑥
2−2𝑓𝑥𝑥𝑓𝑥𝑓𝑦

(𝑓𝑥
2+𝑓𝑦

2)
3 2⁄  , (4-23) 

  

where, fxx and fyy are the second derivatives of the image intensity I(x ,y). The curvature feature 

for each superpixel is the average of the curvature values for all the pixels in the superpixel. 

In the case of fx = fy = 0, a null value will be assigned to the curvature feature. 

 

Table 4-1  Total number of features calculated from an MRI FLAIR image 

Feature name Number of features 

Statistical 1st order 16 

Texton Histogram 5 

Fractal  6 

Curvature 1 

Total 28 

 

In total, 28 features were calculated for each superpixel. The feature vector includes 5 texton 

histogram features from 5-clusters and 6 fractal features obtained from 3 thresholded binary 

images (each binary image provides 3 fractal features). All the features are normalized to the 

range of [0,30], except the 5 texton histogram features. The reason for selecting 30 is that the 

average number of pixels in the superpixels is approximately 30, which is also the maximum 

value for the texton histogram counts. This is to ensure that all the features have similar 

dynamic ranges and are close to the texton histogram values. Table 4-1 shows a list of the 

features. The details of parameter setting in feature calculation will be discussed in 

Section 4.3.3. 

 

4.2.6 Feature Selection 

The primary objective of feature selection is to obtain maximum accuracy with the minimum 

set of features. This is accomplished by effectively removing irrelevant and redundant features 

that may cause more classification error. Feature reduction will also decrease the 

computational complexity and time. At the same time, by selecting the most relevant features, 
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the generalisation will enhance. Feature selection methods are categorised into filter, wrapper, 

and hybrid approaches (Rosario and Thangadurai, 2015).  In filter-based techniques, the 

criteria for feature selection is independent of the output class of the data (Sánchez-Maroño et 

al., 2007). The advantages of filter based methods are their speed and independency from the 

classifier (Saeys et al., 2007). However, since the relation between variables are not considered 

in the filter methods, more redundant features may be selected (Hamon et al., 2013). In 

wrapper techniques, the subset of selected features are evaluated with a learning algorithm (Li 

et al., 2011) and the relations between variables are taken into account. However, the wrapper 

methods have the problem of overfitting in the case of insufficient data samples. Furthermore, 

for the large dataset, the number of variables and their intervariable relations increase 

significantly which make the wrapper process time consuming.  

Some popular feature selection methods are explained in the following. The fast correlation-

based filter (FCBF) (Yu and Liu, 2003) method select features that are highly correlated with 

the output, while not correlated to each other. ReliefF (Kononenko, 1994) uses a statistical 

approach in which the features are assigned a weight regarding to their relevance to the class. 

A higher value of the weight represents more predictivity of the feature. Sparse logistic 

regression (SLogReg) (Shevade and Keerthi, 2003) identifies a sparse subset of discriminative 

features. Sparse logistic regression with Bayesian regularisation (SBMLR) (Cawley and 

Talbot, 2006) is a developed version of SLogReg, in which a Bayesian approach is integrated 

to makes it faster and more efficient without needing model selection for optimisation of 

parameter selection. Spectral feature selection (SPEC) (Zhao and Liu, 2007) is based on 

spectral graph theory in which the relevance of the features is related to the consistency with 

the structure of the graph. The minimum redundancy maximum relevance (mRMR) (Peng et 

al., 2005) feature selection technique selects the most relevant features by removing the 

irrelevant ones which makes it an efficient technique for subset selection of features. This 

method uses the mutual information to identify the similarity between features.  

In this work, the mRMR feature selection technique (Peng et al., 2005) is chosen for feature 

subset selection due to the efficiency of the method in trading off between relevancy and 

redundancy amongst the filter-based techniques. A comparison of the feature selection 

methods for the proposed techniques in this chapter will be presented in the Section 4.3.3. 

For features, fi, in feature set S, the maximum relevance between features and class c is 

obtained by maximising  

max  𝐷(𝑆, 𝑐) ,  𝐷 =  
1

|𝑆|
∑ 𝐼𝑀(𝑓𝑖; 𝑐)𝑓𝑖∈𝑆 , (4-24) 
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where IM is mutual information between feature fi and the class c.  Minimum redundancy is 

calculated from: 

min 𝑅(𝑠), 𝑅 =
1

|𝑆|2
∑ 𝐼𝑀(𝑓𝑖, 𝑓𝑗)𝑓𝑖,𝑓𝑖∈𝑆  . (4-25) 

 

The feature selection is performed on the entire feature vector which is based on leave-one-

out cross validation using a voting scheme. In the cross validation, the best number of features, 

NFEA, were selected for each case. When a specific feature is selected by one case, that feature 

will get one vote.  For all the features voted by all the cases, the top NFEA features with highest 

scores will be chosen as the final features. The selected features will be used in the 

classification stage to classify each superpixel into tumour or non-tumour. 

 

4.2.7 Extremely Randomized Trees Classification of Superpixels 

The ERT classifier (Geurts et al., 2006) is used to categorise each superpixel into tumour or 

normal brain tissue to tackle the problem of  extremely imbalanced data in the clinical dataset 

and to improve the accuracy of the minority class (i.e. tumour). Like random forests (RF) 

(Liaw and Wiener, 2002), ERT is an ensemble technique which uses multiple decision trees. 

Each node of the tree in both methods includes a set of training examples and the predictor. 

Splitting starts from the root node and will continue at every node. The procedure is performed 

based on the feature representation and allocating the partitions to the sub-nodes. The trees are 

growing until a specified tree depth, Dtree, is reached. A random subset of features is selected 

at each attribute split during the bagging process. In the RF classifier, the most popular class 

is voted (Breiman, 2001) after generating large number of trees, Ntree.  

ERT is an extension of RF in which a further randomisation stage is added for selecting the 

cut-points alongside with randomised selection of attributes like in RF. The splits of attributes 

and cut-points are selected randomly in ERT. Each tree is determined by t ϵ {1… T} in which 

T is the number of randomised trees. For a given data point x and dataset Dtrain a feature vector 

is represented by f(x, Dtrain). To classify the class c of the data, for an n-dimensional feature 

representation, each tree learns a weak predictor of pt(c|f(x, Dtrain)).  

In the testing process, for an unseen data point, x', the probability of belonging a class c is 

calculated by the average of probabilities on all the trees using 

𝑝(𝑐|𝑓(𝑥′, 𝐷)) =  
1

𝑇
∑ 𝑝𝑡(𝑐|𝑓(𝑥′, 𝐷))𝑇

𝑡 = 1 . (4-26) 
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The structures of randomised trees are independent of training sample outputs. The main 

parameters of designing ERT are the number of trees, tree depth, and the number of attributes 

(kattribute) which is selected to perform the random split. RF parameters were tuned by 

examining different tree depths and number of trees on clinical training datasets and evaluating 

the classification accuracy using leave-one-out validation. In the current study, there are 20 

extra trees with depth Dtree = 15 in the ensemble and five attributes which are equal to the 

number of selected features. The minimum number of samples for splitting a node is 2 as this 

is a classification task. Setting these parameters will be discussed in Section 4.3.3.  

Each superpixel is now classified into a tumour or non-tumour candidate. Based on the classes 

assigned for each voxel in the testing case in each leave-one-out iteration, the final 

segmentation mask is created by mapping back the pixel class to the segmentation mask 

volume. The small superpixel regions with the total number of pixels less than a pre-defined 

threshold (i.e. 100) are considered as a false positive (FP) region and removed from the tumour 

candidates.  This is a post-processing stage to remove the hyper-intense regions of skulls near 

normal brain. The remaining tumour superpixel regions are the segmented tumour. 

 

4.3 Experiments and Results 

Two experiments were conducted in this section based on the datasets. In the first experiment, 

the clinical dataset was used for training and validation of the algorithm. In the second 

experiment, to assess the robustness of the proposed method, a further validation on the 

publicly available BRATS 2013 training dataset  was conducted. In this section the dataset, 

implementation, parameter setting of the models, and evaluation protocols are described. Then 

comprehensive experimental results are presented and discussed in terms of quantitative and 

qualitative evaluations.  

 

4.3.1 Dataset and Implementation 

Data acquisition and parameters for the clinical FLAIR sequences were explained in Chapter 

2 (Section 2.6.1). The clinical dataset consists of 19 patients which are entered retrospectively 

into the experiments, each with a brain tumour with grades: II, III, and IV, and each of them 

has a histological gold standard. Figure 4-15 shows some examples of the manual 

segmentations of the complete tumour for different tumour grades in FLAIR images from the 

clinical dataset. 
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The BRATS 2013 annotated clinical training dataset were described in Chapter 2 (Section 

2.6.2). The dataset consists of multi-contrast MR scans of 30 glioma patients which were 

acquired from multi-centres using different scanners with different field strengths (1.5 T and 

3T). In the current study, only FLAIR images were used to evaluate the proposed single 

modality method. As explained in Chapter 2 (Section 2.6.2), VSD system provided the tumour 

type classes: oedema, necrosis, enhancing and non-enhancing tumour. 

The experiments were carried out using the following combinations of the tumour structures 

for image labelling and classification:  

1. Complete tumour. 

2. Healthy brain tissues and background. 

 

 

Figure 4-15  FLAIR images with different tumour grades in upper row and their ground-truth 

manual segmentation of the FLAIR hyperintensity in the lower row. Tumour grades are: a) 

Grade II b) Grade III and c) Grade IV 

 

The reason that the BRATS testing dataset were not used is that the VSD evaluation blind test 

protocols were designed for analysing the segmentations with the full label classification. 
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Currently the aim of this work is to determine the complete tumour region which is a binary 

classification problem. Therefore, using VSD which is designed for a specific multi-class 

evaluation (Chapter 2, Section 2.7.1), is not applicable for the current binary classification 

experiments.  The evaluation of testing dataset using VSD blind test system will be carried out 

later in Chapter 6 for segmentation of all tumour tissue subtypes.  

The methods were performed on MATLAB 2015b on a PC with CPU Intel Core i7 and 16 GB 

RAM with the operating system Windows 8.1. The ERT classifier was implemented using the 

open source code provided in (Taormina, n.d.) which was created based on the ERT method 

proposed by Geurts et al. (Geurts et al., 2006). 

To evaluate the performance of ERT classifier, it was compared with support vector machine 

(SVM) (Furey et al., 2000) for the classification of superpixels. The reason for selecting SVM 

for this comparison is that it is a powerful binary classification which makes it an appropriate 

candidate to assess the performance of ERT for the two-class single modality segmentation. 

The SVM-based method will be referred as SP_SVM in this section. 

The application of the automated single modality method on the clinical data was evaluated 

by comparing the segmentations with the manual annotation provided by an expert. The 

BRATS 2013 dataset experiments were compared with the manual annotation provided by the 

VSD system.    

The SVM and ERT classifiers were evaluated using standard classification evaluation 

measure, i.e. sensitivity (Equation (2-16)), specificity (Equation (2-17)) and BER (Equation 

(2-18)). The segmentations were quantitatively evaluated using DSC (Equation (2-19)). 

 

4.3.2 Preprocessing 

In the clinical dataset experiments, all data were acquired from the same scanner. 

Figure 4-16(a) shows the original histograms for all the 19 patient data.  As can be seen, the 

data are quite consistent and there are similar histogram distributions across the different 

subjects.  

Therefore, in the initial study, instead of applying histogram matching, during the feature 

calculation stage, all the features (e.g. 1st order intensity, fractal and curvatures), except the 5 

texton histogram features, are normalised to the range of [0,30], which is referred as partial 

normalisation. This is to ensure that all the features have similar dynamic ranges and are close 

to the textons histogram values.  However, for BRATS dataset, there are a large inconsistency 

between histograms across different patients as shown in Figure 4-16(b) (low-grade) and 
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Figure 4-16(c) (high-grade). Therefore, the MRI image histogram normalisation stage is 

essential.  

 

 

a 

 

b 

 

c 

Figure 4-16 FLAIR MRI image histograms for: a) the clinical data original histograms (19 

patients), b) BRATS 2013 LGG original histograms (10 patients), c) BRATS 2013 HGG 

original histogram (20 patients). HGG and LGG are separated for better illustration of the 

histogram plots.   
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Table 4-2 Dice overlap comparison results for the BRATS data with histogram normalisation 

and without histogram normalisation (but normalising the feature ranges, so it is called “partial 

normalisation” in this table). 

Case No Grade/ID 

SP_SVM  SP_ERT 

Partial 

normalisation 

Histogram 

matching 

Partial 

normalisation 

Histogram 

matching 

1 LG-01 0.84 0.85 0.89 0.89 

2 LG-02 0.93 0.93 0.95 0.95 

3 LG-04 0.71 0.78 0.8 0.87 

4 LG-06 0.79 0.84 0.87 0.91 

5 LG-08 0.86 0.88 0.91 0.92 

6 LG-11 0.85 0.86 0.88 0.89 

7 LG-12 0.88 0.88 0.92 0.92 

8 LG-13 0.71 0.75 0.79 0.81 

9 LG-14 0.81 0.80 0.86 0.84 

10 LG-15 0.45 0.78 0.54 0.88 

11 HG-01 0.88 0.89 0.91 0.92 

12 HG-02 0.83 0.83 0.88 0.88 

13 HG-03 0.8 0.82 0.89 0.91 

14 HG-04 0.91 0.90 0.92 0.92 

15 HG-05 0.5 0.74 0.53 0.78 

16 HG-06 0.72 0.79 0.84 0.91 

17 HG-07 0.7 0.78 0.78 0.85 

18 HG-08 0.89 0.89 0.91 0.91 

19 HG-09 0.85 0.86 0.87 0.89 

20 HG-10 0.5 0.65 0.59 0.71 

21 HG-11 0.83 0.87 0.87 0.92 

22 HG-12 0.85 0.88 0.88 0.91 

23 HG-13 0.78 0.81 0.86 0.89 

24 HG-14 0.78 0.86 0.82 0.90 

25 HG-15 0.71 0.78 0.83 0.91 

26 HG-22 0.79 0.84 0.82 0.88 

27 HG-24 0.76 0.85 0.8 0.89 

28 HG-25 0.75 0.84 0.89 0.90 

29 HG-26 0.55 0.75 0.61 0.79 

30 HG-27 0.62 0.81 0.69 0.91 

Mean All 0.76 0.83 0.82 0.88 

STD All 0.13 0.06 0.11 0.05 

 

The comparison experimental results for the BRATS data with histogram normalisation and 

without histogram normalisation (but normalising the feature ranges used in the initial study) 

are shown in Table 4-2. This shows that the histogram normalisation improves the 

segmentation performance by using both SP_SVM and SP_ERT. 

 

4.3.3 Selection of Parameters 

The superpixel segmentation parameters should be optimised to ensure obtaining accurate 

boundary patches in a reasonable time with sufficient number of pixels within each superpixel 

for feature calculation. Statistical features are non-parametric and calculated directly from the 
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intensity values of the pixels within the superpixels. Parameter setting is required to calculate 

other features, i.e. fractals and textons. Optimum parameters for the ERT classifier should be 

selected for an accurate and fast classification. In this study, the parameters are determined 

through the training stage; in which a total number of 6 patient data is randomly selected 

including 2 Grade II, 1 Grade III and 3 Grade IV which are referred as the training parameter 

tuning dataset. The testing procedure was performed on the whole dataset with a leave-one-

out approach. In the following sections, the parameters selection procedure will be explained 

in detail.  

 

Superpixel Parameters 

The first stage is to investigate the effect of compactness factor, m, which was defined in 

Equation (4-3). As discussed in Section 4.2.4, the intensity values of the FLAIR voxels within 

the brain are normalised to the range of [0, 1] to ensure a normalised value for m  in different 

patient images. Different values from 0 to 1 with step 0.1 were applied and the superpixels 

boundaries were inspected visually. A compactness factor m = 1 increases the weight of 

location distance in Equation (4-3), hence results in more rigid boundaries. On the other hand, 

m = 0 decreases the effect of location distance, therefore a higher weight of intensity distance 

produces very flexible boundaries but increases the variation and irregularity of the 

superpixels’ shapes. Examples of varying the compactness factor on the superpixel patches 

are shown in Figure 4-18.  Different values for m were examined by visually inspecting the 

superpixel boundaries and area for some slices from the selected patients. The value of m = 

0.2 presents more coherent boundaries. For more accurate optimisation of the parameter m, a 

quantitative approach such as a distance measure (e.g Hausdorff distance) between superpixel 

boundaries and the ground truth can be used. 

The next parameter that must be optimised is the superpixel size and is determined by the 

initial superpixel grid size. Different initial window side sizes are considered in the 

optimisation stage which are mentioned in Table 4-3. The compactness factor is fixed to m = 

0.2 for all the experiments.  The superpixels that include more than 90% pixels from the 

tumour in the manual segmentation mask are selected. The Dice measure is used for assessing 

the performance of superpixel segmentation. The experiment ran on the training parameter 

tuning images, which are from different tumour grades, and the average results are presented 

in Table 4-3. The results show that increasing the superpixel size decreases the segmentation 

accuracy. A superpixel size of S = 6 is chosen which has a good performance and meanwhile 

contains sufficient information within the superpixel for calculating the texture based features.  
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It should be noted that the above-mentioned parameters were optimised independently. 

However, using joint optimisation may provide more optimised parameters. For the superpixel 

size S = 6, the overlap measure test was applied to the superpixels with different m values that 

include more than 90% pixels from the tumour in the manual segmentation. The noise level 

was considered as the average of the total number of isolated pixels. Figure 4-17 shows both 

plots of the overlap measure and noise. As it can be seen, the compactness m = 0.2 results in 

a low noise value while having high accuracy.   

 

 

Figure 4-17 Comparison of accuracy and superpixel noise for superpixels with S = 6 and 

different m values in the range [0, 0.45] with the step 0.05. 
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Figure 4-18 Superpixel segmentation with S = 10 and different compactness factors; m = [0.0, 

0.5, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, and 1.0]. The upper left image is the original FLAIR 

overlaid with the tumour ground truth, which is the close-up of Figure 4-7. 

 

Tumour GT m = 0.0 m = 0.05 

m = 0.1 m = 0.15 m = 0.2 

m = 0.25 m = 0.3 m = 0.4 

m = 1.0 
m = 0.7 m = 0.5 
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Table 4-3 Examples of the impact of different initial superpixel side sizes, S, on the 

segmentation accuracy of the tumour in FLAIR images with compactness factor m = 0.2 

Superpixel Side Size 4 6 8 10 15 20 

Dice Overlap 0.98 0.96 0.92 0.85 0.73 0.56 

 

   

a b c 

   

d e f 

Figure 4-19 SP segmentation with different iterations; i.e. Itr = [0, 1, 2, 5, 10]. 

 

Another parameter which is considered in iterative superpixel segmentation is the number of 

iterations for updating of the clusters. Figure 4-19 shows the superpixel segmentation 

boundaries after different iterations. As it can be seen, after the second iteration, no 

considerable changes are visible in the boundaries. However, the number of iterations, Itr = 

10 is considered to ensure the convergence of the SPs for all the patient images which is also 

suggested by (Achanta et al., 2012). The experiments show that the SLIC method converges 

to a stable superpixel boundary in a few number of iterations. However, it might depend on 

the complexity and homogeneity of the images. To evaluate the effect of the number of 

iterations on the superpixels, the difference between superpixel labels from consequent 
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iterations is calculated. The superpixel map from an iteration is compared to the one from the 

previous iteration by counting the number of pixels with different superpixel labels.  

Figure 4-20 shows the superpixel difference for 10 iterations for three sample cases and the 

average of all the cases. It can be seen that from Itr = 8, there is no difference between 

iterations. However, the Itr = 10 is considered as a safe margin.  

 

Figure 4-20 Superpixel label difference between iterations for three sample cases and the 

average of all the cases with S = 6 and m = 0.2. 

 

Texton Features 

For the orientation of the Gabor filters, six degrees in the range: [0o, 30o, 45o, 60o, 90o, 120o] 

are chosen to ensure covering the whole space of the region with a reasonable step. Adding 

more orientations seems to include more detail to the features, but on the other hand it will 

also increase the computation time and may add redundant information which may affect the 

classification accuracy.  

The maximum and minimum values for the Gabor filter size were selected empirically by 

visually inspecting the filter response to the input image. For the small filter size, i.e. values 

under 0.3, filtered images are very close to the original image. Whilst for the large filter size 

i.e. the values above the 1.5, the images are intensively blurred. Therefore, the kernel sizes are 

selected within this range with the increment of 0.3, i.e. [0.3, 0.6, 0.9, 1.2, 1.5]. The 

wavelengths of sinusoid were selected empirically by visual inspection of the filter responses 

in the range of [0.8, 1.0, 1.2, 1.5].  
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As discussed in Section 4.2.5, the texton map is created by applying k-means clustering to 

different filter responses. A key question in using k-means clustering is to determine the 

number of clusters, which in the current method is equivalent to the number of textons, ktexton. 

However, it is not straightforward to provide an accurate number of the structures presented 

in the image. Theoretically, increasing number of clusters for texton generation provides more 

specific texton differences between clusters. Selecting a large ktexton may result in over-

classifying and increasing the computational cost. In the current experiments, the number of 

clusters (textons) ktexton =5 is chosen empirically based on the number of tissues which may 

present in the FLAIR images, i.e. grey matter, white matter, tumour, oedema and other tissue 

types.  

To evaluate the effectiveness of texton features in the classification task, two separate 

experiments were conducted. The classification pipeline was similar to SP_ERT method but 

with different sets of features. Firstly, all the SP features except textons are fed into ERT 

classifier. In the second experiment, only textons of the SPs are considered for classification. 

The accuracy of the leave-one-out experiments (STD and average) are presented in 

Figure 4-21. As can be seen, texton alone has better performance compared to the other 

features, while combining all the features provides the best classification accuracy.  

 

 

Figure 4-21 Comparison of classification accuracy of superpixels on the testing dataset by 

using different combination of the features (e.g. all features without textons, textons only and 

all features including textons). 
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Fractal Features 

To evaluate the effect of threshold levels on fractal feature extraction, a different number of 

thresholds, nthreshold = 1,…,8 have been examined. The measure to assess the effect of number 

of threshold level is the accuracy of superpixel classification using fractal features only. 

Figure 4-22 shows the average accuracy of the selected testing dataset using the different 

thresholds for Grades II, III, and IV. As can be seen, after increasing nthreshold = 3 levels of 

threshold (which creates 6 binary channels) the overlap measure does not increase 

significantly. On the other hand, increasing each level of threshold will add 6 more features to 

the feature vector, since each binary channel has 3 fractal features. Augmenting the feature 

vector makes the classification more complicated and increases the computation time for both 

fractal feature calculation and classification. Therefore, the optimum level of threshold nthreshold 

= 3 is selected for the segmentation of oedema and tumour core in the proposed method.  

 

Figure 4-22  Effect of number of threshold levels on the classification accuracy for Grades II, 

III, and IV. Adding more threshold levels than nt = 3 does not affect the accuracy.  

 

Extremely Randomised Trees Parameters 

To assess the impact of ERT parameters on the classification performance, the experiment ran 

on the selected training images with different sizes of trees. The maximum depth of the trees, 

Dtree, for the ERT was set to 15. Minimum sample size, nmin, for splitting a node is selected to 

be 2,  which is an optimal value for most classification tasks according to (Geurts et al., 2006). 

The number of attributes for random split is considered as 5 which is equal to the number of 

selected features after applying the mRMR feature reduction. In general, the optimum value 

for kattribute for the classification tasks is kattribute = √Nfeature where Nfeature is the total number of 
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features. However, the selected features in the current study are few, so the kattribute = 5 is chosen 

as the optimal parameter. ERT classifier models with a different number of trees were assessed 

and the average classification accuracy on the testing dataset were calculated which are 

presented in Table 4-4. The average time of training the ERT with a different number of trees 

is also presented in Table 4-4. As can be seen, there is no significant improvement for the 

classifier accuracy after adding more than 20 trees to the ERT. On the other hand, increasing 

the number of trees will increase the computation time. As it can be seen in Table 4-4, the 

accuracy measures of classification for Ntree = 20 and Ntree = 50 are 98.22 and 98.28, 

respectively, whilst the training time for Ntree = 50 is more than two times higher than the ERT 

with Ntree = 20. Therefore, the size of trees Ntree = 20 is used for the ERT classifier in the current 

experiments. 

 

Table 4-4 Impact of the number of trees on ERT classifier accuracy and training time. 

Number of Trees 5 10 20 50 100 

Classification Accuracy (%) 92.35 97.86 98.22 98.28 98.28 

Training Time (mins) 134 253 498 1218 2437 

 

Feature Selection Methods 

Some popular feature selection methods were explained in Section 4.2.6, which are applied to 

the proposed SP_ERT method. k-fold cross validation with k = 4 is used for evaluation. 

Table 4-5 provides the average accuracy of the classification on the evaluation dataset in each 

fold. As can be seen, the mRMR method provides the best performance for the feature subset 

selection. The classification accuracy after selecting the features given by mRMR method was 

98.11%, which was the highest amongst other feature reduction methods.  

 

Table 4-5 Comparison of feature selection techniques. The accuracy of ERT classifier after 

feature selection is considered as evaluating the efficiency of the selected feature subsets. 

Feature Selection Method Accuracy (%) 

Fast Correlation-base Filter (FCBF) (Yu and Liu, 2003) 95.23 

ReliefF (Kononenko, 1994) 94.68 

Sparse logistic regression with Bayesian regularisation (SBMLR) 

(Cawley and Talbot, 2006) 
97.03 

Spectral feature selection (SPEC) (Zhao and Liu, 2007) 96.54 

Minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 

2005) 
98.11 
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4.3.4 Comparative Experimental Results 

Leave-one-out cross validation (LOO-CV) was performed on single-channel MR FLAIR data 

for the classification stage. The brain MR images were partitioned into superpixels based on 

Equation (4-3) using the initial window side size of S = 6 pixels and the compactness factor m 

= 0.2. All the superpixels inside the brain area were used for classification. Superpixels are 

split in two classes based on the manual annotation: normal tissue and brain tumour including 

tumour core and oedema. Any superpixel with at least 50% of tumour pixels in manual 

annotation were considered as a tumour superpixel. The remaining superpixels were labelled 

as normal. The classifier was trained based on these two labels. For the testing stage, the 

trained classifier was then applied and labels were assigned to all the superpixels inside the 

brain. The tumour area was obtained by grouping the superpixels related to tumour class 

together.  

Five features were used after mRMR feature selection. The final features were the normalised 

mean intensity, fractal dimension, two texton channels (cluster numbers 3 and 5) and mean 

curvature within the superpixel. The texton channels were selected in the mRMR process. 

However, the texton channel 3 mostly covers the white matter, while texton channel 5 

represents the most overlap with the tumour. The reason for selecting 5 features was the 

comparison with SVM and the fact that the optimum attribute selection by ERT was kattribute = 

5. ERT can be used directly as feature selection and classification. However, in the current 

experiments, to ensure a fair comparison between the ERT and SVM classifiers the same 

feature set is considered. 

Evaluation of the classifiers has been carried out quantitatively using three classification 

measures for the detection. From the standard four classification measures (accuracy, 

precision, sensitivity, specificity), accuracy and specificity will give very high values due to 

the imbalanced nature of the clinical data (approximately 10:1 ratio of healthy to tumour). 

Therefore, only precision and sensitivity were considered to properly evaluate the 

classification performance. 

Table 4-6 presents the evaluation measures for classification of the superpixels using SVM 

and ERT. The results show that ERT produces a better classification performance compared 

to that of SVM, with an overall classification precision of 87.86%, sensitivity of 89.48% and 

BER of 6% for ERT, and of 83.59%, 87.82% and 7% for SVM, respectively.  
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Table 4-6 Comparison evaluation on superpixel classification in SP_SVM and SP_ERT, 

respectively, on the 5 features selected using mRMR. The classification is performed for 

tumour including oedema and active tumour core versus normal brain tissue. (BER is balanced 

error rate). 

Case 

No 
Grade 

SP_SVM SP_ERT 

Precision 

(%) 

Sensitivity 

(%) 

BER Precision 

(%) 

Sensitivity 

(%) 

BER 

1 II 62.71 97.33 0.02 69.85 97.45 0.02 

2 II 58.65 98.14 0.02 90.24 98.65 0.01 

3 II 72.55 98.41 0.02 74.21 99.12 0.01 

4 II 68.53 94.88 0.03 70.24 96.05 0.02 

5 II 76.33 55.64 0.23 78.43 56.32 0.22 

6 II 75.83 73.45 0.14 85.63 71.32 0.15 

7 III 84.75 98.75 0.01 86.07 99.35 0.01 

8 III 88.54 83.32 0.09 90.78 85.64 0.08 

9 III 88.92 98.11 0.01 91.44 98.67 0.01 

10 IV 95.22 83.25 0.09 97.44 89.03 0.06 

11 IV 93.45 88.53 0.07 96.57 91.65 0.05 

12 IV 81.55 73.98 0.14 84.33 75.92 0.13 

13 IV 80.35 92.68 0.04 82.53 95.73 0.03 

14 IV 90.12 92.51 0.04 91.32 95.87 0.03 

15 IV 93.42 93.76 0.04 96.78 94.02 0.03 

16 IV 87.45 83.06 0.09 90.21 84.15 0.08 

17 IV 95.34 87.75 0.06 96.81 91.87 0.04 

18 IV 98.33 82.56 0.09 98.43 85.33 0.08 

19 IV 96.21 92.51 0.05 98.12 94.03 0.04 

Mean All 83.59 87.82 0.07 87.86 89.48 0.06 

STD All 11.76 11.09 0.06 9.27 11.23 0.06 

 

The segmentation results were evaluated qualitatively by visual inspection and quantitatively 

using the Dice overlap measure. Figure 4-23 shows the Dice score overlap measure of the 

segmented tumour masks obtained by both SP_SVM and SP_ERT methods against the ground 

truth for each individual patient. The Dice overlap measure using the SP_ERT method is much 

better than that of SP_SVM for all the three tumour grades, with mean and standard deviation 

Dice score of 0.91 ± 0.04 for SP_ERT; and 0.87 ± 0.05 for SP_SVM. The segmentation results 

of SP_ERT method for Grade IV patients show a consistent increase for all cases compared to 

SP_SVM in Figure 4-23. Grade IV tumours appear with clearer boundaries in FLAIR images. 

It is difficult to compare the results for Grade III tumours since there are three cases with 

different comparison results. One reason for this discrepancy can be the low numbers of Grade 

III patient cases in the training phase. The difference between segmentation results for the 

Grade II patient cases varies for different cases. This is because the tumours in Garde II cases 

appear with more unclear boundaries due to infiltration, compared to the other grades. 

However, the SP_ERT method provides a better accuracy and robustness for the segmentation 

of Grade II tumours.  
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Figure 4-23  Comparison of Dice Score overlap measure of SP_SVM vs. SP_ERT for all the 

clinical patient data (19 scans). Dice score in the vertical axis starts from 0.65 for better 

illustration.  

 

The Dice score overlap measure (mean and standard deviation) for SP_SVM vs. SP_ERT are 

compared in Figure 4-24 for different tumour grade types from II to IV. The results show that 

the method based on ERT classifier provides more accurate segmentations for all grades of 

tumour type. For segmentation results of different tumour grades using the SVM classifier, an 

evident difference can be seen between Dice overlap measures. The results are not good for 

grade II with mean overlap of 0.81, compared to the other two grades with mean overlap of 

0.90. It should be noted that the minimum DSC in recent related publications is 0.85. Whilst 

the segmentation results based on ERT classifiers are consistent for all tumour grade types, 

with mean overlap of 0.91. The reason for the small difference between SP_ERT and SP_SVM 

results of Grade III was the insufficient number of patient cases.  
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Figure 4-24 Comparison between average and standard deviation of Dice score overlap 

measure for SP_SVM vs. SP_ERT for different tumour grade types II to IV. 

 

To determine the differences between both the segmentation measure of the Dice overlap and 

classification measures of precision and sensitivity, obtained using the two different classifiers 

(i.e. SVM and ERT), the Wilcoxon signed-rank test is used at a 99% confidence level, with 19 

subjects. Table 4-7 shows the statistical parameters of the analysis which is based on the p and 

z values of the statistical test. The analysis demonstrates that using the ERT classifier instead 

of the SVM provides a statistically significant improvement in the segmentation measures of 

Dice overlap, and in the classification measures of precision and sensitivity. 

 

Table 4-7  Statistical parameters of the Wilcoxon signed-rank test 

 p Z value 

Dice < 0.001 -3.826 

Precision < 0.001 -3.823 

Sensitivity 0.001 -3.340 

 

Figure 4-25 shows examples of segmentation results for SP_ERT and SP_SVM methods 

overlaid on the FLAIR image. The manual annotation for the corresponding images are also 

overlaid to compare the segmentation boundaries. Both SP_SVM and SP_ERT methods 
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obtained accuracy above 0.80 for the segmentation of different tumour types, while SP_ERT 

method provided slightly better segmentations compared to the SP_SVM method. Figure 4-26 

shows examples of much better detection and segmentation results obtained from SP_ERT 

methods, compared to that from SP_SVM. Most of the false positive superpixels from 

SP_SVM (e.g. Figure 4-25 (c4) and Figure 4-26 (c1)) were effectively eliminated using 

SP_ERT.  Also, some tumour superpixels which were wrongly classified to the normal brain 

tissues by using SP_SVM (e.g. Figure 4-26 (c2) and (c3)) were classified correctly as tumour 

by using the SP_ERT, which demonstrates the higher sensitivity of the SP_ERT method. The 

SP_SVM method did not correctly segment the tumour core in Figure 4-26 (c2), while the 

SP_ERT method successfully segmented it.  Comparison examples of segmentation for Grade 

II tumour in the first row of both Figure 4-25 and Figure 4-26 shows that the segmented tumour 

boundaries from SP_ERT (d1) were closer to the manual annotation, compared to that of 

SP_SVM (c1). 
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Figure 4-25 Examples of segmentation results overlaid on manual segmentation (green). 

FLAIR image with tumour Grade II  (a1), Grade II (a2), Grade III (a3) and Grade IV (a4); 

(b1)-(b4) manual segmentation; (c1)-(c4) results using SP_SVM; (d1)-(d4) results using 

SP_ERT.  
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Figure 4-26 Examples of good segmentation results obtained from SP_ERT methods. FLAIR 

image with tumour Grade II (a1), Grade III (a2), Grade IV (a3); (b1)-(b3) manual 

segmentation; (c1)-(c3) results using SP_SVM; (d1)-(d3) results using SP_ERT. Most of the 

false positive superpixels from SP_SVM (e.g. (c1) and (c3)) can be effectively eliminated 

using SP_ERT; while some tumour superpixels which are wrongly classified to the normal 

brain tissues by using SP_SVM (e.g.(c2)) can be correctly classified as tumour by using the 

SP_ERT. 

 

Figure 4-27 and Figure 4-28 show the 3D graphical view of the corresponding slices in 

Figure 4-25 and Figure 4-26, respectively. The 3D surfaces of the segmented tumours using 

the SP_SVM (blue) and SR_ERT (red) are overlaid on the ground truth surface (green). This 

provides a better representation of the whole segmentation in all slices. As it can be seen, the 

SP_SVM results in several false positive isolated small volumes. It should be noted that the 

post-processing stage was performed for both SP_SVM and SP_ERT methods. However, both 
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methods provide similar segmentation volumes for the tumour region. SP_ERT method has 

very few false positive isolated regions close to the tumour area. In Figure 4-28, the 

segmentation volume for Grade III has a large under-segmented surface. However, the 

corresponding slices in Figure 4-26 (middle row) show that the segmentation from the 

SP_ERT method (Figure 4-26 (d2)) has a closer surface to the ground truth, compared to the 

SP_SVM segmentation (Figure 4-26 (d2)).  

 

 

Figure 4-27 The 3D graphical representationof the segmented tumours in Figure 4-25 using 

SP_SVM (blue) and SP_ERT (red) overlaid on the ground truth (green).  
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Figure 4-28 The 3D graphical representationof the segmented tumours in Figure 4-26 using 

SP_SVM (blue) and SP_ERT (red) overlaid on the ground truth (green). 

 

4.3.5 BRATS 2013  

Most of the parameters which are tuned for the clinical dataset are directly used in the 

experiments on BRATS dataset. These parameters include the number of clusters for texton 

generation, compactness coefficient for superpixel segmentation and the number of threshold 

levels for fractal features. All the parameters of superpixels and feature extraction for both 

SP_ERT and SP_SVM experiments are identical. However, only the superpixel size and filter 

size used for Gabor filter (Equation (4-19)) are slightly adjusted differently for the clinical and 

BRATS dataset regarding to their different image sizes and resolutions. The image dimension 

in X-Y plane for the clinical dataset is 256 × 256, while for the BRATS 2013 dataset has an 

average of 170 × 220. The superpixel side size 5 is optimal for segmentation of BRATS 2013 

dataset. However, for the clinical dataset, using superpixel side size 5 produces more 

superpixels, which increases the computation time. Therefore, superpixel side size 6 was 

selected. The superpixel size of 5 is used in the BRATS dataset while it was 6 for the clinical 

dataset. A slightly smaller range of Gabor filter size (e.g. [0.3 0.5 0.8 1.1 1.4]) is used for 

texton feature extraction for the BRATS dataset. All the five features selected using mRMR 
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in the clinical dataset experiment are also used in BRATS dataset for the classification of each 

superpixel. 

Table 4-8 presents the evaluation measures for SP_SVM and SP_ERT classification of 

superpixels into tumour and non-tumor. ERT produces better classification performance, 

compared to that of SVM, with an overall classification precision of 89.09%, sensitivity of 

88.09% and BER of 6% for ERT, and of 83.79%, 82.72% and 9% for SVM, respectively. 

 

Table 4-8 Comparison evaluation on superpixel classification using SP_SVM and SP_ERT 

classifier, respectively, on the BRATS 2013 dataset using 5 features selected by mRMR. The 

classification is performed for tumour including oedema and active tumour core versus normal 

brain tissue (BER is balanced error rate). 

Case 

No 
Grade/ID 

SP_SVM SP_ERT 

Precision 

(%) 

Sensitivity 

(%) 

BER Precision 

(%) 

Sensitivity 

(%) 

BER 

1 LG-01 87.68 89.43 0.06 91.84 88.18 0.06 

2 LG-02 96.98 88.60 0.06 99.02 92.63 0.04 

3 LG-04 75.59 81.95 0.10 78.40 90.67 0.05 

4 LG-06 84.57 87.42 0.07 92.15 90.05 0.05 

5 LG-08 90.95 83.54 0.09 93.11 91.05 0.05 

6 LG-11 89.91 82.67 0.09 91.41 86.78 0.07 

7 LG-12 91.42 83.19 0.09 92.18 84.19 0.08 

8 LG-13 74.48 79.19 0.11 79.28 85.86 0.08 

9 LG-14 83.17 80.37 0.10 88.03 82.58 0.09 

10 LG-15 76.15 80.60 0.10 82.64 89.29 0.06 

11 HG-01 92.77 92.55 0.04 98.47 95.91 0.03 

12 HG-02 83.51 82.15 0.09 90.45 88.62 0.06 

13 HG-03 85.46 79.59 0.11 91.31 88.68 0.06 

14 HG-04 94.08 89.30 0.06 98.69 90.96 0.05 

15 HG-05 78.96 72.06 0.14 83.16 77.70 0.12 

16 HG-06 81.54 74.77 0.13 93.13 90.32 0.05 

17 HG-07 75.48 79.60 0.11 83.16 87.81 0.07 

18 HG-08 87.87 90.58 0.05 89.21 93.88 0.04 

19 HG-09 84.78 87.04 0.07 87.56 90.35 0.05 

20 HG-10 67.77 65.63 0.18 73.17 71.84 0.15 

21 HG-11 90.53 85.68 0.08 92.39 90.21 0.05 

22 HG-12 88.58 86.82 0.07 92.08 89.36 0.06 

23 HG-13 80.10 84.35 0.08 88.64 89.23 0.06 

24 HG-14 84.74 87.99 0.07 88.80 91.76 0.05 

25 HG-22 78.21 80.75 0.10 88.79 92.83 0.04 

26 HG-24 82.50 85.14 0.08 88.87 87.98 0.07 

27 HG-25 82.23 86.08 0.07 90.95 88.16 0.06 

28 HG-26 84.41 82.60 0.09 91.71 89.84 0.06 

29 HG-27 77.16 72.67 0.14 80.93 75.54 0.13 

30 HG-22 82.10 79.19 0.11 93.09 90.42 0.05 

Mean All 83.79 82.72 0.09 89.09 88.09 0.06 

STD All 6.63 5.95 0.03 6.00 5.22 0.03 
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The Dice overlap ratio between the ground-truth from manual annotation and the segmented 

tumour using SP_ERT and SP_SVM experiments for the BRATS dataset is presented in 

Table 4-9. The overlap ratio using the SP_ERT method is much better than that of SP_SVM 

for all the three tumour grades, with mean Dice score of 0.88 for SP_ERT; and 0.83 for 

SP_SVM.  

 

Table 4-9 Comparison results for Dice overlap ratio between manual annotation and the 

automated segmentation using SP_SVM and SP_ERT for BRATS 2013 dataset (30 scans). 

Case 

No 
Grade/ID 

Dice 

SP_SVM SP_ERT 

1 LG-01 0.85 0.89 

2 LG-02 0.93 0.95 

3 LG-04 0.78 0.87 

4 LG-06 0.84 0.91 

5 LG-08 0.88 0.92 

6 LG-11 0.86 0.89 

7 LG-12 0.88 0.92 

8 LG-13 0.75 0.81 

9 LG-14 0.80 0.84 

10 LG-15 0.78 0.88 

11 HG-01 0.89 0.92 

12 HG-02 0.83 0.88 

13 HG-03 0.82 0.91 

14 HG-04 0.90 0.92 

15 HG-05 0.74 0.78 

16 HG-06 0.79 0.91 

17 HG-07 0.78 0.85 

18 HG-08 0.89 0.91 

19 HG-09 0.86 0.89 

20 HG-10 0.65 0.71 

21 HG-11 0.87 0.92 

22 HG-12 0.88 0.91 

23 HG-13 0.81 0.89 

24 HG-14 0.86 0.90 

25 HG-15 0.78 0.91 

26 HG-22 0.84 0.88 

27 HG-24 0.85 0.89 

28 HG-25 0.84 0.90 

29 HG-26 0.75 0.79 

30 HG-27 0.81 0.91 

Mean All 0.83 0.88 

STD All 0.06 0.05 

 

Figure 4-29 and Figure 4-31 show examples of segmentation results for SP_ERT and SP_SVM 

methods compared to the manual annotations. Figure 4-29 shows the segmentation results for 

high-grade tumour and Figure 4-31 for low-grade tumour. Both SP_SVM and SP_ERT 

methods obtained accuracy above 0.80  for the segmentation of different tumour types. 

However, SP_ERT method provided slightly better segmentations than SP_SVM method. 
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Most of the false positive superpixels from SP_SVM (e.g. Figure 4-29 (c2) and Figure 4-31 

(c3)) can be effectively eliminated using SP_ERT. Furthermore, some tumour superpixels 

which are wrongly classified as normal brain tissue by using SP_SVM (e.g. Figure 4-31 (c2)) 

can be correctly classified as tumour by using the SP_ERT, which demonstrates the higher 

sensitivity of the SP_ERT. Comparison examples of segmentation for both HG and LG 

tumours in Figure 4-29 and Figure 4-31 illustrate that the segmented tumour boundary from 

SP_ERT is closer to the manual annotation, compared to that of SP_SVM. 

 

 

Figure 4-29 Examples of segmentation results obtained from SP_ERT methods on BRATS 

2013 data. FLAIR image with high grade tumour Case HG-01 (a1), HG-15 (a2); (b1)-(b2) 

manual segmentation; (c1)-(c2) results using SP_SVM; (d1)-(d2) results using SP_ERT.  

 

Figure 4-30 shows the 3D graphical view of the corresponding slices in Figure 4-29. The 3D 

surfaces of the segmented tumours using the SP_SVM (blue) and SR_ERT (red) are overlaid 

on the ground truth surface (green). As it can be seen, similar to the segmentation of clinical 

datasets, the SP_SVM method produces several false positive isolated volumes. The SP_ERT 
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method has very few false positive small volumes. However, both methods provide similar 

segmentation volumes for the tumour region.     

 

 

Figure 4-30 3D graphical representationof the segmented tumours in Figure 4-29 (HG cases) 

using SP_SVM (blue) and SP_ERT (red) overlaid on the ground truth (green).  
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Figure 4-31 Examples of segmentation results obtained from SP_ERT methods on BRATS 

2013 data. FLAIR image with low grade tumour Case LG-04 (a1), LG-11 (a2) and LG-12 

(a3); (b1)-(b3) manual segmentation; (c1)-(c3) results using SP_SVM; (d1)-(d3) results using 

SP_ERT. 

 

Figure 4-32  shows the 3D graphical view of the corresponding slices in Figure 4-31. The 3D 

surfaces of the segmented tumours using the SP_SVM (blue) and SR_ERT (red) are overlaid 

on the ground truth surface (green). As it can be seen, similar to the segmentation of LG 

tumours, the SP_SVM method produces several false positive isolated volumes. The SP_ERT 

method has very few false positive small volumes.     
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Figure 4-32 3D graphical representationof the segmented tumours in Figure 4-31 (LG cases) 

using SP_SVM (blue) and SP_ERT (red) overlaid on the ground truth (green). 

 

4.4 Discussion 

4.4.1 SP_ERT Single Modality Method 

FLAIR images are commonly acquired in clinical practice as part of standard diagnostic 

clinical MRI of brain tumours. The experimental results in this chapter and Section 4.3.4, 

which are shown in Table 4-6, Table 4-7, Figure 4-25 and Figure 4-26, demonstrate high 

performance of automated detection and segmentation of the brain tumour oedema and core 

regions in FLAIR MRI. The method was also further validated on BRATS 2013 training 

dataset (FLAIR) with the similar model parameters and features tuned for the clinical dataset. 

The experimental results in Section 4.3.5, which are shown in Table 4-8 and Table 4-9, 

suggests the robustness of the SP_ERT single modality method. 

Selecting an appropriate superpixel size is essential for increasing the overall segmentation 

accuracy within an optimum calculation speed. Selecting large superpixel size requires fewer 

number of total superpixels, hence it can ensure fast computation and meanwhile may provide 

sufficient information for feature extraction such as stable texture features. On the other hand, 

a large superpixel size may contain more than one class of pixel which may cause inaccurate 

feature calculation (such as small areas of calcification or haemorrhage), and it is also not 
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appropriate for small sized lesions. Whereas, a small superpixel size has higher probability to 

purely contain one class of pixel, hence it is preferred for segmentation of a small lesion. 

However, they may not be enough pixels for calculating stable features. Also, the computation 

time for generating the small size partitions is very high due to the large number of total 

superpixels. The aim of optimisation is to find a superpixel size which provides a good trade-

off between computation time and segmentation accuracy. In Section 4.3.3, the size of 

superpixel is obtained through exhaustive parametric searching during the training stage on 

the selected data.  

The compactness factor is another important parameter for superpixel segmentation which 

should be tuned. As explained in Section 4.3.3, higher value of compactness factor provides 

more rigid partitions which are more stable and usually less noisy. In the case of superpixel 

segmentation noise is considered as holes or sparse separated pixels. However, the rigid 

superpixels may not follow the tissue boundaries very well, especially in the cases where there 

are no sharp or clear boundaries. On the other hand, lower values for the compactness factor 

provides more flexible and accurate boundaries, but produces more isolated and disconnected 

pixels. They also may generate very narrow superpixels which are not appropriate for texture 

analysis.  In the Section 4.3.3, the compactness factor is determined using visual inspection of 

matching the superpixels with the boundaries of the ground truth.  

The application of SP_ERT method on the BRATS data is compared to the methods published 

in (Menze et al., 2015) which used the same data in MICCAI challenge. However, some of 

the corresponding methods are assessed on the training dataset, whilst others are on the 

separate testing dataset.  Since the current study is based on binary classification (i.e. tumour 

including oedema and active tumour core versus normal brain tissue) using a single FLAIR 

protocol, it is difficult to have a direct comparison with the current published methods on 

BRATS data. However, the experimental results of the SP_ERT method are in the same range 

of other methods and are close to the best segmentation of the complete tumour which 

demonstrates the strength of the method. The image patches from the superpixels are following 

the edges in the images, therefore including more homogeneous pixels. This increases the 

robustness of the final segmentation after classification of superpixels. However, in the case 

of small tissues that encompass few superpixels or those smaller than an average superpixel, 

the algorithm might fail. Misclassification of these superpixels will result in assigning the 

small tumorous region as healthy brain tissues.  

This study also emphasises the importance of MRI histogram normalisation in the 

preprocessing stage. This is of importance especially when the method is applied to the data 

that are from multi-centres and different scanners such as BRATS dataset. When the histogram 
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normalisation was applied on the clinical data, there were only slight differences for the Dice 

scores, for the individual patient data, whereas the mean Dice score for all the 19 data is the 

same as before (i.e. 0.91). This is mainly because the clinical data are quite consistent. Also, 

the feature normalisation step was found out to be quite important, especially when it was 

applied to the BRATS data, the segmentation results improved significantly using both 

SP_SVM and SP_ERT. This may be the reason why even without histogram normalisation, 

the mean Dice score of 0.82 for SP_ERT was still obtained (partial normalisation) as shown 

in Table 4-2. 

 

4.4.2 Applying the SP_ ERT on BRATS dataset 

The BRATS training dataset was used to evaluate the robustness of the method. As discussed 

in the Section 4.3.5, most of the parameters are the same as those optimised for the clinical 

data. Figure 4-33 shows the overall average and standard deviation of Dice score overlap 

measures for all 19 clinical patient data and 30 BRATS 2013 dataset using both SP_ERT and 

SP_SVM methods. The results show that using the state-of-the art ERT for classification of 

superpixels provides more accurate and robust segmentation compared to that of an SVM 

classifier. For the clinical dataset, the Dice score overlap measure for SP_ERT segmentation 

is 0.91 ± 0.04, while for SP_SVM method it is 0.87 ± 0.05. For BRATS 2013 dataset, the Dice 

score overlap measure for SP_ERT segmentation is 0.88 ± 0.05, while for SP_SVM method it 

is 0.83 ± 0.06. The mean Dice scores obtained from BRATS training dataset is closer to that 

from the clinical dataset, this suggests robustness of the method.   
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 Figure 4-33 Comparison of the average and standard deviation of Dice score overlap measures 

for SP_SVM vs. SP_ERT for all 19 data scans in the clinical dataset and 30 clinical scans in 

BRATS 2013 dataset. 

 

Table 4-10 presents the comparison of applying the SP_ERT single modality method on 

BRATS 2013 dataset with the best scores in the MICCAI challenges (Menze et al., 2015). The 

method proposed by Tustison et al. (Tustison et al., 2013) was the winner of on-site BRATS 

2013 challenge and performed on the challenge data. The best on-site score could provide a 

comparable reference using BRATS dataset despite the difference between datasets. The 

SP_ERT single modality method was also compared to the method proposed by Reza et al. 

(Reza and Iftekharuddin, 2013) which has the best result for the training set of the BRATS 

multi-protocol dataset. This is the same dataset which was used in the experiments of the 

SP_ERT method, however only the FLAIR protocol was used. This work has achieved the 

average Dice overlap of 0.88 which is closer to that of 0.92 by Reza’s method.  As explained 

in Section 4.3.5 to emphasise the robustness of the SP_ERT method, the similar optimum 

parameters and the same five features selected for the clinical dataset are directly applied to 

the BRATS dataset. The algorithm is trained particularly on 1.5T clinical data from a single 

centre, whereas the BRATS data contains multicentre data from 1.5T and 3T MRI scanners.  

This may be the reason for the slightly difference of the results between the two datasets. 
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Table 4-10 Comparison with other related methods using BRATS dataset (MICCAI 2013). 

Note: the proposed SP_ERT method and Reza et al. (Reza and Iftekharuddin, 2013) are 

performed on BRATS clinical training data and the other work (Tustison et al. (Tustison et 

al., 2013)) is performed on BRATS challenge data. 

 

 

4.5 Limitations 

Although the current segmentation algorithm method was evaluated on FLAIR images, it 

should be straightforward to apply the same superpixel methodology to other protocols such 

as contrast enhanced T1-weighted images to determine the signal intensity and higher order 

features that best segment the contrast enhancing region of high grade gliomas. In the results 

Section 4.3.4, it was noted that in Figure 4-26 (a2), the small hypointense spots in the FLAIR 

(and corresponding T1-weighted) maybe calcifications, and the hypointense FLAIR region, 

which is excluded by the SP_SVM method (Figure 4-26 (c2)) but included in the SP_ERT 

analysis (Figure 4-26 (d2)) is haemorrhagic since there is hyperintensity in the T1-weighted 

MRI. This is a limitation of the current single modality analysis if these regions need to be 

separately specified. This will be further investigated in the next chapter by developing and 

extending the superpixel-classification based method to multimodal data. This will also 

include the segmentation of different tumour tissue structures (e.g. necrosis, active tumour, 

non-enhancing tumour, and oedema) by considering information from multimodal clinical 

MRI, including perfusion and diffusion imaging.  

The ground truth for the clinical dataset, were provided based on one expert’s manual 

annotation. Some errors may occur in the manual annotations, which may include 

intratumoural bleeding or calcification in the tumour (e.g. in Figure 4-26 (b2)). Using those 

disputable annotations to train the model may result in some errors in the final segmentation. 

As it can be seen in Figure 4-31 (b1), a small part of the normal brain (hypo-intensity), was 

included in manual annotation. Both SP_SVM and SP_ERT excluded these dark regions, 

which increase the segmentation overlap error.  

The methods proposed in this chapter were evaluated on three patient cases with Grade III 

tumour. This is not sufficient to conduct a good comparison with other Grades (i.e. II and IV). 

Although the provided number of Grade III in the clinical dataset was three, the reason for not 

Method Description Comment Complete 

tumour (Dice) 

Tustison (Tustison et al., 

2013)  

Random forests 

(ANTs/ANTsR package) 

Best MICCAI 2013 

on-site 

0.87 

Reza (Reza and 

Iftekharuddin, 2013)  

Random forests + texture 

features 

Best on training 

MICCAI 2013 

0.92 

Proposed SP_ERT  ERT + superpixels Training MICCAI 

2013 

0.88 
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excluding them from the experiment was to assess the generality of applying the proposed 

methods on different types of brain tumours. However, it is difficult to conclude with certainty 

that the SP_ERT method is more accurate for Grade III tumour compared to SP_SVM.  

A major limitation of superpixel based segmentation methods is the labelling procedure for 

heterogeneous superpixels. They may contain pixels with different labels that make it difficult 

to allocate a certain label for this kind of superpixels. This is because the superpixel 

segmentation is based on a single resolution (initial size) which is a limitation for more 

heterogeneous and complex structures.   

The parameter selection procedure to find an optimal value for compactness factor, m, was 

conducted by visually inspecting some selected slices from different cases. To find a more 

accurate value, quantitative measures can be used, such as the spatial distance between the 

ground truth edges and the superpixel boundaries. 

 

4.6 Conclusion 

In this chapter a fully automated method for the detection and segmentation of brain tumour 

from FLAIR MRI images was proposed. This work has been published in the International 

Journal of Computer Assisted Radiology and Surgery (IJCARS) (Soltaninejad et al., 2016). 

The method is based on the formation of superpixels by grouping voxels with similar 

properties and extraction of the features from superpixels. The feature space includes 

nonparametric features i.e. curvature and statistical intensity features, and hand designed 

features i.e. Gabor texton feature and fractals. ERT is then used for classification of superpixels 

into tumour or healthy brain tissue. The experimental results demonstrate the high detection 

and segmentation performance of the SP_ERT, with average sensitivity of 89.48%, BER of 

6%, and Dice overlap measure of 0.91 for the complete tumour. The method was further 

evaluated on BRATS 2013 dataset to assess the robustness of the method. The experiments 

provided similar good performances of 88.09%, 6% and 0.88 for sensitivity, BER, and Dice 

overlap measure, respectively. This provides a close match to expert delineation across all 

grades of glioma, leading to a faster and more reproducible method of brain tumour delineation 

to aid patient management.  

Although the current SP_ERT method provides promising results for the segmentation of the 

complete tumour using only single modality i.e. FLAIR, the information from a single 

modality is not sufficient for segmentation of all the tumour tissue subtypes. Whilst adding 

more protocols may provide further separation between different tumour parts (e.g. oedema, 

tumour core, necrosis, and enhancing core) within the complete tumour region. To incorporate 
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more MR protocols into the current framework for multi-class analysis of the tumour, some of 

the algorithms, e.g. superpixel segmentation, feature extraction, and classifiers should be 

extended to multidimensional input data and cope with multiple classes. Future automated 

methods are likely to incorporate information from multimodal clinical MRI as in the BRATS 

database studies, and that also include perfusion and diffusion imaging to detect tumour tissue 

subtypes (e.g. necrosis, active tumour, infiltrative tumour, oedema) (Sauwen et al., 2015). The 

use of multimodal MRI for the segmentation of brain tumour tissue subtypes will be further 

investigated in the next chapter (Chapter 5). 
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Chapter 5  

5 Multimodal MRI Supervoxel-based Brain Tumour Tissue 

Classification 

 

5.1 Introduction 

In the previous chapter an automated method was proposed that utilised a single protocol 

commonly used in clinical applications, i.e. FLAIR, to segment the tumour in brain MRI 

images. The results presented a promising performance compared to the state-of-the-art 

methods for segmentation of the complete tumour from the normal brain tissue. However, a 

single protocol does not include all information for separation between different tumour parts 

(oedema, tumour core). As explained in Chapter 2, to determine the tumour grade type and 

severity of the disease and other clinical planning, the segmentation and measurement of each 

tumour part is essential.  

Most of the existing brain tumour segmentation studies were performed on conventional MRI 

protocols (i.e. FLAIR, T1-weighted (with contrast) and T2-weighted), which are based on 

qualitative image intensities. In this chapter, the isotropic (p) and anisotropic (q) diffusion 

components derived from DTI (Peña et al., 2006) will also be considered, in addition to the 

conventional MRI sequences. As explained in Chapter 2, DTI protocols provide parameters 

that are related to the average microscopic movement of water within tissue structure (p) and 

whether this movement has an anisotropic element of diffusion (q). The hypothesis is that 

combining DTI and C-MRI may provide quantitative features that increase the classification 

accuracy and improve tumour segmentation results. 

Most previous supervised learning methods are voxel-wise, in which a window or subarea 

around a voxel is normally used to extract features for classifying each individual voxel. The 

multimodal MRI data is comprised of millions of voxels (i.e. the sum of all voxels across each 

image modality), therefore voxel based methods usually require significant computational 

time. However, few studies have used superpixels or supervoxels in conjunction with other 

methods such as CRF (Wei Wu, 2013), or MRF (Zhao et al., 2013) to segment the tumour. In 

this chapter, a supervoxel based method is considered, which partitions an image into several 

small 3D patch volumes. The supervoxel based method can reduce the required computation 

for classification in the new feature space regarding to the average number of voxels within 

the supervoxels. For example, in the case of supervoxels with an average of 50 voxels, the 

computation time will be 50 times faster. In general, the feature vector size of supervoxel-

based methods is less than those that are based on image voxels (i.e. moving window). 
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Su et al. proposed multimodal superpixel approach for brain tumour segmentation in MRI, 

which was based on SLIC (Achanta et al., 2012). They adopted the SLIC method formation 

so that the intensities from different protocols was used for pixel clustering. A specific weight 

can be assigned for each protocol to control its impact on final segmentation. However, they 

considered the voxels in a raw slice as a pixel, without considering the voxel characteristics 

(e.g. voxel dimensions). In this thesis, a supervoxel segmentation method is introduced to 

portion the volumetric MRI into 3D volumetric patches based on their homogeneity. 

Incorporating the voxel dimensions and slice thickness into the supervoxel calculation is the 

main contribution of this chapter.  

The previous texton (Yu et al., 2012) and (Yi and Su, 2014) Gabor-based methods have 

applied 2D filter bank. In this chapter, 3D Gabor filters are used for texton feature extraction 

from MRI volumetric datasets. 

As explained in Chapter 2, each MRI sequence provides specific information about normal 

brain and tumour tissues. Therefore, the use of different MRI modalities can enhance the 

supervoxel segmentation by identifying image boundaries simultaneously across all available 

images. Unlike the existing methods (Wu et al., 2014) in which the supervoxel are calculated 

using one single MRI protocol, providing a framework in which the information from several 

protocols is considered in calculating the distances for superpixel segmentation in Equation 

(4-3) may improve boundary detection of multiple tissue segmentation.  

Textons have demonstrated their advantages of providing significant information to 

distinguish various patterns. This was also demonstrated in Chapter 4, where superpixels, 

taking into account the connectivity within the slice (X-Y plane), were used for texton 

calculation. To consider the connectivity in the Z direction, the approach is extended to 3D. 

For example, the 3D texton maps are generated in a 3D volume. In order to calculate the texton 

histogram as a feature vector, the texton IDs are required to be counted in 3D patches, i.e. 

supervoxels. 

The main contributions of this chapter can be summarised as follows: 

 A unified framework is built to classify each supervoxel using features calculated from 

multimodal MRI, including FLAIR, T1-weighted (with contrast), T2-weighted, p and 

q diffusion maps for segmentation of brain tumours. 

 The supervoxel boundaries across multiple images are formed using a combination of 

the information from multimodal MRI, unlike the existing methods (Wu et al., 2014) 

in which the supervoxel is calculated using a single MRI protocol. 

 A novel histogram of texton descriptor for each supervoxel, calculated using a set of 

Gabor filters with different sizes and orientations is considered to provide better 
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performance for classification of brain tumour supervoxels. Since supervoxels are 

limited to clusters of similar intensities within each MRI modality, using the 

distribution of local textures inside each supervoxel improves further classification of 

supervoxels. 

 

5.2 Methodology 

The general framework of the multimodal learning based method is similar to the single 

modality method that was discussed in Chapter 4. The overall workflow of the proposed 

method is shown in Figure 5-1.  

 

 

 

Figure 5-1 The workflow of the proposed automated multimodal MRI segmentation method 

for segmentation of brain tumour tissue subtypes.  

 

The important main step of the proposed automated multimodality method is the supervoxel 

partition which comes after preprocessing and before feature extraction. Supervoxels are 

equally sized patches with similar intensity ranges calculated based on a distance matrix which 

is formed using a combination of multimodal images. The features are extracted for each 

supervoxel to further be classified into oedema, tumour core and nontumour. The following 

sections will describe these stages in more details with focus on the multimodality aspect of 

the proposed method. 
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5.2.1 Preprocessing 

As explained in Chapter 4, the preprocessing stage for most MRI brain tumour segmentation 

comprised of skull removal, noise reduction and registration (for multimodal data). DTI data 

were realigned to remove eddy current distortions using eddy correction (FSL Software 

Library by FMRIB (“FSL,” n.d.)) prior to generating p- and q- maps. Images were skull 

stripped using the Brain Extraction Tool in FSL. All conventional MRI data were then co-

registered to the DTI b0 data using an affine transformation with a mutual information based 

cost function. Statistical Parametric Mapping (SPM12 (“SPM - Statistical Parametric 

Mapping,” n.d.)) was used to avoid interpolation of quantitative diffusion characteristics. 

The intensities of the multimodal images are normalised with a two-step procedure: histogram 

matching and dynamic range normalisation. The core procedure is similar to single modal 

normalisation which was introduced in Chapter 2. The normalisation procedure is modified 

and developed for multimodal MR images, and is illustrated in Figure 5-2. Firstly, one case 

(one patient data) is selected as reference and the histogram of each image protocol of other 

cases are matched to the corresponding protocol of the reference case (left and right pipelines 

in Figure 5-2). To eliminate the bias of the matched histogram to the reference case, another 

block (“Histogram Matching 2” in Figure 5-2) is added to the process according to (Nyúl et 

al., 2000). In this procedure, the average of all the new histograms including the initial 

reference case is calculated for each protocol and the histograms are again matched to the new 

reference, e.g. the average histogram for each protocol. In the second stage, for each case, the 

intensity of new images of all the protocols obtained from the first step are linearly normalised 

to the dynamic range of the corresponding FLAIR related to that case. The FLAIR was chosen 

since it is the most commonly acquired protocol in the clinical tasks. Therefore, it is more 

available than other acquisition protocols. This is to ensure that, in the feature extraction stage, 

for each case, images from different protocols have similar intensity dynamic ranges. 
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Figure 5-2 Flowchart of the multimodal normalisation and histogram matching of the MR 

dataset.  

 

5.2.2 Three-dimensional Patch for Feature Extraction 

Most of the voxel-wise classification algorithms used fixed 3D patches (Figure 5-4-(a)). For 

example, Festa et al. (Festa et al., 2013) used a 3D cube (Figure 5-5-(a)) which is centred in 

each voxel for feature extraction and then assigned the features to that voxel. Instead of a fixed 

3D cube, supervoxels are used as the patch for feature extraction (Figure 5-4-(b) and 

Figure 5-5-(b)). 
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a b 

Figure 5-3 Fixed and flexible 3D volumes for feature extraction. a) fixed size cubic patches; 

𝑊𝑉𝑖
 represents the window of neighbour voxels around voxel Vi . b) supervoxel patches; 𝑆𝑉𝑖 

represents the supervoxel i with the centre Ci . 

 

 

  

a b 

Figure 5-4 Fixed and flexible 3D volumes for feature extraction. a) fixed size cubic patch. B) 

flexible homogenous patch volume. The dotted circles are the homogeneous voxels related to 

regions 1 and 2 that are assigned differently in both patch systems.  

 

5.2.3 Multimodal Supervoxel Segmentation Algorithm 

The supervoxel method clusters an image into a predefined number of three dimensional 

portions, which have similar intensity range (Figure 5-5). Here, the simple linear iterative 

clustering (SLIC) superpixel method (Achanta et al., 2012)  is extended to extract 3D 

supervoxels for the segmentation of a brain tumour. A brief description of SLIC and the 

modifications for application in three dimensional multimodal MRI is given below.  
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In the proposed method, the height of the initial supervoxel grids is chosen based on the slice 

thickness (spatial resolution in Z direction) of the MRI images and the spatial resolution ratio 

(Rs) between X and Y directions (i.e. Rx and Ry). Therefore, Rs is obtained using 

𝑅𝑆 =
𝑅𝑥

𝑅𝑦
 . (5-1) 

In the case of the clinical MRI dataset, the resolutions in X and Y directions are the same (Rx= 

Ry), so Rs=1. All the data were co-registered in the preprocessing stage, therefore the slice 

thickness, Rt, for each dataset is consistent through all the slices. The registration of the data 

is an important prerequisite of performing this multimodal supervoxel segmentation. 

Assuming the initial width of a supervoxel to be WS (voxels), its initial height, HS, is calculated 

from the ratio of slice spatial resolution to slice thickness 

𝐻𝑆 =  𝑟𝑜𝑢𝑛𝑑 (𝑊𝑆 ×   
𝑅𝑆

𝑅𝑡
) . (5-2) 

The minimum value for supervoxel height, HS, is considered 3, whilst, HS=1 results in 2D 

segments which are considered as superpixels. The spatial resolutions of the images are 1 mm 

× 1 mm × 1 mm for the BRATS, and 0.9375 mm × 0.9375 mm × 2.8 mm for the clinical 

datasets. In the case of BRATS dataset, RS = Rt = 1. Supervoxel side size, WS, is integer. 

Therefore, according to Equation (5-2), superpixel height is equal to its side size (HS = WS). 

For the clinical dataset, RS = 1 and Rt = 2.8. Therefore, for a predefined WS = 8, the supervoxel 

height is calculated as    

𝐻𝑆 = 𝑟𝑜𝑢𝑛𝑑 (6 ×   
1

2.8
)  =  𝑟𝑜𝑢𝑛𝑑 (2.857) = 3 . (5-3) 

Figure 5-5 presents a schematic illustration of calculating the initial supervoxel parameters 

from the MR input data considering the voxel resolutions.  

 

Figure 5-5 Initial supervoxel structure calculation based on MR voxel resolution parameters. 

Ws and Hs represent initial supervoxel width and height. Rx and Ry relate to spatial resolution 

of the voxel in XY plane, and Rz relates to slice thickness.  
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Supervoxel computation based on SLIC is an iterative procedure in which the initial iteration 

starts from the initial SV grids. The geometrical centres of the initial grids are considered as 

supervoxel region centres (Figure 5-4-(a)). The mean value of the voxel coordinates inside the 

supervoxel provides the centre of gravity of that supervoxel. The locations of the centres of 

gravity are updated during each iteration (Figure 5-4-(b)). The distance between each voxel in 

the dataset to the bounded cluster centres are calculated and then a label of the closest cluster 

centre is assigned to that target voxel. The final distance is comprised of both intensity and 

location distances. The intensity distance, dc, is calculated by defining the intensity difference 

between the ith and the jth voxels using 

𝑑𝑐 =  √(𝐼𝑗 − 𝐼𝑖)
2
, (5-4) 

where, Ii and Ij are the normalised intensity values of the corresponding voxels. This is the 

intensity distance for a single modality. The extension of the intensity distance to multimodal 

will be explained in Equation (5-7).The location distance, ds, between the two voxels i and j is 

calculated using 

𝑑𝑠 =  √(𝑅𝑥(𝑥𝑗 − 𝑥𝑖))2 +(𝑅𝑦(𝑦𝑗 − 𝑦𝑖))2 +(𝑅𝑧(𝑧𝑗 − 𝑧𝑖))2, (5-5) 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are the coordinates of voxel i and Rx, Ry and Rz are the voxel resolutions. 

The total distance measure (Achanta et al., 2012) is then calculated using  

𝐷 = √𝑑𝑐
2 + ( 

𝑑𝑠

𝑊𝑆
)

2
𝑚2, (5-6) 

where m is the compactness coefficient. As discussed in Chapter 4 (Section 4.2.4), the 

intensities are normalised into the range [0, 1] to ensure a normalised value for compactness 

factor, m. A higher value of m results in more compact segments and a lower value creates 

more flexible boundaries.  

 

Figure 5-6 Iterative SV portioned the volume into 3D homogenous segments.   
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Figure 5-7 shows the supervoxel segmentation of a brain tumour using MRI FLAIR with two 

different initial grid sizes in a combination of axial, sagittal and coronal planes.  

 

a 

 

b 

 

c 

Figure 5-7 Supervoxel segmentation of MRI FLAIR for different supervoxel sizes: a) original 

image, b) large supervoxel size (30 × 30 × 11), c) small supervoxel size (15 × 15 × 5).   
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Supervoxel segmentation of multimodal MRI data is not straightforward as tissue boundaries 

apparent on one MRI modality, for example, on T1-contrast, are not necessarily apparent on 

other MRI modalities such as DTI or FLAIR, and vice versa. Hence supervoxel boundaries 

determined independently for each MRI modality will not match, creating tissue partial 

volume effects at supervoxel boundaries. The hypothesis to tackle this problem and determine 

a multimodal supervoxel cluster is to adapt the supervoxel intensity distance Equation (5-4) in 

a multidimensional formation and apply this across all MRI modalities. In general, assuming 

that the multimodal MRI data is acquired with MRI protocols P1, P2, …, PN, giving the images 

{IP1, IP2, …, IPN}, then the distance equation for multimodal MRI data is 

𝑑𝑐 = √(𝐼𝑉𝑜𝑥𝑒𝑙,𝑃1
− 𝐼𝐶𝑒𝑛𝑡𝑒𝑟,𝑃1

 )
2

+ ⋯ + (𝐼𝑉𝑜𝑥𝑒𝑙,𝑃𝑁
− 𝐼𝐶𝑒𝑛𝑡𝑒𝑟,𝑃𝑁

 )
2
, (5-7) 

where, IVoxel,Pi is the grey-level intensity corresponding to the voxel in protocol Pi. Figure 5-8 

shows a schematic illustration of the multimodal supervoxel distances which were explained 

in Equation (5-7). It should be noted that different protocols have similar weighting in this 

formulation.   

Figure 5-9 shows the framework for the multimodal supervoxel segmentation method. 

 

 

 

Figure 5-8 Schematic illustration of the distances for multimodal supervoxel segmentation 

from protocols: 1 and N. The distances are calculated for the voxel V (yellow point) from two 

adjacent supervoxels with centre C1 (blue region) and C2 (red region). IVoxel,Pi and ICk,Pi 

represents the intensity of V and Ck in protocol i. DV,Ck;P_i is the total intensity distance between 

voxel V and Ck in protocol i. 
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Figure 5-9 Framework of multimodal supervoxel segmentation. 

 

Combining all MRI modalities helps supervoxel segmentation by enhancing weak image 

boundaries that appear in any single modality. For example, weak edges may appear in one 

image but present strong in the other images from different protocols. The results do not 

depend on the majority, and even an edge in one single modality appears in the final SV 

segmentation. An example of this case is shown in Figure 5-10. The supervoxel map generated 

from the multimodal segmentation method is overlaid on both the FLAIR image (top row of 

the first column in Figure 5-10) and the p-map (bottom row of the first column in Figure 5-10). 

The middle and the last columns in Figure 5-10 show two corresponding close-up areas 

indicated in the FLAIR and the p-map images (yellow and orange rectangles). As can be seen, 

the middle column of the Figure 5-10 shows strong edges in FLAIR image (shown by red 

ellipses), whereas corresponding edges in the p-map are quite weak (shown by the blue 

ellipse). The inverse effect can be seen in the right column of Figure 5-10. The multimodal 

clustering method for supervoxel calculation provides good image boundaries even when 

boundaries are not clear in one image modality.  
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a b c 

Figure 5-10 An example of using a multimodal approach to improve supervoxel boundaries 

by finding the edges which appear weak in one modality (blue ovals), but are apparent in the 

other modality (red ovals). (a) Upper image: FLAIR image overlaid by multimodal supervoxel 

segmentation, lower image: p map overlaid by the same multimodal supervoxel segmentation. 

(b) Close up of the region surrounded by the yellow box for both image modalities, (c) Close 

up of the region surrounded by the red box for both image modalities.  

At the end of supervoxel segmentation, some isolated voxels might appear. The label of these 

voxels is different from their surrounding voxels, which is considered as the noise of the 

supervoxels. A post-processing procedure is designed to reduce the isolated voxels. The label 

of the voxels connected to the isolated voxels are counted. Then the isolated voxel is relabelled 

to the major connected class. 

A comparison of the supervoxel segmentation of the tumour core calculated from a single MRI 

modality (FLAIR) and from multimodal MRI (FLAIR, T1-weighted (with contrast), T2-

weighted, p- and q-maps) is shown in Figure 5-11. As can be seen, there are misalignments 

between supervoxel’s boundaries (computed from FLAIR) and the ground truth boundaries 

(see black ellipse in Figure 5-11 (f)), whilst multimodal supervoxels show improvement in 

boundary alignment to the tumour core (see black ellipse in Figure 5-11(i)).  

 

 



126 

 

 

   
a b c 

   
d e f 

   
g h i 

   
Figure 5-11 One comparison example of tumour core supervoxel segmentation (SV) using 

single modality and multimodal MRI approaches. (a) FLAIR, (b): overlay of the corresponding 

supervoxels calculated using single modality (FLAIR), (c): zoomed-in of (b) on tumour area 

(to show the details of the SV boundaries) and overlay of tumour core (ground truth from 

manual delineation shown in red); (d): protocol p-map, (e): Supervoxels calculated using 

single imaging modal (FLAIR) overlaid on image protocol p, (f): zoomed-in view of (e) on 

tumour area and overlay of tumour core (red). (g): protocol p, (h): Supervoxels calculated 

using multimodal (FLAIR, T1-contrast, T2-weighted, p and q-maps) overlaid on image 

protocol p-map. (i): zoomed-in of (h) on tumour area and overlay of tumour core (red). The 

boundaries surrounded by black ellipses in (f) and (i) highlighting the improvement of 

supervoxel boundary alignment with that of the tumour core using the proposed multimodal 

SV method. The supervoxels are initially sized 15 × 15 × 5 with m = 0.2 compactness. 

 

Protocol: FLAIR Single-protocol SV 

Tumour core 

Tumour core 

Tumour core 

Single-protocol SV 

Multi-protocol SV 

Protocol: p 

Protocol: p 
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5.2.4 Feature Extraction 

Image features are calculated from each supervoxel in 3D space. Among the features that were 

used in Chapter 4 (Section 4.2.4), first order statistical features and texton features are utilised 

by extending to 3D. The first order features are similar to those which were discussed in 

Chapter 4 (Section 4.2.4).  

For the texton feature calculation performed in a 3D supervoxel, 3D Gabor filters [31] are used 

which are defined as 

𝐺(𝑥, 𝑦, 𝑧; 𝐹, 𝜃, 𝜑) =
1

(2𝜋)3/2𝜎3 exp (−
𝑥2+𝑦2+𝑧2

2 𝜎2 )exp [𝑖2𝜋(𝐹𝑥  𝑥 + 𝐹𝑦 𝑦 + 𝐹𝑧 𝑧)] , (5-8) 

where   

𝐹𝑥 = 𝐹 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 , 

𝐹𝑦 = 𝐹 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 , 

𝐹𝑧 = 𝐹 𝑐𝑜𝑠 𝜃 . 

(5-9) 

 

In the Equations (5-8) and (5-9), σ is the standard deviation of Gaussian envelope, F is the 

radial centre frequency, θ is the orientation angle from the Z axis, ψis the orientation angle of 

the projection on the X-Y plane from X axis. The orientation angles, θ and ψ, are shown in 

Figure 5-12. The sinusoid wavelength is λ = 1 / F. 

  

a b 

Figure 5-12 Gabor filter orientation and the corresponding angles, i.e. θ and ψ. a) orientation 

axes illustration, b) a 3D sample for central frequency F, and angles θ and ψ. The blue and red 

parts correspond to the positive and negative values of Gabor filter, respectively. 
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a 

 

b 

 

c 

Figure 5-13 3D Gabor filters with different frequencies from various angle views. The blue 

and red parts correspond to the positive and negative values of Gabor filter, respectively. a) λ 

= 1.2, b) λ = 1.0, c) λ = 0.8. 

 

Figure 5-13 shows 3D Gabor filters with various frequencies from differnet angle vews. 

To minimise the number of parameters for texton calculations, the orientation is varied in the 

X-Y plane. Therefore, the angle θ is fixed to 90 degrees and the filters are generated with 

different angles ψ. The reason for that is to arrange the filters in spatial dimensions of the MR 

images within the slice plane. The angle θ = 90 is selected since the resolution of the clinical 

data is higher in the X-Y plane, compared to the Z axis. Other angular features were not 

considered in this study to avoid increasing the parameters, complexity and computation time. 

It should be noted that excluding other θ angles will reduce the accuracy of feature extraction.  

The Gabor filter parameters were chosen empirically. Six different filter directions were 

considered: [0o, 30o, 45o, 60o, 90o, 120o] with filter sizes from 0.3 to 1.5 at steps of 0.3. The 
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wavelength of sinusoid coefficients of the Gabor filters were 0.8, 1.0, 1.2 and 1.5. This 

provided a filter bank of 120 filters. An example of the Gabor filter bank is shown in 

Figure 5-14. 

 

 

a b 

 

c 

Figure 5-14 a) Example of Gabor filter bank with different filter size and directions and their 

responses. a) Original FLAIR image, b) Gabor filters with different filter size and directions: 

rows are corresponding to different filter sizes: [0.3, 0.6, 0.9, 1.2, 1.5] and columns represent 

different directions: [0o, 45o, 90o, 135o] c) the corresponding filter responses obtained by 

convolving the filters (b) with the original image (a).  
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For filters with the same size but different directions, the maximum response is considered, 

leading to a total of 20 filter responses (5 sizes, 4 wavelength coefficients). The texton map is 

then generated by applying 20-dimensional k-means clustering to the 20 filter responses with 

a predefined number of clusters of ktexton = 5 representing tumour core, oedema and normal 

brain tissues. To reduce the computation time for clustering, the lowest number of clusters 

(ktexton = 5) that are capable of separating the tumour core and oedema from normal brain in 

the training set was chosen. Histograms of the texton parameters were then calculated for each 

supervoxel using the generated texton map.  

Texton ID extraction was explained in Chapter 4. Here, the k-means clustering is performed 

on the whole image volume, instead of slice-by-slice computation. The histogram of the texton 

IDs is calculated for each supervoxel which is considered as a texton feature vector of that SV. 

It should be noted that the IDs are sorted ascendingly for each protocol based on the average 

intensity of the group of pixels within each cluster. Figure 5-15 shows examples of texton ID 

histograms for supervoxels of normal brain and tumour. 

The extracted features and their numbers are summarised in Table 5-1. In total, there are 21 

features for each MR image, so there are 105 features across the multimodal MRI data (FLAIR, 

T1-contrast, T2-weighted, p- and q-maps). The feature calculations are performed on 

supervoxels and extracted for each individual MR modality. Then, the extracted features from 

each modality are concatenated based on the corresponding superpixel to form the final 

multimodal feature vector. 

 

Table 5-1 Summary of the features and their corresponding numbers which are used for the 

proposed learning based method. 

Features calculated from 

each supervoxel 
One Protocol 

Multimodal 

(e.g.  5 protocols) 

Statistical 1st order 16 80 

Texton Histogram 5 25 

Total 21 105 
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Figure 5-15 Texton ID histogram for tumour and normal brain. Average of the texton 

histogram of the regions inside the corresponding regions.  
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5.2.5 Classification of the Supervoxels  

In the proposed multimodal method, all supervoxels within the brain region are considered for 

classification. This not only represents a large amount of data, but this data is also unbalanced, 

as the number of supervoxels related to normal brain is in the range of 6 to 30 times more than 

the number of tumour supervoxels (average ratio of 12:1). Therefore, the use of a robust 

classifier is essential to achieve accurate segmentation.  

In Chapter 4, ERT was used for classification of superpixels for the features extracted from 

one single modality (i.e. FLAIR). In this chapter, the features are extracted from several 

protocols (5 protocols for the clinical datasets and 4 protocols for the BRATS datasets). 

Therefore, the number of feature increases. On the other hand, all the feature will be fed to the 

classifier, which will increase the complexity and dimensionality of the classification problem. 

To decrease the computation time, RF will be used since is it is faster to perform, compared 

to the ERT. 

The main parameters used in RF, i.e. the number of trees, the number of attributes, and tree 

depth, are chosen as follows: number of trees is 50 with depth of 15, and number of attributes 

(kattribute) selected to perform the random splits for a specific number of features Nfeature is kattribute 

= √Nfeature. For single modality and multimodal experiments, 5 and 10 attributes are selected, 

respectively. The reason for selecting these parameters will be discussed  in the Section 5.3.2. 

In the training stage, the supervoxels are split into three classes: normal brain tissue, tumour 

core and oedema. Supervoxels that have at least 50% overlap with tumour core or oedema 

regions (ground truth according to manual labelling) are labelled as the appropriate 

corresponding classes. The remaining supervoxels are labelled as normal. The RF classifier is 

trained based on these three labels. In the testing stage, the trained classifier is applied and 

labels are assigned to each supervoxel inside the brain. The tumour area is then obtained by 

grouping the supervoxels classified as either tumour core or the oedema class. The proposed 

multimodal 3D supervoxel method is referred as SV_RF. 

 

5.3 Experiments and Results 

This section will describe the evaluation results of the proposed automatic multimodal brain 

tumour segmentation method. First, the datasets will be mentioned, followed by the 

experimental setting and evaluation methods. Thereafter, the results will be explained and the 

statistical analysis will be explained.   
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5.3.1 Dataset and Implementation 

Two datasets were analysed that were also used in Chapter 4: 

1. The clinical dataset for training and validation of the algorithm. This dataset consists of 11 

patients with the acquisition protocols including C-MRI (FLAIR, T1-contrast, T2-weighted) 

and DTI (p- and q-map). The details of this dataset were explained earlier in Chapter 2 (Section 

2.6.1). 

2. The publicly available MICCAI BRATS 2013 dataset  for further comparison and 

assessment of the robustness of the method. This dataset consists of 30 brain tumour patients 

(20 high-grade and 10 low-grade glioma) entered the study, which include conventional MRI 

protocols. The details of this dataset were explained earlier in Chapter 2 (Section 2.6.2). 

Evaluation 

For the clinical dataset, both tumour core and complete tumour (including tumour core and 

oedema) were evaluated, while the evaluation for the BRATS dataset was provided using VSD 

standard combination, which are tumour core (including necrosis, enhancing and non-

enhancing) and complete tumour.  

DSC is used to evaluate the overlap ratio between the segmentation results and the manual 

segmented gold standard which was explained in Chapter 2 (Section 2.7.2 and Equation (2-

19)).  

The leave-one-out approach is used to train and test the models. 

 Experimental Setting 

To evaluate the performance of the proposed multimodal supervoxel classification method, 

three experiments are performed using different MRI modalities for the tumour parts including 

core and oedema:  

1. FLAIR only 

In the first experiment, supervoxels are calculated based on a single modality, i.e. 

FLAIR image only. As discussed in Section 5.2.4 and shown in Table 5-1, for each 

supervoxel, there are 21 features extracted from each modality. Therefore, in total 21 

features for FLAIR only were extracted from both datasets.  

 

2. C-MRI data 

The second experiment was designed to evaluate the multimodal supervoxel based 

segmentation method. Supervoxels are calculated using Equation (5-6) based on 
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different MRI modalities, i.e. C-MRI data in both datasets. 63 features for the clinical 

C-MRI data (e.g. FLAIR, T2-weighted and T1-contrast), and 84 features for BRATS 

C-MRI data (e.g. FLAIR, T1-weighted, T2-weighted and T1-contrast) were extracted 

based on the corresponding supervoxel map. 

 

3. C-MRI+DTI 

The third experiment was designed to evaluate the effect of adding the information 

from DTI modalities to the proposed multimodal segmentation method. The 

supervoxels are calculated using Equation (5-6) based on different MRI modalities, 

i.e. C-MRI+DTI (p- and q-maps) for the clinical datasets. In total, 105 features were 

extracted from the corresponding protocols based on the supervoxel map. Since the 

publicly available BRATS dataset does not include the DTI protocols, this 

experimental set is not applicable for it. Therefore, the experiment is only conducted 

for the clinical dataset and compared to C-MRI experiments. 

The random forest classification is performed in each of the three experiments to classify each 

supervoxel into normal brain tissue and tumour. RF parameters Ntree and Dtree are chosen the 

same for all the experiments.  

 

5.3.2 Parameter Selection 

In the case of 2D superpixel calculation, which was presented in the previous single modality 

work (Soltaninejad et al., 2016) and explained in Chapter 4 (Section 4.3.5), the optimal initial 

superpixel size of 5 was suggested. In the case of 3D supervoxels, the z direction is determined 

from the slice thickness and image resolutions based on Equation (5-2). As described in 

Chapter 2 (Section 2.6.1), the clinical dataset had different resolutions and all multimodal MRI 

data were co-registered to DTI with voxel dimensions 0.9375 mm × 0.9375 mm × 2.8 mm, 

while the resolution for the BRATS dataset was 1 mm3 isotropic voxel dimensions. Therefore, 

due to the different resolutions between the two datasets, the supervoxel initial sizes were 

selected to be 8 × 8 × 3 for the clinical data, and 5 × 5 × 5 for the BRATS data. The 

compactness factor, m, was selected by visually inspecting the supervoxel boundaries and area 

in different views. i.e. coronal, axial and sagittal for some of the training cases. The value of 

m = 0.05 (Equation (5-6)) presented coherent boundaries. Since ds in Equation (5-6) is different 

for 2D and 3D spaces, different values were obtained for m in both spaces.  

To select the optimum RF parameters, different ranges of the number of trees and depth were 

assessed on the clinical data. To select the optimal RF parameters (i.e. number of trees and 

depth), the k-fold validation was used with k = 4. For the clinical dataset, the folds are sets of 
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[3, 3, 3, and 2] randomly selected non-repetitive datasets, and for the BRATS dataset, the folds 

are sets of [8, 8, 7, and 7] randomly selected non-repetitive datasets. Classification accuracy 

was calculated for the testing fold in each iteration with different Ntree and Dtree. Values of 

classification accuracy were averaged over all folds to determine the effects of Ntree and Dtree, 

which are presented in Figure 5-16 and Figure 5-17, respectively. Figure 5-16 and Figure 5-17 

show that a RF with Ntree = 50 and Dtree = 15 provides an optimum generalisation and accuracy. 

It should be noted that Ntree = 100 also provided optimal results. However, due to minimisation 

of computational costs, Ntree = 50 was selected. These optimal parameters were also directly 

used in the analysis of the BRATS dataset. 

 

Figure 5-16 Effect of number of trees on RF classification accuracy with different depths.    

 

Figure 5-17 Effect of tree depth on RF classification accuracy with different numbers of trees.    
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The importance of the features which are extracted from different protocols are quantified by 

investigating the distribution of the features in the RF. The ratio of feature is obtained by 

calculating the proportion of the nodes related to a specific feature type (i.e. features form each 

individual protocols) with respect to all the nodes in the forests. Table 5-2 presents the ratio of 

features which are selected from each acquisition protocol using the RF from two multimodal 

experiments, i.e. C-MRI and C-MRI+DTI. The results show that most of the features (61%) 

were selected from the FLAIR, which represents the importance of FLAIR for tumour 

segmentation. When DTI is added to the feature space, 24% of features are selected from its 

protocols, from those 16% is relate to p-map and 8% to q-map. The presence of DTI also 

slightly reduces the proportion of corresponding features from the experiment with C-MRI 

modalities alone. The experimental results presented in the next sections (Sections 5.3.4 

and 5.3.6) confirm that that p- and q- maps improve the overall segmentation of tumour core. 

 

Table 5-2 Ranking of the features from each individual protocol in different multimodal 

experiments on the clinical dataset, based on their repetition in nodes of the forests of a RF 

with Ntree = 50 number of trees and Dtree = 15. 

Experiment FLAIR T1-contrast T2-weighted p-map q-map 

C-MRI 0.61 0.15 0.24 - - 

C-MRI+DTI 0.49 0.09 0.18 0.16 0.08 

 

5.3.3 Supervoxel Classification Results 

Table 5-3, Table 5-4 and Table 5-5 show the results of supervoxel classification using the 

clinical dataset for the three experiments: FLAIR only, C-MRI, and C-MRI+DTI, respectively. 

The results are presented separately for each tumour part (core and oedema) and complete 

tumour. For the tumour core, precision, sensitivity and BER are 69.49%, 65.39% and 0.18 for 

FLAIR only, while for C-MRI the corresponding values are 73.64%, 69.67% and 0.15 and for 

C-MRI+DTI they are 83.44%, 74.62% and 0.13. For oedema, precision, sensitivity and BER 

are 84.17%, 79.28% and 0.11 for FLAIR only, while for C-MRI the corresponding values are 

85.63%, 80.59% and 0.10 and for C-MRI+DTI they are 88.53%, 84.57% and 0.08. For the 

complete tumour, for FLAIR only, precision, sensitivity and BER are 88.16%, 81.88% and 

0.09, while for C-MRI the corresponding values are 89.54%, 83.66% and 0.09 and for C-

MRI+DTI they are 92.22%, 86.25% and 0.07.   
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Table 5-3 Classification results (average values over all the LOO-CV) for superpixels using 

single MRI protocol (FLAIR). 

No ID 
Core Oedema Whole 

Precision Sensitivity BER Precision Sensitivity BER Precision Sensitivity BER 

1 37227 87.32 84.51 0.08 81.97 72.62 0.14 92.46 83.79 0.09 

2 37182 79.14 68.03 0.16 72.44 62.25 0.20 77.95 58.15 0.21 

3 37197 70.56 64.76 0.18 76.99 86.98 0.07 79.53 86.03 0.07 

4 37230 78.43 74.12 0.13 78.37 83.84 0.10 84.25 88.96 0.06 

5 37253 91.32 64.25 0.18 88.29 82.57 0.09 92.40 91.86 0.04 

6 37243 67.50 59.44 0.20 73.70 74.91 0.14 80.37 79.50 0.11 

7 37256 59.85 67.78 0.16 90.85 84.24 0.08 92.72 88.17 0.06 

8 37302 63.14 63.33 0.19 93.66 79.11 0.11 94.76 78.82 0.11 

9 37394 57.27 53.65 0.24 84.56 89.56 0.06 88.95 89.75 0.05 

10 37396 58.45 61.15 0.19 92.53 71.23 0.15 93.55 71.56 0.14 

11 37218 51.42 58.25 0.21 92.53 84.76 0.08 92.79 84.14 0.08 

Mean All 69.49 65.39 0.18 84.17 79.28 0.11 88.16 81.88 0.09 

STD All 13.05 8.38 0.04 7.93 8.18 0.04 6.38 9.81 0.05 

 

Table 5-4 Classification results (average values over all the LOO-CV) for superpixels using 

conventional MRI protocols (FLAIR, T1-contrast, T2-weighted). 

No ID 
Core Oedema Whole 

Precision Sensitivity BER Precision Sensitivity Precision Sensitivity BER BER 

1 37227 91.20 86.36 0.07 82.64 74.84 0.13 93.45 85.02 0.08 

2 37182 82.61 70.65 0.15 73.66 62.84 0.20 79.69 63.21 0.19 

3 37197 72.66 68.53 0.16 77.29 87.34 0.07 81.36 88.89 0.06 

4 37230 82.78 77.62 0.11 81.64 86.74 0.07 86.62 90.97 0.05 

5 37253 96.00 67.33 0.16 90.78 84.29 0.08 93.13 92.20 0.04 

6 37243 71.43 61.11 0.19 74.26 76.51 0.14 80.80 80.34 0.11 

7 37256 61.54 72.73 0.14 91.95 85.10 0.08 93.06 89.59 0.06 

8 37302 71.35 66.67 0.17 95.08 79.27 0.11 95.38 79.77 0.10 

9 37394 63.78 59.86 0.20 85.77 91.59 0.05 92.65 91.51 0.05 

10 37396 62.37 71.77 0.14 93.72 71.82 0.14 93.62 72.13 0.14 

11 37218 54.35 63.76 0.18 95.12 86.09 0.07 95.19 86.65 0.07 

Mean All 73.64 69.67 0.15 85.63 80.59 0.10 89.54 83.66 0.09 

STD All 13.14 7.59 0.04 8.24 8.44 0.04 6.18 9.16 0.05 

 

Table 5-5 Classification results (average values over all the LOO-CV) for superpixels using 

MRI conventional protocols plus DTI (FLAIR, T1-contrast, T2-weighted, p and q) 

No ID 
Core Oedema Whole 

Precision Sensitivity BER Precision Sensitivity Precision Sensitivity BER BER 

1 37227 97.01 91.55 0.04 86.00 81.13 0.10 95.21 89.83 0.05 

2 37182 87.50 21.21 0.39 77.46 66.23 0.18 83.88 65.76 0.18 

3 37197 81.23 75.48 0.12 78.47 88.49 0.07 79.08 86.87 0.07 

4 37230 98.78 88.64 0.06 89.16 91.84 0.05 93.55 95.60 0.02 

5 37253 100.00 86.66 0.07 91.38 86.98 0.07 94.48 95.57 0.02 

6 37243 92.58 83.33 0.08 80.37 88.21 0.08 90.93 89.52 0.07 

7 37256 70.00 77.78 0.11 91.45 85.33 0.08 91.33 87.74 0.06 

8 37302 78.54 74.07 0.13 98.67 82.22 0.09 97.68 81.78 0.09 

9 37394 75.57 72.73 0.14 87.90 96.49 0.02 95.60 94.67 0.03 

10 37396 70.00 77.78 0.11 96.52 75.60 0.12 96.53 76.17 0.12 

11 37218 66.67 71.54 0.14 96.41 87.77 0.06 96.19 85.28 0.08 

Mean All 83.44 74.62 0.13 88.53 84.57 0.08 92.22 86.25 0.07 

STD All 12.36 18.95 0.09 7.37 8.21 0.04 5.80 9.02 0.05 
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The average and standard deviation of the classification measure for the tumour tissues from 

all three experiments are plotted in Figure 5-18. It can be seen that the average precision and 

sensitivity increases by adding more protocols to the experiment. Also, BER decreases using 

C-MRI+DTI. However, for the whole tumour, BER is the same for FLAIR and C-MRI 

experiments. This shows that the FLAIR protocol is successful in segmenting the whole 

tumour (confirms the contribution of Chapter 4). However, for further segmentation of the 

tumour tissues subtypes, adding other protocols increases the accuracy. It also can be seen in 

Figure 5-18 that “tumour core” has a wide range of results (large black lines in Figure 5-18) 

for all the classification measures. The reason is that some tumour cases have a small size 

compared to the supervoxel size, which results in low classification measures.  

 

  

a b 

 

c 

Figure 5-18 Summary of the classification results for supervoxels from Single modality 

(FLAIR), multimodal C-MRI (FLAIR, T1-contrast and T2-weighted) and C-MRI+DTI 

(FLAIR, T1-contrast, T2-weighted, p- and q-maps) on clinical dataset. a) precision, b) 

sensitivity, c) BER. 
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5.3.4 Segmentation Results 

Table 5-6 shows Dice score overlap measure between the annotated ground truth and the 

automated method using the three experiment sets on the clinical datasets. Results show 

significant improvement in the segmentation of the tumour core using the C-MRI+DTI 

approach with a DSC of 0.78 compared to C-MRI (DSC = 0.67) and the single FLAIR image 

(DSC = 0.54). This illustrates that adding the information from DTI sequences to the C-MRI 

increases the tumour segmentation accuracy for multimodal procedure. 

 

Table 5-6 Dice score comparison for the segmentation of tumour core, oedema and complete 

tumour in clinical dataset using single protocol (FLAIR), C-MRI (FLAIR, T1-contrast, T2-

weighted) and C-MRI+DTI (FLAIR, T1-contrast, T2-weighted, p and q-maps). 

 

No 
ID 

FLAIR 
FLAIR, T1-contrast, T2-

weighted 

FLAIR, T1-contrast, T2-

weighted, p and q 

Core Oedema Whole Core Oedema Whole Core Oedema Whole 

1 37227 0.79 0.63 0.75 0.84 0.69 0.77 0.91 0.71 0.79 

2 37182 0.55 0.66 0.70 0.60 0.69 0.72 0.84 0.73 0.77 

3 37197 0.63 0.70 0.71 0.68 0.70 0.74 0.76 0.71 0.73 

4 37230 0.65 0.73 0.78 0.76 0.77 0.82 0.85 0.86 0.91 

5 37253 0.56 0.81 0.82 0.62 0.83 0.83 0.68 0.85 0.85 

6 37243 0.65 0.72 0.75 0.72 0.73 0.76 0.83 0.81 0.85 

7 37256 0.53 0.85 0.86 0.74 0.86 0.87 0.86 0.85 0.86 

8 37302 0.42 0.85 0.85 0.58 0.86 0.86 0.62 0.87 0.87 

9 37394 0.34 0.82 0.83 0.59 0.83 0.85 0.70 0.89 0.91 

10 37396 0.41 0.86 0.86 0.68 0.85 0.86 0.83 0.86 0.88 

11 37218 0.34 0.83 0.84 0.52 0.85 0.87 0.67 0.86 0.87 

Mean All 0.54 0.77 0.79 0.67 0.79 0.81 0.78 0.82 0.84 

STD All 0.14 0.08 0.06 0.10 0.07 0.06 0.09 0.07 0.06 

 

Figure 5-19 shows examples of segmentation of the complete tumour using C-MRI and C-

MRI+DTI for three different cases with grade IV tumours. It is noted that, there are some false 

positive regions (FPs) in the segmented masks shown in Figure 5-19 (c2 and c3) by using C-

MRI protocols, this is due to the wrongly classified supervoxels, while adding DTI protocols 

reduces some of the FPs, leading to more accurate segmentation.  

Figure 5-21 shows examples of segmentation of tumour core using C-MRI and C-MRI+DTI 

for the same three cases as in Figure 5-19. It can be seen that using DTI protocols with 

conventional MRI presents more accurate segmentation results. In Figure 5-21 (c1 and c3), 

there are areas of tumour core which are missed by using C-MRI protocols, while those tumour 



140 

 

 

areas can be detected by adding DTI protocol, as shown in Figure 5-21 (d1 and d3). This 

demonstrates an improvement of the segmentation accuracy by combining both conventional 

C-MRI and DTI. 

    
a1 b1 c1 d1 

    
a2 b2 c2 d2 

    
a3 b3 c3 d3 

    
Figure 5-19 Comparison example of segmentation of complete tumours using C-MRI and C-

MRI+DTI for three different cases with grade IV tumours. a1-a3) FLAIR image (a1: case 

37227, a2: case 37230, and a3: case 37256), b1-b3) manual segmentation c1-c2) segmentation 

using C-MRI d1-d3) segmentation using C-MRI+DTI. 

 

Figure 5-20 shows the 3D graphical view of the complete tumour segmentation volumes from 

the corresponding cases in Figure 5-19. The segmentation surfaces using C-MRI (blue) and 

C-MRI+DTI (red) are separately overlaid on the ground truth (green). As it can be seen, C-

MRI segmentation results in false positive volumes for all cases, which are eliminated by 

adding DTI. Under-segmentation can be seen in Figure 5-20 by comparing the green surface 

areas. The green surface shows that the automatic segmentation surface is inside the ground 

truth. Although it is difficult to see the content of under-segmentation, the slices in Figure 5-19 

Case 37227-Grade IV Manual C-MRI 

CMRI+DTI 

CMRI+DTI 

CMRI+DTI 

C-MRI 

C-MRI 

Manual 

Manual 

Case 37230-Grade IV 

Case 37256-Grade IV 
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provide an estimation for it.  The blue and red surfaces show exact match of the segmentation 

surfaces in addition to over-segmentation. As it can be seen Figure 5-20, under-segmentation 

of C-MRI method for case numbers 37227 and 37230 is clearly more than the C-MRI+DTI 

approach.  

 

Figure 5-20 The 3D graphical representation of the complete tumour surfaces from the 

correponding cases in Figure 5-19. The segmentation surfaces using C-MRI (blue) and C-

MRI+DTI (red) are overlaid on the ground truth (green). 
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a1 b1 c1 d1 

    
a2 b2 c2 d2 

    
a3 b3 c3 d3 

    
Figure 5-21 Segmentation results for the core of tumours using C-MRI and C-MRI+DTI for 

three different cases with grade IV tumours. a1-a3) FLAIR image (a1: case 37227, a2: case 

37230, and a3: case 37256), b1-b3) manual segmentation c1-c2) segmentation using C-MRI 

d1-d3) segmentation using C-MRI+DTI. 

 

Figure 5-22 shows the 3D graphical view of the tumour core segmentation volumes from the 

corresponding cases in Figure 5-21. The segmentation surfaces using C-MRI (blue) and C-

MRI+DTI (red) are separately overlaid on the ground truth (green). As it can be seen, both 

methods did not produce any isolated false positive regions. Therefore, both C-MRI and DTI 

protocols provide the required features to separate the tumour core from normal brain tissues. 

However, adding DTI protocols provide a closer match of the surfaces of segmented volumes 

and ground truth. The surfaces of C-MRI + DRT segmentation (red) in Figure 5-22 cover more 

area compared to the C-MRI only (blue). The large area of ground truth surface (green) in the 

C-MRI results shows the method results in under-segmentation. 

The case 37256 in Figure 5-22 and Figure 5-21 is a sample of small tumour tissue subtype. As 

it can be seen in Figure 5-22, a small part of the tumour core was not segmented by any of the 

methods. This is a major failure of supervoxel-based methods. The small sized tissues are not 

C-MRI 
CMRI+DTI Manual 

C-MRI CMRI+DTI Manual 

C-MRI CMRI+DTI Manual Case 37256-Grade IV 

Case 37230-Grade IV 

Case 37227-Grade IV 
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detectable if their size is smaller than the supervoxels or if they are included partially in a few 

number of supervoxels.     

 

Figure 5-22 The 3D graphical representation of the tumour core surfaces from the 

correponding cases in Figure 5-21. The segmentation surfaces using C-MRI (blue) and C-

MRI+DTI (red) are overlaid on ground truth (green).  

 

5.3.5 Evaluation on Public BRATS 2013 Dataset 

To evaluate the robustness of the proposed multimodal segmentation method, it was also 

applied to the BRATS 2013  training dataset. The details of the BRATS dataset were explained 

in Chapter 2 (Section 2.6.2). This dataset includes conventional MRI protocols, i.e. FLAIR, 

T1-weighted, T2-weighted and T1-contrast. Since no DTI protocols are available, only the 

multimodal aspect of the proposed SV_RF method is evaluated by comparing the 

segmentation using C-MRI (FLAIR, T1-weighted, T2-weighted and T1-contrast) with that 

using the single imaging modality (FLAIR only).  

To investigate the robustness of parameter tuning, the parameters used for feature extraction 

from the BRATS dataset are selected similar to those which were used for the clinical datasets 

(Section 5.3.2). In the case of supervoxel segmentation, the only parameter that is different 

from analysis of the clinical dataset is the initial superpixel size, since the two datasets have 

different voxel dimensions. The voxel dimension for all BRATS data is 1 mm × 1 mm × 1 
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mm, so the initial subvolumes are cubes with the same dimensions. The supervoxel size is 

selected 5 mm × 5 mm × 5 mm for segmenting both oedema and tumour core, considering 

small tumours in some images. Table 5-7 presents the average evaluation results using SV_RF 

for supervoxel classification of tumour core and oedema against the rest of tissues separately, 

and classification of complete tumour against the healthy the tissue using single modality of 

FLAIR and multimodal approach on C-MRI including FLAIR, T1-weighted, T1- contrast and 

T2-weighted imaging. 

 

Table 5-7 Classification results for supervoxels from FLAIR protocols of BRATS 2013 

dataset. 

ID 
Core Oedema Whole 

Precision Sensitivity BER Precision Sensitivity BER Precision Sensitivity BER 

LG-01 94.12 78.11 0.11 99.61 87.59 0.06 99.31 85.67 0.07 
LG-02 96.66 92.76 0.04 96.42 93.74 0.03 99.60 97.31 0.01 
LG-04 99.51 90.63 0.05 60.98 75.76 0.12 99.55 92.93 0.04 
LG-06 98.37 90.95 0.05 78.79 86.67 0.07 98.62 93.45 0.03 
LG-08 90.00 86.54 0.07 96.92 96.18 0.02 98.89 97.27 0.01 
LG-11 94.23 92.39 0.04 98.98 90.68 0.05 99.47 91.30 0.04 
LG-12 94.80 91.95 0.04 96.28 95.39 0.02 99.44 97.27 0.01 
LG-13 96.33 80.15 0.10 98.51 81.89 0.09 98.87 82.21 0.09 
LG-14 88.64 79.59 0.10 93.44 89.06 0.05 92.38 85.84 0.07 
LG-15 87.80 87.80 0.06 97.71 85.91 0.07 96.71 89.18 0.05 
HG-01 92.55 95.60 0.02 95.72 92.01 0.04 98.87 98.25 0.01 
HG-02 97.15 95.88 0.02 89.06 95.00 0.03 98.87 97.77 0.01 
HG-03 99.25 95.38 0.02 84.29 95.68 0.02 99.76 98.37 0.01 
HG-04 95.06 88.51 0.06 96.63 95.95 0.02 99.75 97.10 0.01 
HG-05 96.12 92.96 0.04 98.89 82.66 0.09 99.79 88.62 0.06 
HG-06 94.26 92.80 0.04 98.49 93.76 0.03 99.93 95.69 0.02 
HG-07 95.76 96.17 0.02 96.18 82.97 0.09 98.73 93.05 0.03 
HG-08 98.83 90.58 0.05 93.52 92.87 0.04 99.69 93.79 0.03 
HG-09 97.55 96.05 0.02 96.00 87.65 0.06 99.93 95.14 0.02 
HG-10 91.00 88.35 0.06 93.55 85.29 0.07 93.89 89.78 0.05 
HG-11 96.70 94.47 0.03 97.24 90.31 0.05 99.69 95.71 0.02 
HG-12 90.79 90.79 0.05 97.87 77.97 0.11 95.93 87.41 0.06 
HG-13 81.13 93.48 0.03 96.77 85.71 0.07 94.05 97.53 0.01 
HG-14 77.48 90.70 0.05 99.63 87.04 0.06 99.79 90.78 0.05 
HG-22 98.44 96.33 0.02 96.42 90.65 0.05 99.79 95.62 0.02 
HG-24 96.63 95.82 0.02 94.76 78.70 0.11 98.17 91.17 0.04 
HG-25 94.07 92.50 0.04 93.75 84.68 0.08 94.83 90.66 0.05 
HG-26 92.04 86.81 0.07 97.71 80.33 0.10 95.70 84.86 0.08 
HG-27 98.00 84.19 0.08 88.10 79.74 0.10 97.80 85.02 0.08 
HG-22 91.43 92.44 0.04 98.01 84.19 0.08 99.77 89.99 0.05 

Mean 93.82 90.69 0.05 94.01 87.53 0.06 98.25 92.29 0.04 

STD 5.08 4.99 0.02 7.77 5.91 0.03 2.12 4.68 0.02 

 

Table 5-8 shows the evaluation of SV_RF for supervoxel classification of tumour 

segmentation using multimodal approach on C-MRI protocols including FLAIR, T1-weighted, 

T1-contrast and T2-weighted. 
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Table 5-8 Classification results for superpixels from MRI Multi protocols (FLAIR, T1, T1-

contrast and T2-weighted) of BRATS 2013 dataset. 

ID 
Core Oedema Whole 

Precision Sensitivity BER Precision Sensitivity BER Precision Sensitivity BER 

LG-01 92.68 87.36 0.06 100.00 93.15 0.03 99.68 92.86 0.04 
LG-02 98.36 95.50 0.02 96.48 97.94 0.01 99.89 98.77 0.01 
LG-04 99.75 95.50 0.02 91.49 97.73 0.01 100.00 94.95 0.03 
LG-06 100.00 95.59 0.02 96.43 87.10 0.06 100.00 94.89 0.03 
LG-08 94.44 87.93 0.06 96.30 98.48 0.01 97.88 97.37 0.01 
LG-11 98.01 93.46 0.03 98.85 99.42 0.00 99.78 98.90 0.01 
LG-12 98.29 93.67 0.03 98.65 99.10 0.00 100.00 97.58 0.01 
LG-13 99.06 89.77 0.05 99.45 89.66 0.05 100.00 88.06 0.06 
LG-14 95.45 88.25 0.06 97.18 100.00 0.00 98.26 92.62 0.04 
LG-15 97.65 96.51 0.02 99.36 96.30 0.02 100.00 97.58 0.01 
HG-01 98.64 97.06 0.01 99.33 98.67 0.01 99.26 98.18 0.01 
HG-02 99.75 98.26 0.01 98.61 100.00 0.00 99.57 98.52 0.01 
HG-03 99.72 98.54 0.01 99.46 98.40 0.01 99.84 98.67 0.01 
HG-04 99.61 95.46 0.02 98.69 99.83 0.00 99.88 98.07 0.01 
HG-05 100.00 94.32 0.03 99.34 87.57 0.06 99.80 89.20 0.05 
HG-06 97.99 96.57 0.02 98.59 98.48 0.01 99.63 98.88 0.01 
HG-07 99.12 96.15 0.02 98.92 97.87 0.01 99.27 97.16 0.01 
HG-08 99.57 96.45 0.02 97.77 97.33 0.01 100.00 97.73 0.01 
HG-09 99.29 98.39 0.01 98.37 93.77 0.03 99.87 97.58 0.01 
HG-10 96.88 89.42 0.05 100.00 100.00 0.00 97.71 92.09 0.04 
HG-11 98.93 98.03 0.01 99.72 97.80 0.01 99.90 98.63 0.01 
HG-12 94.11 94.59 0.03 98.08 86.44 0.07 98.44 94.74 0.03 
HG-13 100.00 97.92 0.01 97.78 100.00 0.00 98.91 98.91 0.01 
HG-14 96.27 94.16 0.03 100.00 97.37 0.01 99.62 97.05 0.01 
HG-22 99.67 98.37 0.01 99.28 97.53 0.01 100.00 98.52 0.01 
HG-24 98.84 97.15 0.01 99.17 99.17 0.00 99.32 98.31 0.01 
HG-25 97.40 94.01 0.03 98.82 95.80 0.02 98.88 94.27 0.03 
HG-26 97.59 95.81 0.02 98.70 92.14 0.04 98.90 94.83 0.03 
HG-27 99.33 92.65 0.04 95.71 85.11 0.07 99.49 91.74 0.04 
HG-22 99.18 95.58 0.02 98.83 94.61 0.03 99.89 95.96 0.02 

Mean 98.19 94.75 0.03 98.31 95.89 0.02 99.46 96.09 0.02 

STD 1.90 3.24 0.02 1.72 4.49 0.02 0.66 3.00 0.01 

 

Table 5-7 and Table 5-8 show that the classification performances for different tumour parts 

(e.g. core, oedema, complete tumour) using multimodal C-MRI have been significantly 

improved compared to that using single FLAIR protocol. For tumour core, the overall 

supervoxel classification results using FLAIR protocol are precision of 93.82%, sensitivity of 

90.69% and BER of 5%, whilst, of 98.19%, 94.75% and 3% for multi-protocol, respectively. 

For oedema, the overall classification results are precision of 94.01%, sensitivity of 87.53% 

and BER of 6% for single-protocol, and of 98.31%, 95.89% and 2% for multi-protocol, 

respectively. The overall classification results for the complete tumour are precision of 

98.25%, sensitivity of 92.29% and BER of 4% for single-protocol, and of 99.46%, 96.09% 

and 2% for multi-protocol, respectively. 

Table 5-9 shows the DSC overlap measures between the ground truth and segmented tumours 

using both single and multi-protocols, on the BRATS dataset. This demonstrates that using 

multi-protocol approach presents better overlap measures for tumour core, oedema, and 
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complete tumour, compared to that using FLAIR only, with mean of overlap for core of 0.8, 

oedema of 0.89, complete tumour of 0.89 using multiprotocol, against 0.79, 0.85, and 0.8, 

respectively using FLAIR only. 

 

Table 5-9 Comparison results for DSC between manual annotation and the automated 

segmentation using a single protocol (FLAIR) and multi-protocol (FLAIR, T1-weighted, T1-

contrast and T2-weighted) of BRATS 2013. 

Case 

No 
Grade/ID 

Single-Protocol Multi-Protocol 

Core Oedema Whole Core Oedema Whole 

1 LG-01 0.42 0.83 0.79 0.76 0.86 0.83 

2 LG-02 0.65 0.84 0.91 0.86 0.87 0.92 

3 LG-04 0.83 0.52 0.88 0.92 0.78 0.91 

4 LG-06 0.78 0.61 0.86 0.85 0.78 0.89 

5 LG-08 0.59 0.87 0.88 0.68 0.91 0.90 

6 LG-11 0.55 0.84 0.84 0.71 0.94 0.92 

7 LG-12 0.69 0.84 0.89 0.85 0.89 0.89 

8 LG-13 0.54 0.79 0.78 0.76 0.85 0.83 

9 LG-14 0.63 0.73 0.69 0.86 0.86 0.80 

10 LG-15 0.67 0.79 0.78 0.82 0.89 0.88 

11 HG-01 0.55 0.87 0.90 0.55 0.95 0.92 

12 HG-02 0.81 0.71 0.89 0.94 0.85 0.92 

13 HG-03 0.82 0.78 0.91 0.89 0.90 0.92 

14 HG-04 0.67 0.88 0.89 0.90 0.93 0.92 

15 HG-05 0.64 0.78 0.81 0.85 0.86 0.84 

16 HG-06 0.54 0.88 0.89 0.87 0.93 0.93 

17 HG-07 0.68 0.76 0.82 0.88 0.90 0.91 

18 HG-08 0.69 0.85 0.89 0.73 0.92 0.92 

19 HG-09 0.70 0.85 0.91 0.82 0.90 0.93 

20 HG-10 0.65 0.69 0.77 0.80 0.90 0.83 

21 HG-11 0.70 0.85 0.91 0.89 0.93 0.94 

22 HG-12 0.54 0.68 0.77 0.77 0.75 0.81 

23 HG-13 0.66 0.73 0.79 0.89 0.94 0.88 

24 HG-14 0.61 0.87 0.88 0.78 0.95 0.93 

25 HG-15 0.68 0.85 0.89 0.82 0.93 0.92 

26 HG-22 0.65 0.77 0.86 0.76 0.94 0.91 

27 HG-24 0.66 0.80 0.84 0.77 0.91 0.88 

28 HG-25 0.56 0.79 0.82 0.62 0.88 0.91 

29 HG-26 0.68 0.68 0.80 0.73 0.78 0.86 

30 HG-27 0.60 0.83 0.88 0.72 0.91 0.91 

Mean All 0.65 0.79 0.85 0.80 0.89 0.89 

STD All 0.09 0.09 0.06 0.09 0.05 0.04 

 

Figure 5-23 shows the segmentation overlays of the complete tumour for BRATS 2013 dataset 

using single- and multi-protocols. Figure 5-25 shows the overlay of the tumour core on the 

same cases and slices as shown in Figure 5-23. It is noted that the segmentation results are 

presented for axial view and are overlaid on the FLAIR protocol.  
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Some irregular boundaries can be seen in Figure 5-23 (a2) and (c3). It should be noted that 

they are 2D presentation of a 3D volumetric segmentation. If a supervoxel is labelled as normal 

brain, but contains some voxels related to tumour, it will paper as a hole in one slice. Therefore, 

the irregular boundaries are the holes that are created as a consequence of misclassification of 

a supervoxel.   

 

    

a1 b1 c1 d1 

    

a2 b2 c2  d2 

    

a3 b3 c3 d3 

    
Figure 5-23 Segmentation results overlaid on the ground truth (complete tumour including 

oedema and core), using single (FLAIR) and multi-protocol (C-MRI including FLAIR, T1-

weighted, T1-contrast and T2-weighted); a1)-a3) FLAIR image, b1)-b3) manual segmentation 

(green) c1)-c3) segmentation using FLAIR (red) d1)-d3) segmentation using conventional 

MRI (blue). 

HG-02 Slice: 63 Manual Single-protocol Multi-protocol 

HG-14 Slice: 129 Manual Single-protocol Multi-protocol 

Single-protocol Multi-protocol 
Manual LG-12 Slice: 102 
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Figure 5-24 shows the 3D graphical view of the complete tumour segmentation volumes from 

the corresponding cases in Figure 5-23. The segmentation surfaces using single-protocol (red) 

and multi-protocol (blue) are separately overlaid on the ground truth (green). As it can be seen, 

the number of isolated false positive volumes decreases by adding more protocols to the 

segmentation procedure. 

 

Figure 5-24 The 3D graphical representation of the complete tumour surfaces from the 

correponding cases in Figure 5-23. The segmentation surfaces using single-protocol (red) and 

multi-protocol (blue) are overlaid on ground truth (green). 

 

 



149 

 

 

    

a1 b1 c1 d1 

    

a2 b2 c2 d2 

    

a3 b3 c3 d3 

    
Figure 5-25 Segmentation results overlaid on the ground truth (tumour core), using single 

(FLAIR) and multi-protocol (C-MRI including FLAIR, T1, T1-contrast and T2-weighted) for 

the same three cases shown Figure 5-23. a1)-a3) FLAIR image, b1)-b3) manual segmentation 

(green) c1)-c3) segmentation using FLAIR (red) d1)-d3) segmentation using conventional 

MRI (blue)). 

 

Figure 5-26 shows the 3D graphical view of the tumour core segmentation volumes from the 

corresponding cases in Figure 5-25. The segmentation surfaces using single-protocol (red) and 

multi-protocol (blue) are separately overlaid on the ground truth (green). As it can be seen, the 

number of isolated false positive volumes decreases by adding more protocols to the 

segmentation procedure. However, the under-segmentation comparison is difficult in the 3D 

HG-02 Slice: 63 Manual 

Single-protocol 

Multi-protocol 

HG-14 Slice: 129 

LG-12 Slice: 102 

Manual 

Manual 

Single-protocol 

Multi-protocol 

Multi-protocol Single-protocol 
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volumes. As can be seen in Figure 5-25, single-protocol approach results in under-

segmentation only for the case HG-14.  

 

Figure 5-26 The 3D graphical representation of the tumour core surfaces from the 

correponding cases in Figure 5-25. The segmentation surfaces using single-protocol (red) and 

multi-protocol (blue) are overlaid on ground truth (green). 

 

It can be seen from Figure 5-23 that using the multi-protocol procedure results in better and 

more accurate segmentation compared to single-protocol. Figure 5-25 shows using multi-

protocol procedure has very accurate segmentation for the tumour core part. In Figure 5-25 

(c1) some parts of normal brain are detected as tumour core and in Figure 5-25 (c2 and c3) 

some parts of oedema are wrongly classified as tumour core, using FLAIR only, which have 

been improved in Figure 5-23 (d1,d2, and d3) using C-MRI. The ratio of supervoxels for the 

whole tumour class versus the rest of classes is higher compared to other tissue classes. 

Therefore, the range of sensitivity and BER for the whole tumour is smaller compared to core 

and oedema.   
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Figure 5-27 Average classification results for supervoxels from single modality (FLAIR) and 

multimodal C-MRI of the BRATS 2013 dataset. a) precision, b) sensitivity, c) BER. 

 

5.3.6 Statistical Analysis 

To investigate the differences in both DSC and classification measures of precision, sensitivity 

and BER between the single- and multimodal approaches, Wilcoxon signed-rank tests at a 

95% confidence level was performed on both the clinical dataset and the BRATS 2013.  

Table 5-10 shows Wilcoxon signed-ranks test statistical results for complete tumour 

segmentation for the DSC and classification measures using the different imaging protocols 

on the clinical dataset (N=11).  
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Table 5-10 Wilcoxon signed-ranks test statistical parameters results for the segmentation 

overlap measure of DSC and the classification measures using FLAIR only, C-MRI, and C-

MRI+DTI) on the clinical dataset (11 subjects).  

Complete 

tumour 

FLAIR vs C-MRI FLAIR vs (C-MRI + 

DTI) 

C-MRI vs (C-MRI + 

DTI) 

p z p z p z 

DICE 0.003 -2.956 0.003 -2.952 0.003 -2.940 

Precision 0.010 -2.578 0.004 -2.845 0.006 -2.756 

Sensitivity 0.003 -2.936 0.003 -2.934 0.008 -2.667 

BER 0.024 -2.264 0.007 -2.680 0.008 -2.666 

 

As can be noted in Table 5-10, there is a statistically significant improvement in DSC and in 

classification measures of precision, sensitivity, BER, when using the C-MRI+DTI 

multimodal data compared to C-MRI or FLAIR alone. 

Table 5-11 shows the corresponding Wilcoxon signed-ranks test statistical parameters for the 

BRATS 2013 dataset (N=30). These results also demonstrate a statistically significant 

improvement in Dice scores and all classification measures when using multimodal C-MRI 

data compared to FLAIR only. It should be noted that the dataset does not contain DTI images.  

 

Table 5-11 Wilcoxon signed-ranks test statistical parameters results for the segmentation 

overlap measure of DSC and the classification measures using FLAIR only, and C-MRI on 

BRATS dataset (30 subjects). 

Complete 

tumour 

FLAIR vs C-MRI 

p z 

DICE < 0.001 -4.723 

Precision < 0.001 -4.021 

Sensitivity < 0.001 -4.762 

BER < 0.001 -4.051 

 

Finally, the results from the two different datasets were combined in a single group containing 

either FLAIR or C-MRI (N=41) and the corresponding Wilcoxon signed-ranks test statistics 

are presented in Table 5-12. This test was designed to assess the robustness of the method for 

application in a dataset with various acquisition parameters and image properties. The results 

indicate a statistically significant improvement in Dice scores and all classification measures 

when using the C-MRI protocol, instead of the FLAIR image alone.  
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Table 5-12 Wilcoxon signed-ranks test statistical parameters results for the segmentation 

overlap measure of DSC and the classification measures using FLAIR only, and C-MRI, on 

both the clinical and BRATS 2013 dataset (41 subjects). 

Complete 

tumour 

FLAIR vs C-MRI 

p z 

DICE < 0.001 -5.531 

Precision < 0.001 -4.743 

Sensitivity < 0.001 -5.566 

BER < 0.001 -4.589 

 

5.4 Discussion 

The calculation of distances for supervoxel segmentation were based on SLIC (Achanta et al., 

2012) which was originally developed for natural images using 2D regular arrays without 

considering pixel resolutions. Whilst, the 3D clinical dataset is anisotropic, with different 

voxel resolutions along each dimension. To address this problem, the distance formulations in 

the supervoxel calculation (Achanta et al., 2012) were adopted to be applicable for MR data 

with different acquisition parameters as shown in Equation (5-5). The modified supervoxel 

formulation should be capable of being used for the data with different acquisition parameters 

mentioned in Chapter 2 (Section 2.6) and Section 5.3.1. Two different sets of data with 

different voxel dimensions and slice thickness were used to evaluate the supervoxel method. 

The clinical dataset has slice thickness three times more than the in-plane voxel resolutions. 

Therefore, the initial supervoxel is chosen to be rectangular shape (e.g. 8 × 8 × 3). Whilst, the 

BRATS dataset has been interpolated to 1 mm3 isotropic resolution, so initial supervoxels are 

defined to be cubic (e.g. 5 × 5 × 5). The supervoxel segmentation boundary for the BRATS 

data has better resolution in the Z direction. This is the main reason why the segmentation 

results from BRATS data are in general better than that from the clinical data. The results in 

Table 5-6 and Table 5-9 confirm this, and show the overall segmentation of tumour for the 

clinical dataset has the average of 0.84 with standard deviation 0.06, whereas for the BRATS 

dataset they are 0.89 and 0.04, respectively. Figure 5-28 presents an overall comparison of the 

DSC overlap measure of each tumour part (i.e. whole, oedema and core) using different sets 

of modalities (FLAIR, C-MRI and C-MRI+DTI).  
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Figure 5-28 Comparison results for Dice overlap ratio between manual annotation and the 

automated segmentation using: a) single modality (FLAIR), multimodal C-MRI, and C-

MRI+DTI of the clinical dataset, b) single modality (FLAIR) and multimodal C-MRI of 

BRATS 2013 dataset.  

 

Figure 5-29 compares the segmentation of the overall tumour from different experiments 

combining Figure 5-19 and Figure 5-21. Several supervoxels are wrongly classified, e.g. false 

positive regions (FPs), in the segmented masks when using FLAIR and C-MRI images (see 

Figure 5-29 (c2 and c3)) whereas adding the DTI image modalities reduces these FPs, leading 

to a more accurate segmentation. For example, in Figure 5-29 (e1) and (e3), there are areas of 

tumour core which are missed by the C-MRI protocol, but these tumour areas can be detected 

by adding DTI modalities as shown in Figure 5-29 (d1 and d3). This demonstrates an 

improvement in segmentation accuracy using both C-MRI and DTI. 

To evaluate the robustness and generality of the proposed multimodal SV_RF method, it was 

applied to the BRATS 2013 multimodal dataset. However, this dataset does not contain DTI 

protocols p- and q-map. Therefore, the single modal (FLAIR) is compared against the 

multimodality C- MRI. The supervoxel map generated from multimodality is different from 

single imaging modality based on FLAIR. The results show the improvement in segmentation 

of the tumour core. 
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Figure 5-29 Overall comparison tumour segmentation. A) FLAIR image, B) manual 

segmentation of the core (yellow region) and oedema (red region) C) segmentation using 

conventional MRI, D) segmentation using C-MRI+DTI, E) comparison of both methods C-

MRI (red), plus DTI (blue) and manual (green) segmentation for core (zoomed in), F) 

comparison of both methods C-MRI (red), C-MRI+DTI (blue) and manual (green) 

segmentation for oedema (zoomed in). 

 

A zoomed-in image of the overlay of the tumour cores (shown in Figure 5-25) is depicted in 

Figure 5-30. To show the comparison between single-modal and multimodal approaches, the 

segmentation results of both methods are overlaid on 2 different protocols, FLAIR and T1-

contrast. As can be seen in Figure 5-30, the information from protocol T1-contrast improves 

the segmentation of tumour core, as the tumour core has more clear boundaries in this protocol. 

The homogenous region in the FLAIR image (Figure 5-30 (a)) causes a wandering boundary 

(red dent in the figure) during single modality supervoxel segmentation, whereas using 

multimodal approach with the help of clear tumour core boundary in protocol T2-weighted 

improves the segmentation accuracy (blue contour in Figure 5-30 (d)). The false positive 

region (shown in red in Figure 5-30 (b)) is the continuing of a supervoxel from adjacent slices. 

Using multimodal approach, the false positive regions can be successfully removed from the 

tumour core. 
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Figure 5-30 Comparison between single-modal and multimodal segmentation of the core. a-c) 

FLAIR, d-f) T1-contrast. Green: manual ground truth, red: single-modal, blue: multimodal.  

 

Despite the advantages of supervoxel segmentation in providing homogenous patches of the 

volume, there are limitations which should be considered while using this technique. One 

limitation is the minimum size for supervoxels regarding its parameters and image 

characteristics. Therefore, the method has a limitation in segmenting very small volumes. The 

overall Dice score for larger tumour cores is more than 80%; whereas for smaller tumour cores 

the overlap measure decreases due to the initial supervoxel size. For example, the Dice scores 

for patient numbers 8 to 11 in Table 5-6 are relatively low, which is due to very small tumour 

cores for those data. Those cores only contain a limited number of supervoxels, unlike oedema 

which is usually large and encompasses many supervoxels. 

The results of the multimodal SV_RF on the BRATS 2013 dataset and the best scores in 2012 

and 2013 challenges from other groups (Menze et al., 2015) are presented in Table 5-13. The 

method proposed by Tustison et al. (Tustison et al., 2014) was the winner of the on-site 

BRATS 2013 challenge. Although the testing dataset for evaluation of multimodal SV_RF is 

different with their dataset, it provides a comparable scale to current experiments. To fairly 

evaluate the proposed SV_RF method, the results are also compared with the best scores that 

achieved from the same clinical training dataset from the other groups. Reza et al. (Reza and 

LG-12 Slice: 102 HG-14 Slice: 129 HG-02 Slice: 63 FLAIR FLAIR FLAIR 

LG-12 Slice: 102 HG-14 Slice: 129 HG-02 Slice: 63 T1- contrast T1- contrast T1-contrast 
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Iftekharuddin, 2013) used the training clinical data to evaluate their method and obtained the 

best results for the same data as used for SV_RF method. They used different texture features 

and considered all the voxels in the image, which provided the best results amongst all the 

methods. Although their method provides slightly better results, it is time consuming since the 

computations were performed for all the voxels. Other methods which used RF classifier and 

were explained in Chapter 3 are also included in the Table 5-13, i.e. Festa et al. (Festa et al., 

2013),  Geremia et al. (Geremia et al., 2013), and Meier et al. (Meier et al., 2014b). Bauer et 

al. used the most number of feature types (i.e. 44 feature types), among them four are statistical 

intensity-based. Festa et al. split the training set to half for normal brain and half for tumour 

and oedema to tackle the unbalanced problem. The proposed SV_RF used all the sample points 

which has the actual ratio of classes. The average of the top 10 best results which used the 

same training dataset of BRATS 2013 according to their website (“BRATS :: The Virtual 

Skeleton Database Project,” n.d.) is also presented in Table 5-13. It should be noted that, as 

the VSD evaluation protocol (described in Chapter 2, Section 2.7.1) does not provide the 

evaluation metrics for oedema separately, they are not mentioned in the comparison table. For 

the same reason, the results of oedema segmentation using the proposed SV_RF method are 

also excluded in Table 5-13. 

Overall, the comparison results in Table 5-13 demonstrate a good performance of the proposed 

multimodal SV_RF method for segmentation both of tumour core and complete tumour, with 

Dice scores of 0.80 and 0.89, respectively.  

Table 5-13 Dice score comparison of the proposed multimodal SV_RF with other methods 

which used BRATS 2013 training dataset (MICCAI 2012 and 2013). 

Work Method Whole 
Tumour 

Core 

Tutison (Tustison et al., 2014) RF and MRF 0.87 0.78 

Reza (Reza and 

Iftekharuddin, 2013) 

RF and texture features 
0.92 0.91 

Festa (Festa et al., 2013) Local context features and RF 0.79 0.62 

Bauer (Bauer et al., 2012) RF and CRF 0.68 0.48 

Geremia (Geremia et al., 

2013) 

Spatially adaptive RF 
0.83 0.62 

Meier (Meier et al., 2014b) Appearance and context features with 

RF and CRF 
0.83 0.66 

Top 10 average   0.87 0.78 

The proposed multimodal 

SV_RF 

RF and multimodal supervoxel 
0.89 0.80 
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5.5 Limitations 

The multimodal supervoxel segmentation method proposed in this chapter considers the 

imaging protocols with the same weight. Therefore, all the protocols will have the same impact 

on calculating the SV boundaries. For annotation of the tumour tissue subtypes some protocols 

provide more accurate boundaries, compared to the others. For example, FLAIR provides 

clearer boundaries for oedema, while T1-contrast provide a better representation for the 

tumour core. The proposed method does not consider this impact. It might be more accurate 

to consider the impact of different protocols by introducing a weight factor in the supervoxel 

formulations.  

Another limitation of supervoxel-based methods is the segmentation of small targets. For 

instance, if a tumour core volume is less than the average supervoxel size, the proposed method 

might fail in assigning the correct class to that supervoxel. On the other hand, if a tumour 

volume is partially split between several supervoxels, again the proposed method might fail to 

segment it correctly. An example of this scenario is the case 37256 from the clinical dataset 

that contains two separate volumes of tumour core. As it can be seen in Figure 5-22, both 

supervoxel-based methods failed to segment the small part of the tumour core.  

The supervoxel compactness factor parameter, m, was chosen by visually inspecting the image 

slices. Supervoxel is a 3D method that requires volumetric evaluation for selecting the 

parameters. Therefore, using an automatic measurement of the distance between the ground 

truth surface and the SV boundaries in 3D is a more accurate approach. This can be a future 

direction for selecting a more accurate optimal value for m. 

 

5.6 Conclusion 

A supervised learning based method is proposed for segmentation of tumour in multimodal 

MRI brain tumour images. Supervoxels were calculated using information fusion from 

multimodal MRI images. A novel histogram of texton descriptors based on supervoxels, 

calculated using a set of 3D Gabor filters with different sizes and orientations was developed. 

A random forest classifier is then used to classify each supervoxel into tumour (including 

tumour core and oedema) or normal brain tissue. The multimodal supervoxel segmentation 

method results in inclusion of information from multimodal MRI, which improves multiple 

tissue boundary segmentation. Also, using the distribution of local textures inside each 

supervoxel helps improving the further classification of supervoxel.  

The experimental results show that the proposed method achieves promising results in the 

segmentation of brain tumour core and oedema. Adding features from different MRI imaging 
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protocols increases the classification accuracy of the supervoxels in relation to a manually 

defined gold standard. The proportion of the features selected from each protocol using the RF 

for the segmentation and classification of the tumour were computed. The features extracted 

from the DTI protocols were found to be included as 24% of the total features, which 

represents the further improvement of the segmentation and classification performance by 

combining the p- and q-map protocols with the C-MRI. In addition, the proposed supervoxel 

method has also been evaluated on the BRATS 2013 dataset which also presents accurate and 

robust results. 

This work has been submitted to the journal of Computers in Biology and Medicine (CBM) 

and currently is in a revision stage.  

Despite the promising performance of the SV_RF method, there is a limitation in supervoxel 

minimum size which makes the method difficult for segmentation of very small regions (e.g. 

tumour core). Also, hand designed features need a large amount of experiments and parameter 

optimisation to produce promising segmentations. The next chapter will investigate the 

machine learned features and application of them with hand designed features. The further 

segmentation of tumour core subtypes, i.e. necrosis, non-enhanced and enhancing core, will 

also be investigated at the voxel level.  
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Chapter 6  

6 FCN-based Brain Tumour Tissue Segmentation 

 

6.1 Introduction 

Most of the classification-based brain tumour segmentation techniques used hand-designed 

features which are fed into a classifier such as RF, SVM, etc. (Gotz et al., 2014; Pinto et al., 

2015). Among the conventional classifiers, RF presents the best segmentation results (Gotz et 

al., 2014; Menze et al., 2015). However, one limitation of these types of methods is that a 

large number of features are required in order to provide better description of the different 

types of classes (tissues) in the images. Therefore, it results in a high dimensional problem 

which makes the process more complicated and time consuming. Furthermore, many 

experiments and optimisation should be performed to obtain the optimal parameters for feature 

extraction and designing the optimal classifier.  

To overcome this problem, another variant of discriminative approaches that use a CNN has 

attracted significant attention in recent years. CNNs are the state-of-the-art methods which can 

efficiently perform classification of images. Later, CNNs were adopted for image 

segmentation. Several CNN-based methods have been developed for medical image analysis, 

especially for segmentation of brain tumours in MRI (Havaei et al., 2017; Pereira et al., 2016). 

A major drawback of CNN-based methods is that sufficient local dependencies are not 

considered for classification of the pixels. Recently, a few approaches have been suggested to 

overcome this limitation and provide more dense predictions at the pixel level. A most recent 

method is based on FCN which was proposed by Long et al. (Long et al., 2015). They 

suggested fusing information from the intermediate convolutional layers to the output, so that 

both semantic and high resolution location information are considered. This will produce 

dense classification that results in a partially end-to-end pixel-by-pixel segmentation. The 

output layer of this FCN provides feature maps with the same size of the input image can be 

considered as the machine-learned features generated from the local and global information. 

On the other hand, some hand-designed feature extraction methods consider the spatial 

features and local dependencies of the pixel classes. As discussed in Chapters 4 and 5, texton 

features are amongst them and provides strong descriptors of local dependencies in both the 

spatial and frequency domains. The main hypothesis of this chapter is that combination of 

those hand-designed features with the machine-learned features may provide more local 

information, and thus improve the semantic segmentation from the FCN. 
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As discussed in Chapter 3, the largest challenge in the field of brain tumour segmentation is 

to develop an efficient and automated procedure to accurately segment different tumour parts 

in a multiclass scheme. The RF classifier alongside with hand-designed features, especially 

texton, have shown the promise in segmentation of a tumour from the normal brain tissue 

(Chapter 4). The multimodal SV_RF has demonstrated good performance in solving the 

multiclass segmentation problem (e.g. segmentation of tumour core and oedema from normal 

brain (Chapter 5)). The motivation of this chapter is to tackle this problem by investigating the 

hybrid method for accurate segmentation of complex tumour structures. Several experiments 

were also designed to investigate the machine-learned and hand-designed features to 

understand the efficiency of the combination. 

The VGG16 architecture was selected for implementation of the FCN since the methods that 

were based on VGG16 provided promising performance in many recent semantic 

segmentations of medical and nonmedical tasks. The score maps extracted from the last 

deconvolution layer of the FCN were used to localise the tumour area and were also used as 

feature extraction. Due to the coarse segmentations using FCN, texton based features were 

then used to take into account the pixel neighbourhood for more accurate classification. To 

evaluate the robustness of the method, it was applied on the publicly available BRATS 2013 

and 2017 dataset. The segmentation results presented here were reported by the blind test 

which was provided by the VSD online system.  

Yao et al. (Yao et al., 2016) proposed a CNN method based on Gabor filters that feed the 

responses of Gabor filters as an input to the network. The original images were applied to a 

set of Gabor filters with different orientations. Then, the filter responses were merged to form 

an input array.  

Luan et al. (Luan et al., 2017) proposed a method by fusing the Gabor filters to the architecture 

of CNN. The aim of their study was to incorporate the capability of Gabor filers in dealing 

with spatial transformation into deep CNN architectures to increase their robustness to spatial 

changes, i.e. orientation and scale. Gabor filters were used as orientation and convolutional 

filters. For each orientation, a layer was considered in the architecture of the network. The 

weights of the Gabor convolutional layers were updated using back-propagation, similar to 

conventional CNNs. 

The proposed method in this thesis applies k-means clustering to extract texton features from 

the input image, which are used to form a feature representation based on connectivity of the 

pixels. 
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The contributions of this chapter can be listed as follows:  

 A novel framework is proposed to combine two conceptually similar but operationally 

different mechanisms (i.e. hand-designed and machine-learned) for feature 

representation. The principle of these two methods is to simulate a mechanism that is 

able to decompose high order visual features to elementary visual features. 

 The connection between the traditional feature engineering and deep learning (FCN) 

is explored in a new perspective, where the hand-designed features are obtained from 

a shallow network (with designable filters) while the machine-learned features are 

extracted from a deep network (with trainable filters). 

 A novel scheme is proposed to address the limitations of the FCN (e.g. local 

dependencies are not sufficiently taken into account) in combination with texton 

features. The local dependencies are implicitly encoded into the feature representation. 

 

6.2 Methods 

The deep CNN was explained in Chapter 3. The following sections will explain the concepts 

and architecture of FCN, which is a variation of deep networks, in detail.   

 

6.2.1 From CNN to FCN 

As discussed in Chapter 3, the standard CNN structure mainly consists of two blocks, i.e. 

convolution layers and fully connected layers (Figure 6-1 (a)). This type of architecture takes 

a fixed size input and produces a single label as output. The FC can only take fixed-size inputs. 

The main contribution of changing a CNN to FCN is replacing the FC by CONVs, hence the 

architecture become a “fully convolutional network” (Figure 6-1 (b)). Typically, the last 

CONV has a 1×1 output.  None of the layers have a predefined input size. As an interesting 

result, the network can handle inputs with any arbitrary size.  

The first FCN was proposed by Matan et al. (Matan et al., 1992) which was one-dimensional. 

Wolf and Platt (Wolf and Platt, 1993) proposed two-dimensional FCN. The main concern of 

deeper FCN in image segmentation is that several CONVs will affect the final resolution of 

the output. Long et al. (Long et al., 2015) proposed a deep FCN for dense pixel classification, 

which fuses multi-resolution network layers to incorporate different resolutions of features. 

They suggested adding deconvolution layers (convolution layers with upsampling) to produce 

output with the same size of the input image (Figure 6-1 (c)). Therefore, their FCN generates 

pixelwise classification as output. 
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6.2.2 FCN for Dense Predication 

Each layer of data in a CNN generally can be considered as a 3D array of size di, i ϵ {1,2,3}. 

In case of MRI multimodal data d1 and d2 are the spatial dimensions of images and d3 is the 

number of channels which is the number of protocols in MRI data. It should be noted that the 

inputs of FCN are 2D slices of the MRI images. Each element in a deeper layer of a network 

is related to a specific region of the input image via the network connections, known as the 

receptive field of that element. The CNN substructures; i.e. CONV, POOL and activation 

function work on local input image regions, therefore they depend on relative spatial 

coordinates which make the CNN translation invariant.  

 

 

a 

 

b 

 

c 

Figure 6-1 Schematic architectures of the convolutional networks. a) standard CNN takes fixed 

size input in FC layer, b) standard FCN (classification) takes input with any size and the output 

is the feature vector or classification value, c) modified FCN for dense pixel segmentation 

takes input with any size and produces output with the same size. 
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In a particular layer, for the data vector xij at location (i, j), the output is calculated using  

𝑦𝑖𝑗 = 𝑓𝑘𝑠 ({𝑥𝑠𝑖+𝛿𝑖,𝑠𝑗+𝛿𝑗}
0≤𝛿𝑖 ,𝛿𝑗≤𝑘

), (6-1) 

where fks is the layer type, k is the kernel size, and s is the stride or subsampling factor. The 

layer type can be one of the following: convolution matrix, average pooling, spatial max for 

max pooling, nonlinearity for the activation function, or other types of layers.  In general, deep 

networks compute a general nonlinear function.  

The loss function is summed over the spatial dimension of the last layer, i.e.  

𝑙(𝑥; 𝜃) = ∑ 𝑙′(𝑥𝑖𝑗; 𝜃).

𝑖𝑗

 (6-2) 

In this case, the gradients of the loss function are the sum of the gradients of each spatial 

component. The gradient descent on 𝑙(𝑥; 𝜃), which is computed over the image, is the same 

as gradient descent over 𝑙′(𝑥; 𝜃), which takes all the final layer receptive field as one batch. If 

these receptive fields overlap significantly, then the feedforward and backpropagation are 

more efficient when calculated layer by layer on the whole image compared to computing 

them independently patch by patch.  

The FCs of a typical network have fixed dimensions, which can operate on input with fixed 

size. Therefore, FCs generate nonspatial outputs by throwing away the spatial coordinates. 

The replaced CONVs can be convolved with kernels that enable them to cover the entire input 

region and produce spatial outputs. Therefore, they can be suitable candidates for semantic 

segmentations. By providing the ground truth at the level of each output pixel, the forward and 

backward passes will be straightforward. The advantage of these type of networks is that they 

can take any input size. Whilst the weak point is the output dimensions are reduced by 

subsampling. The output size is reduced by a factor equal to the stride of the output layer’s 

receptive fields which leads to coarse output results.  

To address this problem, a deep stack of features is added to the final layer of activations. 

These new layers of features contain information from the shallower and deeper layers and are 

combined to provide both local and global features. The shallower layers (i.e. closer to the 

input) have higher resolution with more of the local information. The deeper layers (i.e. closer 

to the output) provide lower resolution features that have more semantic global information. 

Figure 6-2 shows the schematic illustration of using the multi-resolution information from 

different layers to produce dense output.  
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In order to perform dense prediction from the coarse segmentation (output image), upsampling 

or interpolation can be used. In the case of bilinear interpolation, each output is computed 

based on the nearest four inputs by using a linear map. Upsampling with factor f is equivalent 

to convolution with fractional input stride of 1/f. It can also be explained as deconvolution or 

backward convolution with an output stride of f. The deconvolution layer is trainable i.e. a 

nonlinear upsampling can be learned by attaching the deconvolution layer and activation 

function.  

To include the higher resolution information from the different level of layers, “skip layers” 

are added to the network. The schematic illustration of the concept and the skip layers are 

shown in Figure 6-2. Since these skip layers have different resolutions, they need to be 

interpolated and accumulated to produce the desired dense output. More details on the skip 

layers and upsampling layer of the FCN architecture will be explained in the next section.  

 

 

Figure 6-2 Schematic illustration of how different resolution feature information are 

considering from different depth of layers.  

 

6.2.3 FCN Architecture 

The details of the FCN architecture of VGG16 were shown in Figure 6-2. The VGG16 network 

is implemented using the Caffe model (Jia et al., 2014). The network is modified by 

eliminating the final classifier layer and converting all the FC layers to convolution layers. 

Then a CONV of size 1 × 1 with channel dimension 5 (i.e. number of output classes) is added 

to predict the scores for each pixels of multimodal MRI images which produces the coarse 
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segmentation output. A deconvolution layer is added in order to upsample the coarse output 

bilinearly to the pixel-wise fine segmentation.  

The output stride is divided in half by predicting from a 16-pixel stride layer. A 1 × 1 

convolution is added to the POOL4 to further predict the classes. The corresponding output is 

combined with the output of CONV7 at stride 32 by adding a 2x upsampling layer. The 

upsampling layer is initially a bilinear interpolation and its parameters can be learned later. 

The stride 16 predictions are then upsampled back to the image. This structure is called FCN-

16. The initial parameters of POOL4 are set to zero, so the starting prediction of the network 

is unmodified.  

The same procedure is applied on POOL3 with a 2x upsampling which is combined with 

POOL4 and CONV7 which results in FCN-8s architecture. To produce finer predictions, it is 

recommended to decrease the strides of the pooling layers. This procedure is a difficult task in 

VGG16 structure. To set the POOL5 stride to 1, the convolutionalised FC6 should have the 

kernel size 14 × 14. This will increase the computational cost and those large filters makes the 

learning process more difficult.  

 

FCN for Brain Tumour Segmentation 

In this chapter, the FCN-8s architecture in (Long et al., 2015) is modified and adopted for 

segmentation of brain tumour in multimodal MRI images, where the VGG16 (Simonyan and 

Zisserman, 2014) is employed as a CNN classification net. The architecture of FCN based on 

VGG16 for brain tumour segmentation is presented in Figure 6-3. In the FCN architecture, 

initially, the classification net is transformed to be a fully convolutional net, then adding an 

upsampling or de-convolutional layer to it for pixel-wise predictions. The FCN training is an 

end-to-end supervised learning procedure and the image segmentation is performed using a 

pixel-wise prediction/classification. The FCN-8s constructed from FCN-16s skip net and 

FCN-32s coarse net.  

The predictions at shallow layers are produced using a skip layer that combines coarse 

predictions at deep layers to improve segmentation details. More specifically in the 

experiments, the FCN-8s is implemented by fusing predictions of shallower layer (POOL3) 

with 2x upsampling of the sum of two predictions derived from POOL4 and last layer. Then 

the stride 8 predictions are upsampled back to the image.  
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Figure 6-3 The detailed architecture of the FCN used for segmentation of brain tumour in 

multimodal MRI.  

 

Pretrained VGG16 

The VGG model is designed based on natural image with intensities with bit depth = 8 (i.e. 

the intensity range is [0 255]). The VGG model has also the capability of being further trained 

by adding more datasets to the existing pretrained model. The initialisation using a pretrained 

model decreases the training time. Furthermore, the first layers of any CNN learn more abstract 

features of the images which is common between all kind of images. Therefore, a pretrained 

model on other images will improve the model accuracy for new images. In this thesis, due to 

the insufficient training MRI data, a pre-trained model on natural colour images is used. The 

DSC measure 0.64 is obtained using a model without pretraining for the whole tumour, which 

is a poor segmentation. It should be noted that the pre-trained model architecture was designed 

for 2D images. Therefore, a 2D architecture was implemented in this thesis to use the 

pretrained model parameters accordingly.  

Using a pretrained model results in faster training procedure and provides more accurate 

results in a specific number of epochs. However, it should be noted that the data used for the 

pretrained model was different from MRI. This is still a disadvantage that should be considered 

the training of the model is not completely end-to-end. Therefore, the term “partially” end-to-

end is used since the model parameters were initiated from a model that was trained on a 

different set of image data.  
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In order to use the pretrained VGG model for the case of medical MR images, some 

modifications should be taken into account. The intensities of the images are normalised into 

the range of a natural image which is [0, 255]. The pretrained VGG model is trained on RGB 

images which has three channels. Therefore, three protocols were selected to build the input 

data. Regarding the importance of the protocols which were discussed in Chapter 5 (Section 

5.3.2), FLAIR, T1-contrast and T2-weighted are selected. Due to the lack of sufficient 

available DTI MRI dataset, p and q-map protocols were not used in this stage of the thesis. 

However, regarding to the experiments in Chapter 5, incorporating the DTI protocols may 

result in better segmentation of the tumour tissue subtypes.  

 

Segmentation of MRI Tumour using FCN 

The final segmentation is obtained by max voting to the final score maps of the FCN. The 

results of dense classification output (segmentation masks) are generated using FCN-8s 

network and shown in Figure 6-4.  

 

 

Figure 6-4 Comparison of the multimodal MRI segmentation output of the FCN-8s network 

with the ground truth. 

 

Comparing the segmentation output (Figure 6-4(e)) with the ground truth (Figure 6-4 (d)), it 

can be seen that the FCN-8s was successful to globally detect the tumour structures. However, 

the lack of the spatial regularisation of FCN results in label disagreement between similar 

pixels and diminishes the spatial consistency for segmentation and results in coarse 
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segmentation. Incorporating more information from the local dependencies of the pixel (e.g. 

hand-designed features) may improve the results by providing finer segmentation. In the next 

section a hybrid method will be introduced which considers the three-dimensional connectivity 

(neighbourhood system) to compensate the FCN limitation of coarse segmentation. 

 

6.2.4 Fusing Hand-designed Features with FCN via a Hybrid Method 

As discussed in Chapters 4 and 5, the texton features based on Gabor filters provide strong 

descriptors which represent the local dependencies in the spatial and frequency domains. 

Fusing the texton features with the FCN based features will incorporate more local information 

to the final segmentation.  

 

Overview of the method 

The method is comprised of four major steps (pre-processing, CNN design, Texton map 

extraction, RF classifier) that are depicted in Figure 6-5. In the pre-processing stage, intensity 

histograms of the different modalities are normalised. The images are then fed into the FCN 

system to create the score maps for the classes. The texton maps are also extracted directly 

from the images. Both machine-learned features (i.e. from FCN) and hand-designed features 

(i.e. from texton map) are then combined and fed into a RF classifier to classify each MRI 

image pixel into normal brain tissues and different tumour structures. 

 

 

Figure 6-5 The overall flowchart of the hybrid method which uses hand-designed and 

machine-learned features for automatic brain tumour segmentation in MRI images.  
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Preprocessing 

The preprocessing stage includes intensity normalisation and histogram matching, which have 

been discussed in Chapter 4 (Section 4.2.2). In this chapter, the same procedure is performed 

for the training dataset. For the testing dataset, the data are normalised and matched directly 

to the average template obtained from the training dataset. 

Feature Extraction form the FCN Layers 

The machine-learned features are the score maps generated from the FCN for each individual 

output class. The final segmentation output of the FCN was obtained by assigning the label of 

maximum values of the final score maps after the deconvolution layer. Those score maps can 

also be considered as the feature maps and include all the hierarchies of the features from 

coarser (lower resolution) to finer (higher resolution).  The feature (score) maps and their 

location in the FCN architecture are illustrated in Figure 6-6.  

The number of score maps is the number of classification labels including the background. For 

example, in the case of the BRATS dataset standard labellings (or the score maps) are five, 

including: 

1. Background and normal brain 

2. Necrosis 

3. Oedema 

4. Non-enhancing tumour 

5. Enhancing tumour 

 

Figure 6-6 The score maps are extracted from the deconvolution layer from the FCN. 
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For each pixel, a five-dimensional feature vector is constructed, with the value of each element 

in the feature vector is that equivalent to the value of each score map layer for that 

corresponding pixel. Figure 6-7 shows the FCN based score maps for each class layer and the 

ground truth for a testing image. Figure 6-7 also shows the protocols which were used to 

generate the corresponding score maps.  
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Figure 6-7 The FCN-based score maps generated from the multimodal MRI images. The 

figures are shown for challenge case number HG-0309 (ID: 17604) and slice 59. a-c) Original 

MRI: a) FLAIR, b) T1-contrast, and c) T2-weighted. d-h) FCN score maps for classes: d) 

background and normal brain, e) necrosis, f) oedema, g) non-enhancing tumour, and h) 

enhancing tumour. i) The segmentation mask using FCN-8s. 
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Spatial Feature Extraction 

The coarse results of the FCN-based segmentation are due to the down-sampling that occurs 

in the pooling layers. Given that the local dependency is not sufficiently considered in the 

FCN, a new pipeline of the texton based feature descriptor derived from the convolutional 

feature is proposed. Textons are used since they are powerful features that represent the local 

dependencies and neighbourhood system information (Section 4.2.5) in all phases, i.e. 

convolution, k-means clustering and histogram calculation. The texton maps are created using 

the 3D method discussed in Section 5.2.4. The number of maps is equal to the number of MRI 

protocols (Nprotocol) which are used for the segmentation.  It is noted that, 3 protocols are used 

regarding to the machine-learned FCN based feature calculation (Section 6.2.3), whereas in 

the previous work (i.e. SV_RF method in Chapter 5), 4 protocols were used (Section 5.2.4). 

The reason for using 3 protocols is that the pretrained model is based on three-channel natural 

images. The T1-weighted protocol is excluded since it provides less information on the tumour 

subtypes compared to T1-contrast. Figure 6-8 shows the texton maps for the corresponding 

slices presented in Figure 6-7.  
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Figure 6-8 The texton maps generated from the M-MRI images. The figures are shown for 

challenge case number HG-0309 (ID: 17604) and slice 59. a-c) Original MRI: a) FLAIR, b) 

T1-contrast, and c) T2-weighted. d-f) texton feature map extracted separately from the 

protocols: d) FLAIR, e) T1-contrast, and f) T2-weighted.  
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It can be seen in Figure 6-8-(d) to (f), that the texton maps created detailed presentations of 

the local boundaries of the tumour parts. By comparing Figure 6-8-(a) to Figure 6-8-(d), the 

oedema region is clearly distinguishable from the map extracted from the FLAIR protocol. 

Also, Figure 6-8-(e) presents an obvious separation of the tumour core parts from enhancing 

tumour, which is the bright area in the T1-contrst image and the red/brown area in the T1c 

texton map. The necrosis is the blue area inside the tumour core which is equivalent to the 

dark area in the T1-contrast original image in Figure 6-8-(b).   

Each pixel in the image is described by its intensity and neighbourhood pixels. For each pixel, 

its neighbourhood with size n × n pixel is represented by the histogram of texton while the 

centre pixel is represented by its normalised intensity. This descriptor of each pixel implicitly 

encodes the information that the centre pixel conditionally depends on its neighbourhood, thus 

incorporates the local dependencies into feature representation. The procedure of mapping the 

connectivity based on the texton IDs (in the neighbourhood window) to the histogram is 

illustrated in Figure 6-9. 

Figure 6-10 and Figure 6-11 show how the connectivity based on the texton IDs of adjacent 

pixels in the neighbourhood provides feature representation at the pixel level. Figure 6-10 

shows the T1-contrast image, FCN-based learned score map of the “enhancing” class, the 

texton map of T1-contrast, and the manual GT. The features (i.e. FCN-based score of the 

“enhancing” class and connected textons ID histogram) are extracted for two pixels with 

different GT labels (enhancing tumour and necrosis). The FCN-based score values for those 

pixels are 3.88 and 3.15 respectively. These values are close together regarding to the whole 

range of [-10, +12] for FCN-based scores of the “enhancing” class. Therefore, both pixels may 

be assigned to the same class if only FCN-based score feature is considered.  Whilst, 

considering the neighbourhood system based on the texton IDs, the corresponding histogram 

provides a feature representation which makes those classes, i.e. enhancing and necrosis, more 

separable. Both cases are shown in the lower row of Figure 6-11. 
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Figure 6-9 The connectivity of the adjacent pixels from the histogram of the texton IDs in a 5 

× 5 neighbourhood of the centre pixel. The texton clusters are integers in the range [1, 6]. The 

texton IDs outside the neighbourhood are not counted. This is a simplified example to illustrate 

the procedure of texton histogram feature extraction from the pixel neighbourhood. The texton 

histogram values are zero for IDs from 6 to 16 in this example. 

 

 

Figure 6-10 (Upper row) T1-contrast, FCN-based score map of enhancing core, texton map of 

T1-contrast, and ground truth; (middle row) the corresponding close up of the upper row 

images and two different pixels with GT labels: enhancing (black square) and necrosis (red 

square); (lower row) the features extracted for the corresponding pixels including FCN-based 

score of “enhancing”, and connected textons ID histogram in a 5 × 5 neighbourhood around 

the centre pixel.   
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Figure 6-11 shows the texton map of the FLAIR image, FCN-based score map of the oedema 

class, and the feature representation of two pixels with different labels (oedema and normal 

brain). The patient image and slice is the same as Figure 6-10, but the selected pixels are 

different. FCN-based scores values for the corresponding pixels are 7.79 and 6.85, 

respectively. These values are very close compared to the range of the FCN scores of 

“oedema” for this patient case, which is in the range [-9, +10]. Considering the neighbourhood 

system based on the texton IDs, the corresponding histogram provides a feature representation 

which makes the classes, i.e. oedema and normal brain, more separable which is shown in the 

lower row of Figure 6-11.  

 

 

Figure 6-11 (Upper row) FLAIR, FCN-based score map of “oedema”, texton map of FLAIR, 

and ground truth; (middle row) the corresponding close up of the upper row images and two 

different pixels with GT labels: oedema (black square) and normal brain (red square); (lower 

row) the features extracted for the corresponding pixels including FCN-based score of 

“oedema”, and connected textons ID histogram in a 5 × 5 neighbourhood around the centre 

pixel. 
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In total 56 features were calculated which are summarised in Table 6-1. The features from 

FCN are chosen from each layer of the score maps for the corresponding pixel. Whilst, the 

texton features are extracted based on the histogram of texton map in a fixed size window of 

5 × 5, centred at that pixel. The number of texton features is based on the number of texton 

clustering which is chosen ktexton = 16 (Section 6.3.3). 

Figure 6-12 shows a graphic presentation of feature vector generation for the hybrid method 

and presents how machine-learned and hand-designed features are integrated together.  

 

Table 6-1 Details of the features which are used in the proposed method. 

Feature Type Number for each protocol Total number 

FCN Machine-learned - 5 

Texton Hand-designed 16 48 

Normalised intensity Hand-designed 1 3 

Total Combined - 56 

 

 

Figure 6-12 The detailed of feature vector generation for the hybrid method. Machine based 

features from FCN are extracted based on pixel and the hand-designed texton features 

extracted from the neighbourhood around the pixel and considers the local dependencies.  
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RF and segmentation 

The RF classifier is applied locally on tumour candidate region which is detected by the FCN. 

The final output of the FCN creates segmentation masks which encompass the complete 

tumour region. This will reduce the number of pixels to be classified by RF. A confidence 

margin of 10 pixels in 3D space around the detected tumour area is selected by morphological 

dilation (Gonzalez and Woods, 2007). This is to ensure more parts of the tumour which may 

not detected by the FCN are included and also to include some normal brain parts to make a 

more balanced classification. For each pixel in this target area, a feature vector (i.e. 56 features 

for each pixel) is then fed to the RF for training.  

The RF was explained in detail in Chapter 5. The RF parameters tuning will be discussed later 

in Section 6.3.2. The final segmentation mask is obtained based on the classes assigned for 

each pixel in the test dataset by mapping back the pixel estimated class from RF to the 

segmentation mask volume.  

In the post-processing stage, the false positive related to the remaining skull area are eliminated 

using a connected component analysis. The connected components are considered the pixels 

which are connected in 3D with 26 adjacencies. The connected components which include less 

than 300 pixels are excluded from the segmentation mask. This value was obtained using the 

training set.  

 

6.3 Experiments and Results 

The experiments were evaluated on the publicly available MICCAI BRATS 2013 and 2017 

dataset. The method was tested on an independent “challenge” dataset by uploading the results 

on the VSD system (using the required format) and obtaining the evaluation results 

comparison with other competitors from the organiser website. Quantitative evaluations of the 

proposed method were based on the overlap measures for segmented tumour vs ground truth 

which has been calculated and reported by the VSD website. In the following subsections, the 

dataset, parameter setting of the models and the evaluation of segmentation results will be 

described. 

Dataset 

For all of the experiments, the systems are trained based on the BRATS 2013 and 2017 training 

dataset. The training dataset consists of 30 (for BRATS 2013) and 285 (for BRATS 2017) 

patient MRI scans that were explained earlier in Section 2.6.1. The evaluation is based on 

application of the BRATS 2013 challenge (test) and 2017 validation dataset to the trained 
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system. The test dataset consists of 10 cases with HGG. The FCN architecture, i.e. VGG16, 

were designed for three layers of input image. Therefore, three protocols were used: FLAIR, 

T1-contrast and T2-weighted to train the FCN. The reason for selection of this configuration 

is that these three protocols contain the most information on all the tumour structures in the 

clinical settings which was also used in Chapter 5. The tumour type classes are provided by 

VSD system, i.e. oedema, necrosis, enhancing and non-enhancing tumour.  

Evaluation 

The evaluation measures are the standard segmentation which are used in the VSD system to 

compare the segmentation results with the gold standard (blind testing). DSC, PPV, and 

sensitivity are considered. The evaluation results were provided using the BRATS challenge 

standard combination which are as follow:  

3. Complete tumour (oedema, necrosis, enhancing and non-enhancing) 

4. Tumour core (necrosis, enhancing and non-enhancing) 

5. Enhancing tumour 

The segmented masks obtained from the challenge testing dataset are uploaded to the VSD 

website and evaluated by the corresponding online system (blind testing). 

Implementation 

The experiments were implemented on a PC with CPU Intel Core i7 and RAM 16 GB with 

the operating system windows 8.1. The FCN was implemented using  MatCovNet toolbox 

(Vedaldi and Lenc, 2015). GPU GeForce gtx980i was used for reducing the training time of 

the FCN. Other sections of the proposed method were performed using MATLAB 2016b. RF 

open source code provided in (Taormina, n.d.), which is a specialised toolbox for RF 

classification based on MATLAB, was utilised for the classification. 

Experiment Setting 

To evaluate the performance of the proposed method, three sets of comparative experiments 

were investigated.  

1. FCN  

In this scenario, a FCN is directly applied to the clinical dataset to segment the tumour 

regions. The FCN structure is designed based on (Long et al., 2015). For this phase, no 

hand designing or parameter tuning is needed.  

2. FCN_RF 

In this scenario, the score map of the trained FCN in the previous scenario is extracted. 

The score maps are generated by applying the FCN on the BRATS training set. The score 
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maps are considered as feature vectors and then fed into a RF classifier. In this phase, the 

RF parameters should be tuned for this specific set of features. The parameters are tree 

depth (Dtree) and the number of trees (Ntree). The RF parameters are obtained by 4-fold 

cross validation on the BRATS training dataset. This experiment was designed to assess 

the effect of local dependencies with and without textons.   

3. FCN_Texton_RF 

This is the proposed method which was explained in Section 6.2.4. In this phase, the 

texton parameters also should be tuned and are the number of texton clusters (ktexton) and 

Gabor filters parameters, i.e. filter orientations, sizes, and wavelength of sinusoid 

coefficients.  

 

6.3.1 FCN 

Table 6-2 provides the evaluation results obtained by applying the FCN segmentation on the 

BRATS 2013 challenge dataset. Figure 6-13 shows the examples of segmented tumour parts 

in some cases from the BRATS 2013 challenge dataset by the method based on FCN only. 

The original images of FLAIR and T1-contrast protocols are shown and the segmentation 

results are presented with the coloured areas overlaid on the FLAIR image. As the ground truth 

is not accessible, it cannot be included it in Figure 6-13. Table 6-2 shows that that the 

sensitivity is very good for segmentation using FCN only but the DSC and PPV are below 

0.80 for most of the cases. This explains that FCN can detect the area that includes the tumour, 

but it cannot accurately and locally detect its boundaries. In the third column of Figure 6-13 

which shows the segmentation overlays based on FCN only method, the FCN over-segmented 

the tumour area especially the tumour core. Although it detects the location of the tumour but 

it was not accurate in determining the exact tumour boundaries. 

Table 6-2 Segmentation results per case for BRATS 2013 challenge dataset using FCN only, 

evaluated by the VSD website system.  

Case 
Dice score Positive Predictive Value Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

HG-0301 0.80 0.68 0.78 0.77 0.62 0.82 0.82 0.76 0.75 

HG-0302 0.73 0.75 0.65 0.63 0.62 0.69 0.87 0.94 0.63 

HG-0303 0.65 0.83 0.82 0.49 0.75 0.70 0.97 0.92 0.98 

HG-0304 0.80 0.70 0.50 0.71 0.55 0.35 0.91 0.98 0.90 

HG-0305 0.59 0.39 0.44 0.86 0.94 0.65 0.45 0.25 0.33 

HG-0306 0.84 0.80 0.67 0.84 0.88 0.65 0.84 0.73 0.69 

HG-0307 0.89 0.29 0.50 0.83 0.17 0.37 0.96 0.95 0.76 

HG-0308 0.83 0.81 0.58 0.75 0.72 0.43 0.95 0.93 0.89 

HG-0309 0.86 0.80 0.70 0.89 0.69 0.61 0.83 0.94 0.82 

HG-0310 0.81 0.69 0.76 0.80 0.63 0.78 0.82 0.77 0.74 

Total 0.78 0.67 0.64 0.76 0.66 0.61 0.84 0.82 0.75 
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a b c 

Figure 6-13 Segmentation results for some cases of BRATS 2013 challenge dataset. a) the 

original FLAIR images, b) T1-weighted-contrast, c) segmentation mask of FCN only overlaid 

on FLAIR image. Oedema: green, necrosis: blue, enhancing tumour: red. 

 

6.3.2 FCN_RF 

RF parameters were tuned by examining different tree depths and number of trees on the 

BRATS 2013 training patient datasets. A 4-fold cross validation is used for evaluating the 

classification accuracy during the tuning process. The number of trees Ntree = 50 with depth 

Dtree = 15 provide an optimum generalisation and accuracy. 

Table 6-3 provides the evaluation results obtained by applying the FCN_RF method on the 

BRATS 2013 challenge dataset. Figure 6-14 shows the examples (same as Figure 6-13) of the 

segmentation of the tumour using FCN_RF in the BRATS 2013 challenge dataset. The original 

images of FLAIR and T1-contrast protocols are shown and the segmentation results are 

presented with the coloured areas overlaid on the FLAIR image. 
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Table 6-3 Segmentation results per case for the BRATS 2013 challenge dataset using 

FCN_RF, evaluated by the VSD website system.  

Case 
Dice score Positive Predictive Value Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

HG-0301 0.86 0.86 0.77 0.93 0.93 0.80 0.79 0.80 0.74 

HG-0302 0.87 0.69 0.82 0.88 0.95 0.89 0.87 0.54 0.76 

HG-0303 0.88 0.93 0.80 0.93 0.92 0.71 0.84 0.94 0.90 

HG-0304 0.77 0.73 0.62 0.84 0.66 0.56 0.71 0.82 0.70 

HG-0305 0.82 0.70 0.76 0.88 0.95 0.76 0.77 0.55 0.76 

HG-0306 0.87 0.79 0.68 0.97 0.98 0.94 0.79 0.66 0.53 

HG-0307 0.88 0.24 0.61 0.91 0.15 0.83 0.86 0.60 0.48 

HG-0308 0.91 0.91 0.70 0.92 0.95 0.60 0.90 0.88 0.85 

HG-0309 0.82 0.88 0.81 0.97 0.92 0.88 0.71 0.85 0.76 

HG-0310 0.83 0.89 0.81 0.94 0.95 0.84 0.75 0.83 0.77 

Total 0.85 0.76 0.74 0.92 0.84 0.78 0.80 0.75 0.73 

 

 

a b c 

Figure 6-14 Segmentation results for some cases of BRATS 2013 challenge dataset. a) the 

original FLAIR images, b) T1-weighted-contrast, c) segmentation mask of FCN_RF overlaid 

on the FLAIR image. Oedema: green, necrosis: blue, enhancing tumour: red.  

 

The results in Table 6-3 shows that FCN_RF slightly improved the DSC for the complete 

tumour and significantly improved the tumour core and enhancing part and also improved PPV 

for all areas. It means that the segmentation boundaries are now closer to the ground truth. 
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While sensitivity for the complete tumour decreases, which represents under-segmentation. 

The reason is that FCN_RF considers only the normalised intensity of pixels and it does not 

take into account the local dependencies.  

 

6.3.3 FCN_Texton_RF 

As described in Chapter 4, the Gabor filter parameters are chosen using exhaustive grid search. 

Six different filter directions were used: [0o, 30o, 45o, 60o, 90o, 120o] to cover more 

orientations. Filter sizes were chosen in the range from 0.3 to 1.5 as: [0.3 0.6 0.9 1.2 1.5]. The 

wavelength of the sinusoid coefficients of the Gabor filters were chosen [0.8, 1.0, 1.2, 1.5].  

The number ktexton = 16 was selected as the optimal value for the number of clusters in texton 

map. Zheng et al. (Zhang et al., 2016) proposed that the number ktexton = 32 is optimal for the 

texton map extraction for a complete image. In this thesis, the aim is to calculate the texton 

histogram in a bounding box neighbourhood. Using ktexton = 32 produce might produce very 

sparse histogram for a small neighbourhood window (e.g. 5 × 5). On the other hand, the 

number of clusters should be sufficient to separate all possible tissues in the image. In the case 

of MRI brain images, the complexity and variety of tissue intensities and textures should be 

considered. Therefore, the ktexton = 16 is chosen to allocate at least two IDs for each main tissue 

(i.e. WM, GM, CSF, oedema, necrosis, enhancing, non-enhancing, and other background). 

The texton map is created by assigning the cluster number to each pixel of the image and then 

sorted based on the average intensity values of the original image pixels inside each cluster. 

This is to organise/relabel the clusters as k-means assigns the initial cluster number randomly. 

The texton feature for each pixel is the histogram of textons in a neighbourhood window of 5 

× 5 around that pixel. 

As explained in Chapter 4, the optimal value for kattribute in the classification using RF is kattribute 

= √Nfeature where Nfeature is the total number of features, in the current study kattribute = 7. RF 

parameters were selected similar to the previous section, i.e. the number of trees Ntree = 50 with 

depth Dtree = 15. 

Table 6-4 provides the evaluation results obtained by applying FCN_Texton_RF on the 

BRATS 2013 challenge dataset. Figure 6-15 shows the examples (same as Figure 6-13) of the 

segmentation of tumour structures in some of the BRATS 2013 challenge dataset by 

FCN_Texton_RF. The original images of FLAIR and T1-contrast protocols are shown and the 

segmentation results are presented with the coloured areas overlaid on the FLAIR image. 

 



183 

 

 

Table 6-4 Segmentation results per case for the BRATS 2013 challenge dataset using 

FCN_Texton_RF, evaluated by the VSD website system. 

Case 
Dice score Positive Predictive Value Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

HG-0301 0.87 0.88 0.79 0.82 0.93 0.82 0.91 0.83 0.76 

HG-0302 0.86 0.70 0.82 0.78 0.98 0.91 0.96 0.55 0.75 

HG-0303 0.89 0.89 0.75 0.96 0.97 0.82 0.83 0.83 0.70 

HG-0304 0.86 0.64 0.57 0.79 0.60 0.81 0.94 0.69 0.44 

HG-0305 0.90 0.74 0.76 0.86 0.97 0.85 0.95 0.60 0.70 

HG-0306 0.91 0.84 0.63 0.92 0.95 0.95 0.90 0.75 0.47 

HG-0307 0.91 0.53 0.59 0.94 0.38 0.45 0.87 0.86 0.84 

HG-0308 0.89 0.92 0.71 0.97 0.96 0.60 0.81 0.88 0.85 

HG-0309 0.88 0.91 0.81 0.92 0.98 0.92 0.84 0.85 0.72 

HG-0310 0.89 0.91 0.84 0.86 0.96 0.89 0.91 0.87 0.79 

Total 0.89 0.80 0.73 0.88 0.87 0.80 0.89 0.77 0.70 

 

 

a b c 

Figure 6-15 Segmentation results for some cases of the BRATS 2013 challenge dataset. a) the 

original FLAIR images, b) T1-weighted-contrast, c) segmentation mask of the 

FCN_Texton_RF method overlaid on the FLAIR image. Oedema: green, necrosis: blue, 

enhancing tumour: red. 

 

As can be seen in Table 6-4, adding the texton-features to the pipeline improves the overlap 

measure for complete tumour and increases the sensitivity while it slightly decreases the PPV. 
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Therefore, FCN_Texton_RF improves the overlap measure while maintaining a balance 

between sensitivity and PPV. 

The average and standard deviation values of the DSC for the three above mentioned 

experiments are compared in Figure 6-16. The values are compared separately for each tumour 

part; i.e. complete tumour, core and enhancing. The results show that using RF instead of the 

last classification layer of the FCN slightly improves the segmentation in the FCN_RF 

experiment. The reason is that the normalised intensity of the pixels is taken into account for 

classification. Adding the hand-designed features (e.g. texton histogram) to the classification 

pipeline significantly improves the segmentation. As shown in Figure 6-16, there is an evident 

difference between segmentation overlap measures for all the tumour structures using both 

machine-learned and hand-designed features. The result is not good for the segmentation of 

the enhancing tumour using only machine-learned features regardless of the classifier type 

(e.g. FCN or RF). Whilst the segmentation results based on both feature types, i.e. hand-

designed and machine-learned are consistent for all tumour structures. 

 

 

Figure 6-16 Comparison of DSC (average and standard deviation) for the three experiments 

separated for whole, tumour core and enhancing tumour.  

 

The average and standard deviation values of the PPV for the corresponding experiments are 

compared in Figure 6-17. The values are compared separately for each tumour part; i.e. 
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complete tumour, core and enhancing. The results show that the PPV of FCN_Texton_RF is 

higher than the other two experiments for the tumour core. FCN_RF provides the highest PPV 

for the complete tumour. However, the PPV is 0.88 for the proposed method and is good 

compared to the state-of-the-art (Section 6.4). PPV values are not good for all the tumour 

structures using FCN only. It shows that FCN_RF provides more accurate segmentation 

compared to FCN only. This also provides evidence to the fact that FCN provides coarser 

segmentation.   

 

 

Figure 6-17 Comparison of PPV (average and standard deviation) for the three experiments 

separated for whole, tumour core and enhancing tumour.  

 

 

Figure 6-18 Comparison of Sensitivity (average and standard deviation) for the three 

experiments separated for whole, tumour core and enhancing tumour.  
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The average and standard deviation values of sensitivity measures for the corresponding 

experiments are compared in Figure 6-18. The values are again compared separately for each 

tumour part; i.e. complete tumour, core and enhancing. The results show that the sensitivity of 

FCN_Texton_RF for the complete tumour has the highest value. The FCN only provides better 

sensitivity for the tumour core and enhancing core compared to the other two experiments 

which means that it was able to encompass the tumour structure although it provides coarse 

segmentation. FCN_RF presents the lowest mean sensitivity for complete and tumour core. 

 

6.3.4 Evaluation on BRATS 2017 Dataset 

The proposed FCN_Texton_RF method was also implemented on BRATS 2017 challenge 

dataset. The model was trained on 285 training sets (both HGG and LGG). Then the model 

was tested on 46 validation datasets. The results were uploaded into the Centre for Biomedical 

Image Computing and Analytics (CBICA) image processing portal (“Penn Imaging – Home,” 

2017). Table 6-5 provides the evaluation results obtained by applying the FCN_Texton_RF 

method on the BRATS 2017 validation dataset. The results of this thesis appear as the team 

name “LoVE” (Laboratory of Vision Engineering) on the CBICA portal leaderboard 

(“MICCAI-BraTS 2017 Leaderboard,” 2017). The precision measure was not provided by the 

portal. The Dice score and sensitivity measures for the whole tumour are 0.86 and 0.83, 

respectively, and are comparable to the BRATS 2013 results. However, the segmentation 

results on the BRATS 2017 are a little lower than BRATS 2013 experiments. This can be due 

to the modification in the labelling that was merging non-enhancing with necrosis. The other 

reason can be that more complicated and challenging tumour images were added to the 2017 

challenge. The Dice score and sensitivity measures for the tumour core are 0.86 and 0.83, 

respectively, which are close to, but lower than, the BRATS 2013 results. The corresponding 

results of the enhancing tumour are 0.66 and 0.57, respectively. These results are lower than 

the BRATS 2013 experiment. It should be noted the BRATS 2017 challenge dataset includes 

more LGG cases, and hence might affects the segmentation of tumour tissue subtypes.  

Table 6-5 Segmentation results for the BRATS 2017 validation dataset, which was provided 

by CBICA portal. The results are the overall average and standard deviation of 46 patient 

cases. 

Case 
Dice score Sensitivity 

Complete Core Enhancing Complete Core Enhancing 

Mean 0.86 0.78 0.66 0.83 0.72 0.57 

STD 0.09 0.19 0.28 0.13 0.21 0.28 
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Figure 6-19 shows segmentation results of the proposed method on some cases of the BRATS 

2017 validation and testing datasets. As can be seen in both Table 6-5 and Figure 6-19, the 

segmentation results for the whole tumour are very good, similar to the segmentation results 

on the BRATS 2013. By comparing the enhancing tumour segmentation results to the hyper-

intense tumour area in T1-contast images, it can be seen that the FCN_Texton_RF method was 

successful in excluding the hyper-intense regions in the normal brain from the tumour.  

 

Figure 6-19 Segmentation masks for some validation datasets, using the proposed method. The 

case names and the slice number are mentioned on the top of the images. Upper row) FLAIR 

images, middle row) T1-contrast images, lower row) segmentation masks and labels using the 

proposed method. 
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6.4 Discussion 

In this study, the publicly available BRATS 2013 dataset was used since it is a popular standard 

dataset in this field. The training dataset included the ground truth used for parameter 

optimisation and training the FCN and RF. The evaluation was used on the challenge 

(independent testing) dataset without having access to the ground-truth which make it a 

challenging competition. A fair comparison with other recent and related work which used the 

same dataset will be also feasible. 

The experiments show that the segmentation method based on FCN was able to automatically 

locate the tumour areas and encompass them with a high sensitivity. The main problem with 

the method was that it could not accurately segment the tumour structures because of the coarse 

segmentation. To tackle this problem, local dependencies and the neighbourhood system of 

the pixel were taken into account into classification by using hand-designed texton features. 

The experimental results demonstrate that this modification to the FCN system increases the 

accuracy of segmentation while keeping balance between sensitivity and PPV.   

The other advantage of the proposed method is that by using 3D textons the connectivity 

information will be considered in all directions in 3D space. This modification compensates 

the other limitation of FCN which works with 2D slices. Although modifying the FCN 

architecture may overcome this limitation, currently the pretrained models are available only 

for 2D FCN network. 

The training stage in the proposed method is time consuming and is considered as a limitation. 

However, when the model is learned, the prediction process for new datasets is fast for both 

FCN and RF. Also, the FCN model can be saved and refined by adding any future training 

dataset to the previously trained model.  
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Table 6-6 provides the results of the methods which were discussed in Section 6.3 and applied 

on BRATS 2013 clinical challenge dataset. It also provides the results of the related top-ranked 

methods in BRATS 2013 Challenge. Table 6-6 also includes the methods which were proposed 

by Pereira et al (Pereira et al., 2016), Havaei et al. (Havaei et al., 2017), Davy  et al. (Davy et 

al., 2014), and Urban et al. (Urban et al., 2014). Those methods  are amongst the best 

publications presented on the website scoreboard  which used the BRATS 2013 challenge 

dataset. In the third row of Table 6-6, the values mentioned in parentheses show the current 

ranking of each individual measure for the corresponding tumour part using FCN_Texton_RF 

in the VSD website. The screenshot of the VSD scoreboard for the top-rated methods which 

are evaluated on the challenge dataset based on blind testing is provided in Appendix 2. The 

overall rank of FCN_Texton_RF was 6th for the challenge dataset (Appendix 2).  

 

Table 6-6 Segmentation results for BRATS 2013 challenge dataset which is evaluated by VSD 

website. Comparison with other works which used BRATS 2013 challenge dataset and are top 

ranked. The values which are presented in parentheses in the third row are the current ranking 

of the proposed method in each section, on VSD scoreboard (Appendix 2). 

Method 
Dice score Positive Predictive Value Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

FCN 0.79 0.69 0.62 0.77 0.68 0.58 0.83 0.82 0.75 

FCN _RF 0.80 0.83 0.71 0.90 0.90 0.73 0.74 0.78 0.78 

FCN_Texton_RF 0.88 (1) 
0.80 

(9) 
0.73 (21) 

0.88 

(10) 

0.87 

(6) 
0.80 (5) 

0.89 

(25) 

0.77 

(24) 
0.70 (34) 

Pereira (2016) (Pereira 

et al., 2016) 
0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81 

Kwon (2014) (Kwon et 

al., 2014) 
0.88 0.83 0.72 0.92 0.90 0.74 0.84 0.78 0.72 

Tustison (2014) 

(Tustison et al., 2014) 
0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83 

Havaei (2017)(Havaei 

et al., 2017) 
0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 

Urban (2014) (Urban et 

al., 2014) 
0.86 0.75 0.73 0.82 0.75 0.79 0.92 0.79 0.70 

Davy (2014) (Davy et 

al., 2014) 
0.85 0.74 0.68 0.85 0.74 0.62 0.85 0.78 0.77 

Meier (2014)(Meier et 

al., 2014b) 
0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73 

Reza (2013) (Reza and 

Iftekharuddin, 2013) 
0.83 0.72 0.82 0.82 0.81 0.70 0.86 0.69 0.76 

Zhao (2013) (Zhao et 

al., 2013) 
0.84 0.70 0.80 0.80 0.67 0.65 0.89 0.79 0.70 

Cordier (2013) 

(Cordier et al., 2013)  
0.84 0.68 0.88 0.88 0.63 0.68 0.81 0.82 0.66 

Festa (2013) (Festa et 

al., 2013) 
0.72 0.66 0.77 0.77 0.77 0.70 0.72 0.60 0.70 

Doyle (2013) (Doyle et 

al., 2013) 
0.71 0.46 0.66 0.66 0.38 0.58 0.87 0.70 0.55 
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Figure 6-20 shows comparison of the DSCs for FCN, FCN_RF, FCN_Texton_RF, and the top 

ranked methods in the BRATS 2013 challenge. The results are sorted based on the overall 

DSC to provide a better visualisation of the relative ranking of the methods. In terms of DSC 

for the complete tumour, the FCN_Texton_RF method is the highest score in the chart which 

is 0.88 and currently ranked 1st on the VSD scoreboard (Appendix 2). The results and rankings 

were acquired on 27th June 2017. FCN_RF provided DSC of 0.88 which is higher than 1st 

ranked DSC of 0.83, i.e. Pereira et al. (Pereira et al., 2016) (Appendix 2). FCN_Texton_RF 

provided DSC of 0.80 which is very close to the top rated (i.e. 0.83). FCN_RF provides the 

best DSC for core. As explained in Chapter 2 (Section 2.6.2), the manual ground truth for the 

enhancing core was annotated using thresholding. Since thresholding works directly on the 

pixel values, and the FCN_RF method considers the normalised intensity (not the local 

dependencies) as the main feature, their segmentations provide more overlap. 

 

 

Figure 6-20 Comparison of DSC overlap measure with top ranked methods which used 

BRATS 2013 challenge dataset. 
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Figure 6-21 shows comparison of the PPV for FCN, FCN_RF, FCN_Texton_RF, and the top 

ranked methods in the BRATS 2013 challenge. The results are sorted the same as in 

Figure 6-20. In terms of PPV for the complete tumour and core, the FCN_RF method is 

amongst the highest scores in the chart which is 0.90 for both methods. For the enhancing 

tumour, FCN_Texton_RF provides PPV of 0.80 which is amongst the bests cores in the chart. 

For the complete and tumour core, FCN_Texton_RF has PPV of 0.88 and 0.87 respectively, 

which are similar to the score of the 1st ranked method, i.e. Pereira et al. (Pereira et al., 2016), 

and very close to the top rated, i.e. Kwon et al. (Kwon et al., 2014), which are 0.92 and 0.90, 

respectively.   

 

 

Figure 6-21 Comparison of PPV measure with top ranked methods which used BRATS 2013 

challenge dataset. 
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Figure 6-22 shows comparison of the sensitivity for FCN, FCN_RF, FCN_Texton_RF, and 

the top ranked methods in the BRATS 2013 challenge. The results are sorted the same as in 

Figure 6-20. The sensitivity of FCN_Texton_RF for the complete tumour is 0.89, whereas it 

is very close to the 1st rank which is 0.92. The sensitivity of the FCN only method for tumour 

core is 0.82, whereas the best sensitivity score is 0.88 in the chart. For the tumour core and 

enhancing, FCN_Texton_RF has sensitivity of 0.77 and 0.70 respectively, which are lower 

than the top ranked method. The best corresponding sensitivity values were reported by 

Tustison et al. (Tustison et al., 2014) which are 0.88 and 0.83, respectively (Appendix 2).  

 

Figure 6-22 Comparison of sensitivity measure with top ranked methods which used BRATS 

2013 challenge dataset. 

 

Among the methods that are presented in the Table 6-6, Figure 6-20, Figure 6-21, and 

Figure 6-22, the methods which were proposed by Havaei et al. (Havaei et al., 2017), Davy et 

al. (Davy et al., 2014), Pereira et al. (Pereira et al., 2016), and Urban et al. (Urban et al., 2014) 

are based on CNN. The methods based on CNN have high rankings in Table 6-6 according to 

the VSD system, amongst which Pereira et al. (Pereira et al., 2016) has the highest ranking. 

This shows the importance and proficiency of machine-learned based methods using deep 

learning. Regarding to the VSD results, none of the methods could achieve the best score for 

all the metrics. The method proposed by Pereira et al. (Pereira et al., 2016) used a deep neural 
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network and also results in the best performance in the BRATS 2013 challenge dataset. They 

suggested that applying more nonlinearity on the data improves the segmentation of a brain 

tumour. They achieved the best rank in terms of DSC for all tumour structures. 

FCN_Texton_RF method has the same DSC, PPV and sensitivity for the complete tumour to 

theirs. Other methods that have the best DSC for the complete tumour are Havaei et al. (Havaei 

et al., 2017) and Kwon et al. (Kwon et al., 2014). The most difficult task in the brain tumour 

challenge according to Menze et al. (Menze et al., 2015) is the segmentation of the enhancing 

region for HGG and the core tumour for LGG. There is a large difference in segmentation of 

the core region. Havaei et al. (Havaei et al., 2017) used concatenation of two CNNs’ pathways 

to include more context into training. Whilst FCN_Texton_RF method has one CNN pathway 

and meanwhile textons provide more context in terms of textural patterns. Therefore, 

FCN_Texton_RF method outperformed compared to the other methods in PPV.  

The method proposed by Tustison et al. (Tustison et al., 2014), which used RF and hand-

designed features, was the winner of the on-site BRATS 2013 challenge. FCN_Texton_RF 

method outperformed (Tustison et al., 2014) in terms of DSC for complete tumour and core 

and PPV value for all tumour tissue types. 

The method proposed by Kwon et al. (Kwon et al., 2014) which was an atlas based approach 

had the ranking 2nd at the time of their publication and their current ranking is 7th (Appendix 

2). Their method has the same DSC and PPV for the complete tumour while FCN_Texton_RF 

sensitivity is higher. Their method is slightly better for core segmentation. However, 

FCN_Texton_RF outperforms theirs for segmentation of enhancing tumour. The method 

proposed by Zhao et al. (Zhao et al., 2013) also used CNN. FCN_Texton_RF outperforms 

theirs significantly in terms of PPV for all the tumour structures. However, DSC of 

FCN_Texton_RF method is slightly better than theirs.  

The ranking provided by the VSD system was based on considering all the measures from 

different tissues. Although the FCN_Texton_RF method was ranked 6th, the Dice score for 

segmentation of the whole tumour was ranked 1st. It should be noted that the ranking of the 

FCN_Texton_RF method is tied, as other methods have the same Dice score and ranking for 

the whole tumour.  

The structure of the whole tumour usually has a clear appearance in FLAIR and T2-weighted, 

except the infiltration of oedema in some cases. The tumour core tissue subtypes have more 

complex textures and appearances, which make them difficult to segment. Therefore, the 

proposed FCN_Texton_RF and other methods provide better performance for the whole 

tumour, compared to the tumour core. On the other hand, excluding T1-weighted from the 

experiment (due to the limitation of the FCN_Texton_RF network that accepts only three 
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protocols) decreases the accuracy of the tumour core segmentation, compared to some of the 

state-of-the-art methods.   

As discussed in Chapter 3 (Section 3.5.2), U-Net (Ronneberger et al., 2015) is a recent CNN 

architecture proposed to improve image segmentation accuracy that uses upsampling paths 

from both shallow and deep layers. The FCN_Texton_RF that was proposed in this thesis 

incorporates the local connectivity of pixels to compensate the loss of information occurred in 

the pooling layers. Therefore, U-Net can be compared to the proposed FCN_Texton_RF 

method. Dong et al. (Dong et al., 2017) applied the U-net for brain tumour segmentation and 

evaluated it on the BRATS 2015 dataset. They did not report evaluation results on the BRATS 

2013 dataset, hence they are not mentioned in Table 6-6 and Figure 6-20 to Figure 6-22. The 

evaluation results are provided only for the training set. They reported DSC measures of 0.86, 

0.86 and 0.65 for the complete tumour, core and enhancing tumour, respectively. For the whole 

tumour, both U-Net and FCN_Texton_RF provided high accuracy. In the case of tumour core, 

U-Net provided more accurate segmentation, while the FCN_Texton_RF method 

outperformed U-Net for the enhancing tumour. It should be noted that the enhancing tumour 

appears with more jagged edges compared to oedema edges (that are usually smoother).  

 

6.5 Limitations 

The proposed FCN_Texton_RF method includes two trainable stages, which are designed and 

tuned separately. The RF and FCN stages are both computationally expensive. This is one of 

the drawbacks of the FCN_Texton_RF method. However, using parallel processing will 

reduce the computation time. In this thesis, the FCN was implemented on the GPU, while RF 

was trained on the CPU. The FCN architecture was comprised of a huge number of parameters 

that require a large amount of memory space.  

Another limitation of using two stages in the FCN_Texton_RF method is that the results of 

RF depend on the results produced by the FCN. The effect of this dependency is not studied 

in this thesis. As an example, the RF parameters were set based on the experience and the 

outcome of the previous chapter (Chapter 5). The parameter optimisation was also conducted 

independently.    

Another limitation of the FCN_Texton_RF, compared to the state-of the-art methods, is the 

sensitivity of segmentation for the enhancing tumour. Although the DSC for the enhancing 

tumour was comparable to the top-ranked method, few methods obtained DSC measures above 

0.80 (Cordier et al., 2013).    
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The proposed FCN_Texton_RF method was trained on a pre-trained model which was based 

on natural images. Starting from the parameters of a pre-trained model is usually better than 

initiating the model using random values for parameters. The idea is that more abstract 

characteristics of the images (e.g. edges) have been already trained and the new network learns 

the more semantic features for the specific task (in this thesis, brain tumours). However, this 

procedure does not ensure how much the segmentation accuracy is increased. The ideal case 

is training a network using the actual brain MRI images and use it as a pre-trained model for 

initialising a new network.  

The reason for promising results for the complete tumour was the hyperintensity of the tumour 

tissues, especially in FLAIR and T2-weighted. However, for more complex structures (such 

as non-enhancing tumour that appears as hypointensity in T1-contrast), the algorithm had 

failed for some cases. Therefore, the non-enhancing tumour may be labelled mistakenly as 

oedema. This will result in poor segmentation of the tumour core. An example is the case HG-

0307 in Table 6-4 that the DSC and PPV for core obtained 0.53 and 0.38, respectively, and  

shows the segmentation result for the case HG-0307 using FCN_Texton_RF method. As can 

be seen, the method failed to segment the upper part of necrosis which appears hypointense in 

both FLAIR and T1-contast image. Therefore, the segmentation results are poor for the tumour 

core. However, the segmentation accuracy is high for the complete tumour.  

 

 

Figure 6-23 An example of failure of the proposed FCN_Texton_RF method for segmentation 

of tumour core in the case HG-0307 of BRATS 2013 challenge dataset.  

 

  



196 

 

 

6.6 Conclusion 

In this chapter, a hybrid learning based automatic method was proposed for segmentation of 

brain tumour in MRI images. A new pipeline of the texton-based feature descriptor derived 

from the convolutional feature was proposed. The machine-learned features extracted using 

the FCN were used alongside with hand-designed texton-based features and applied to the RF 

classifier. For the CNN, it aimed to train a set of filter kernels (weights and bias) with a focus 

on the design of a network while for the texton, the focus was to design a specific filter to 

extract the representative features. The architecture of the FCN, containing VGG16 (Simonyan 

and Zisserman, 2014) and a deconvolutional layers (Long et al., 2015), was proven to have 

strong efficiency for supervised learning. The score map with upsampling predictions for each 

pixel was used as a feature map and is learned from multimodal MRI training dataset using 

the FCN. The learned features were then applied to random forests to classify each MRI image 

pixel into normal brain tissues and different parts of tumour. The method was evaluated on 

BRATS 2013 (provided by VSD) and BRATS 2017 (provided by CBICA) datasets. The 

segmentation labels for the tumour were: necrosis, oedema, non-enhancing and enhancing 

tumour. FCN_Texton_RF was tested on an independent challenge dataset by uploading the 

results on VSD system and getting the evaluation results from the website. The results of this 

work have been uploaded on arXiv (Soltaninejad et al., 2017). The results showed that the 

application of the random forest classifier to machine-learned features based on FCN and 

textons provides promising segmentations. The Dice scores for automatic brain tumour 

segmentation against ground truth for BRATS 2013 experiment were 0.88, 080 and 0.73 for 

complete tumour, tumour core and enhancing tumour, respectively. The corresponding results 

for BRATS 2017 experiment were 0.86, 0.78 and 0.66, respectively. Overall, the experimental 

results suggested that FCN_Texton_RF achieved promising results in the segmentation of 

brain tumour structures. Adding hand-designed texton features from different protocols to the 

system increased the classification accuracy of the pixels and results in more accurate final 

segmentations.  
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Chapter 7  

7 Conclusions and Future Directions 

 

7.1 Conclusions  

Medical imaging plays an important role in clinical procedures related to cancer diagnosis and 

treatment selection. A variety of medical imaging modalities have been investigated for 

clinical tasks. MRI is one of the most popular acquisition modalities and is widely used in 

brain tumour analysis, since it is non-invasive and provides more information about different 

tissues. MRI also can be acquired with different procedures and parameters to provide specific 

information of tissue properties. The clinical background of brain tumour segmentation in MRI 

was provided in Chapter 2. The procedure of different conventional and DTI MRI modalities 

was explained. Chapter 2 also explained the clinical dataset that was used in this thesis, and 

the publicly available BRATS dataset used for the competition and comparison of the research 

in this field. 

When different MR modalities are acquired with the high-resolution technologies, it produces 

a large number of data. Therefore, using computer-aided automatic methods becomes 

important and beneficial. The result of computer-based brain tumour image analysis will be 

used in clinical tasks, such as diagnosis, treatment planning and prognosis. One of the most 

important analyse of MR images is segmentation, which is a prerequisite for further clinical 

analysis. Much research has been conducted in recent decades in the field of brain tumour 

segmentation in MRI images and are partly reviewed in Chapter 3. This field is very broad so 

it is difficult to review all the methods. In this thesis, Chapter 3 provided a literature review 

and comparison of some state-of-the-art methods, with the focus on the methods involved in 

the MICCAI-BRATS grand challenge to obtain an insight on the research trend in the field of 

brain tumour segmentation.  

The first objective of tumour segmentation was delineating the complete tumour. The SP_ERT 

method was investigated in Chapter 4 for detection and accurate segmentation of the complete 

tumour structure (which encompasses the oedema and tumour core) using a single modality 

(e.g. FLAIR). The method was mainly based on supervised ERT which is amongst the most 

powerful classifiers. However, later in chapter 5, RF was used which is faster to perform 

compared to ERT. To reduce the computational complexity, SP patches were used instead of 

sliding fixed-size windows. Different varieties of feature including statistical first order 

intensity-based, texton features, fractal, and curvature features were calculated for the SP. The 
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most important feature found out to be textons histograms of the superpixels, which were 

generated from Gabor filters. The single modal SP_ERT method demonstrated high 

segmentation performance with the DSC of 0.91 for clinical dataset and 0.88 for the BRATS 

dataset and is comparable to the top-ranked methods on the VSD scoreboard. The results also 

showed the importance of pre-processing, especially intensity normalisation and histogram 

matching for MR image processing.  

The next main objective was using multiple modalities for detection and segmentation of 

detailed tumour tissue subtypes. For this task, a unified framework, i.e. SV_RF, was suggested 

in Chapter 5 to extend the single modality to multimodality, considering 3D connectivity of 

the voxels both in the SV patch volume calculations from all the modalities and in the feature 

extraction. The SV_RF method was successful in accurate segmentation of the core and 

oedema. Incorporating the advanced DTI protocols into the learning process improved the 

segmentation of the tumour core, e.g. increasing the DSC from 0.67 to 0.78.  

Due to less accuracy of supervoxels for smaller tissues, the SV_RF method has limitations for 

further segmentation of the tumour core (i.e. necrosis, enhancing and non-enhancing tumour). 

On the other hand, owing to the advances in deep learning algorithms and their application in 

image segmentation, the CNN-based brain tumour segmentation methods outperformed other 

methods, very recently. This can be seen in the BRATS challenge scoreboard and comparison 

charts provided in Chapter 6. In 2016 the method based on a CNN with small kernels (Pereira 

et al., 2016) outperformed all the methods and has achieved the best performance until now. 

Two other methods (Havaei et al., 2017; Kamnitsas et al., 2017) based on CNNs provided 

very competitive performance.  

Deep FCN was developed in 2015 (Long et al., 2015) for image segmentation and modified 

the standard CNN for end-to-end pixel-wise classification. The advantage of FCN is that it can 

handle images with any size and the information from different levels can be fused into the 

output image. In Chapter 6, the FCN method was adapted to multimodal MR images and 

applied to the BRATS 2013 and 2017 datasets. Although the results demonstrated good 

sensitivity of the method for detecting the general location of the tumour, the segmentations 

were coarse compared to the ground truth. Down-sampling data in the pooling layers results 

in losing spatial information so decreasing the local dependencies in the higher resolution 

levels. This causes coarser final segmentations, and is the most challenging aspect of the deep 

CNN-based segmentation algorithms.  

The FCN architecture has the advantage of representing the feature maps with different 

resolutions extracted from corresponding layers of the network, and with the same size of the 

input image. One hypothesis of the thesis was these feature maps with the same size of the 
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input image can be used directly as machine-learned features for a supervised based 

segmentation such as random forest. Therefore, these feature maps were combined and fed 

into a RF classifier, which is the most important contribution of this thesis. The results 

interestingly show that using RF with those features extracted from different layers of the FCN 

network provides better DSC compared to the FCN alone. This means the feature maps include 

meaningful information from different hierarchy levels of the image resolutions. However, the 

coarse results show that the segmentations still were not accurate at full resolution. To address 

this limitation, the next hypothesis was using feature maps that consider more local voxel 

dependencies and its neighbourhood system. The experiments from Chapters 4 and 5 show 

that texton maps calculated based on Gabor filters provide useful descriptors of local 

dependencies. Therefore, the two types of feature vectors from texton histograms and FCN 

were combined. The results show that this combination benefits from the advantages of both 

types of features. The segmentation results show that the new integrated method provides the 

best performance in terms of DSC overlap measure while preserving balance between 

sensitivity and PPV. This provided the best results among all the algorithms in the thesis. The 

FCN_Texton_RF method was ranked 6th amongst the state-of-the-art methods in the VSD 

scoreboard table; whilst it obtains the 1st rank for the segmentation of the complete tumour in 

terms of DSC on 27th July 2017. It should be noted that the ranking of the FCN_Texton_RF 

method is tied, as other methods have the same Dice score and ranking for the whole tumour. 

The screenshot of the VSD scoreboard for the corresponding results are provided in Appendix 

2.   

The FCN_Texton_RF is a multi-object classifier that uses a small feature vector. The method 

makes use of the advantages of both machine-learned FCN-based, and hand-designed texton 

features to produce more accurate segmentation. The FCN features accurately detect and 

localise tumour regions with fewer false positives. Whilst, the hand-designed texton features 

accurately segment the tumour parts at the pixel level and provide fine segmentation outputs. 

 

7.2 Contributions 

The main contributions of the thesis based on the aims and objectives can be summarised as 

follows 

 A fully automated method was proposed for detection and segmentation of the abnormal 

tissue associated with brain tumours as defined by the T2 hyperintensity from FLAIR 

MRI, which are routinely acquired as part of standard clinical diagnostic procedure 

related to brain tumours. 
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 The histogram of texton descriptors, calculated using a set of Gabor filters with different 

sizes and orientations, was proposed to provide improved performance for classification 

of brain tumour superpixels/voxels. Since superpixels/supervoxels are limited to clusters 

of similar intensities within each MRI modality, using the distribution of local textures 

inside each superpixels/supervoxel improves further classification. Texton has 

demonstrated its advantages of providing significant information to distinguish various 

patterns in both 2D and 3D spaces. 

 A novel approach was proposed to form the supervoxel using multimodal MRI, including 

FLAIR, T1-weighted (with contrast), T2-weighted, p and q diffusion maps. Unlike 

existing methods (Wu et al., 2014) in which a supervoxel is calculated from a single MRI 

protocol, in this thesis, information from multimodal images is combined to produce 

supervoxel boundaries across multiple image protocols.  

  DTI modalities, e.g. the isotropic (p) and anisotropic (q) diffusion components were 

incorporated into learning process, to provide parameters that relate to the microscopic 

movement of molecules. Whilst, most of the existing studies on brain tumour 

segmentation have been performed on conventional MRI protocols only (i.e. FLAIR, T1-

weighted (with contrast) and T2-weighted). Combining DTI and C-MRI provided 

quantitative features that increased the classification accuracy and improved 

segmentation results for the tumour core. 

 A unified framework was proposed to address the limitations of the FCN (e.g. local 

dependencies are not sufficiently taken into account) by complementarily integrating 

hand-designed features with machine-learned features. The hand-designed features from 

shallow network (with designable filters) encode the prior-knowledge and context while 

the machine learned features from deep network (with trainable filters) learn the intrinsic 

features.  

 The FCN_Texton_RF method was evaluated using the BRATS 2013 grand challenge 

dataset and demonstrated promising results that were competitive with the most powerful 

state-of-the-art methods. The method was ranked 6th in total and 1st for the complete 

tumour DSC on 27th July 2017.  

 

7.3 Limitations 

The methods based on superpixel or supervoxels are limited for the segmentation of small 

objects. For example, if a group of a few pixels are surrounded by a region with a different 

class, then they may be ignored and labelled incorrectly. This can be further highlighted in the 

supervoxel algorithm, as they involve larger groups of voxels.   
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Another limitation of the superpixel/supervoxel method is related to the regions with 

heterogeneous intensities that include pixels/voxels with several labels. Any classification 

method may confuse these superpixels/supervoxels and, even if the majority vote is allocated 

to that segment, there might still be pixels/voxels that will be classified incorrectly.  

In this thesis, the labelling procedure for the superpixels/supervoxels was done using a 

threshold of 50% as the majority vote. Although this procedure seems to be a good criterion 

for binary classification (Chapter 4), it is not sufficient for multi-class problems (e.g. Chapter 

5) The partitions in which the class pixel/voxel percentage is less than the threshold will be  

excluded from the training stage.   

The FCN_Texton_RF provided promising results which were comparable with the state-of-

the-art. However, the texton feature extraction phase requires parameter tuning and 

engineering for designing optimal features. This phase was designed to overcome the 

limitation of the FCN in decreasing considerably the high resolution dependencies in semantic 

segmentation. The state-of-the art methods such as U-Net can cope with this limitation by 

taking the information from the skip layers into account.  

The RF phase of the FCN_Texton_RF method causes the whole algorithm to become two 

separate learning processes. This means two independent training processes are required. The 

results of the training stage for RF are also dependent on the first FCN stage.  

 

7.4 Future Directions 

The methods SP_ERT, SV_RF and FCN_Texton_RF have been evaluated on the publicly 

available BRATS 2013 and 2017 datasets, and achieved good performances compared to the 

state-of-the-art methods. The potential directions of the future work in both clinical and 

technical perspectives are summarised below. 

 

7.4.1 Superpixel /supervoxel 

The patch-based segmentation methods, SP_ERT and SV_RF, achieved good accuracy for the 

complete tumour and the tumour core segmentation, respectively. However, the supervoxel 

based segmentation accuracy decreases for tumours with smaller size. Using 

superpixel/supervoxel methods with more parameters gives more degrees of freedom such as 

multi-resolution superpixels may tackle this problem. It is suggested that for the heterogeneous 

regions, the superpixels are divided to smaller patches. The SP/SV algorithms in SP_ERT and 

SV_RF methods have been designed to be initialised from grids with similar window sizes. In 



202 

 

 

the case of multi-resolution SP/SV, the more heterogeneous regions can be gridded with the 

smaller initial size to produce smaller patches. However, this may increase the complexity of 

the model, as the distance equations and optimisations should be adopted for the new multi-

resolution grid scheme. 

Another solution for tackling the problem of small ROIs is utilising an additional stage for 

further segmentation of the regions that are partially included in the SP/SV. This can be 

achieved by splitting the supervoxels with non-homogenous intensities that are probably 

related to more than one classe, into sub-regions/sub-volumes and relabel them to obtain more 

accurate segmentation. 

Instead of defining a threshold (e.g. 50%) for labelling a whole SP/SV, using a majority voting 

procedure might be more accurate. In future work, it is suggested that after counting the 

number of pixels/voxels in one partition, the assigned class should be the one with the highest 

number of pixels/voxels.   

 

7.4.2 Feature Extraction and Parameter Optimisation 

Feature extraction can be further investigated especially in the case of brain tumours as they 

have diverse appearance in MR images regarding to the tumour type and grade. In future work, 

it is recommended to take a closer look into the feature extraction and analyse features more 

deeply to determine their relevance and meaningfulness. Integrating those features to the 

machine-learned feature may provide more accurate segmentation. It is suggested that 

providing a comprehensive comparison between the features to make a better understanding 

of the hand-designed and machine-learned features may result in better optimisation of the 

feature extraction methods and lead to more accurate segmentation.  

Some parameters of the SP/SV algorithms, e.g. the size of superpixel, and hand-designed 

features, e.g. Gabor filter kernel parameters were obtained through exhaustive parametric 

searching during the training stage on the selected data. Other optimisation algorithms such as 

Genetic Algorithm can be explored to effectively find the optimum parameters. The parameter 

selection may also depend on the dataset. Another future direction should be increasing the 

generalisation of this process so that the parameter selection will be independent from the 

acquisition parameters of the images.  
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7.4.3 Further Developing Deep Learning 

A deep neural network provides promising results for medical image segmentation. However, 

there are limitations with application to dense pixel classification for image segmentation. The 

recent methods tried to tackle the limitations of CNN-based methods by integrating the CRF 

to increase the accuracy as suggested by Kamnitsas et al. (Kamnitsas et al., 2017). Recently, 

Zheng et al. (Zheng et al., 2015) formulated the CRF and merged it into the ResNet in a way 

that it can be trainable with regular gradient descent. End-to-end training of this CRF can be a 

future direction for pixel-wise semantic segmentation which can be integrated into coarse 

segmentation of FCN only method. 

Another future direction can be looking into other state-of-the-art CNN approaches such as U-

Nets and ResNets to investigate machine-learned data driven features.  A large number of 

feature maps are produced via those deep networks. There may be lots of interpretations that 

can be obtained from the networks. Investigating and interpreting that information may 

provide understanding of how the networks works and why they fail and how they can be 

improved. An example can be implementing the algorithm on the multicentre dataset with 

different acquisition parameters and suggesting a general framework so that the CNN is 

capable of handling a large-scale multi-centre dataset.   

The current deep learning methods applied for medical image analysis use a black box scheme 

trained based on the labelled images, regardless of the nature of those images. The method in 

this study used the pre-trained VGG16, which was trained based on natural images to optimise 

the weights and make the further learning process easier. Many traditional model-based 

segmentation techniques have utilised the clinical information from the medical images as a 

prior knowledge. It would be a good idea to use that clinical information of the tissue as the 

prior and feed them to the networks’ feature space. Therefore, the optimisation of the network 

can be guided based on prior clinical information instead of using pretrained networks. 

The current FCN model was trained using a pre-trained model based on natural images. Two 

approaches can be considered to improve the segmentation results from the FCN. The current 

FCN can be fine-tuned for the clinical or public datasets. The training process of the FCN can 

also be performed on a pre-trained model based on MRI brain images.   
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7.4.4 Future Clinical Directions 

The clinical future directions are summarised below: 

 Clinical Prognosis  

The future MICCAI challenge (2017) intends to step forward and add the prognosis task to the 

segmentation challenge. This will be estimation of the survival rate of the patient with brain 

tumour cancer. One suggestion for future direction will be using the segmented regions of the 

tumour to provide the tumour related characteristics and information for prognosis. Another 

future direction could be using the most representative features alongside with other measures 

that are obtained from the segmented regions (e.g. tumour tissue subtypes volumes, texture, 

shape, texton histogram, etc.) to predict the grade of tumour and estimate the survival time. A 

research work (Soltaninejad et al., 2014) was presented in MIUA conference on grading the 

tumour using the methods which were introduced in this thesis. This work can be expanded 

and developed by integrating state-of-the-art features to provide better classification of the 

tumour for prognosis tasks.   

 

 Evaluation of FCN-based Method on Clinical Dataset 

Very few completely automatic segmentation algorithms have been adopted in the clinic. 

Recently only one automated tool has been clinically evaluated (Meier et al., 2016). They 

adopted the method which is called BraTumIA (Brain Tumour Image Analysis) (Meier et al., 

2014b; Porz et al., 2014) in the clinic by investigating it for longitudinal brain tumour 

volumetry using their own clinical dataset and ground truth. In this thesis, the works in 

Chapters 4 and 5 were evaluated on the clinical datasets. However, due to insufficient clinical 

multimodal dataset for training the FCN, the method in chapter 6 was evaluated only on the 

publicly available BRATS dataset. By acquiring more clinical MRI dataset, the method can 

be clinically evaluated in the future.   

 

 Extending the Clinical Cases 

The FCN based method requires a large number of data for efficient training. The reason that 

DTI modalities were excluded from FCN_Texton_RF experiments in Chapter 6 was the lack 

of sufficient dataset. However, the results in Chapter 5 suggested that using DTI p- and q-

maps improve the segmentation of the tumour core with the SV_RF method which means 

better feature descriptors for the tumour core were provided. Providing more datasets with 

DTI modalities may improve the segmentation of the tumour parts, such as enhancing, which 

still has the least accuracy in the current BRATS competitions.  
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Furthermore, the current clinical dataset mainly contains general cases, such as different 

tumour grades from a wide range of patient ages (patient ages at the time of scanning ranged 

from 22 to 73). In the future, more complicated cases such as calcification, intratumoural 

bleeding, or elderly patients with white matter diseases, which are clinically important to 

distinguish against, need to be further investigated. 
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Appendix 1 

List of Publications 

 

Journal Papers 

 M. Soltaninejad, G. Yang, N. Allinson, T. Lambrou, T. L. Jones, T. R. Barrick, F. A. 

Howe, X. Ye "Automated Brain Tumour Detection and Segmentation using 

Superpixel-based Extremely Randomized Trees in FLAIR MRI," International 

Journal of Computer Assisted Radiology and Surgery, Vol.12 pp. 183-203, Feb 

2017. 

 M. Soltaninejad, G. Yang, N. Allinson, T. Lambrou, T. L. Jones, T. R. Barrick, F. A. 

Howe, X. Ye "Supervised Learning based Multimodal MRI Brain Tumour 

Segmentation using Texture Features from Supervoxels," submitted to Journal of 

Computers in Biology and Medicine, 2017, (under revision). 

 

Magazine 

 M. Soltaninejad, X. Ye, G. Yang, N. Allinson, T. Lambrou, "An Image Analysis 

Approach to MRI Brain Tumour Grading," Oncology News, Vol. 9 issue 6, pp. 

204-207, Jan 2015. 

 

Conference Papers 

 M. Soltaninejad, X. Ye, G. Yang, N. Allinson, T. Lambrou, "Brain Tumour Grading 

in Different MRI Protocols using SVM on Statistical Features," Medical Image 

Understanding and Analysis, 9th – 11th July 2014, London, UK. 

 M. Soltaninejad, T. Lambrou, A. Qureshi, N. Allinson, X. Ye, "A Hybrid Method 

for Haemorrhage Segmentation in Trauma Brain CT," Medical Image 

Understanding and Analysis, 9th – 11th July 2014, London, UK. 
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Appendix 2 

VSD Scoreboard Screenshot 

 

 

Figure Appendix 2-4 Screenshot of the overall ranking on 27h Jun 2017. The corresponding 

row for the FCN_Texton_RF is highlighted by VSD. The username “soltm1” is assigned 

automatically by VSD, abbreviated from the name of the author, i.e. M. Soltaninejad. The 

ranking is determined by the VSD system based on taking into account all the evaluation 

measurements. It should be noted that the ranking of the FCN_Texton_RF method is tied, as 

other methods have the same Dice score and ranking for the whole tumour. 
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