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  Abstract 

Background: Accurate segmentation of brain tumour in magnetic resonance (MR) images 

is a difficult task due to various tumour types. Using information and features from 

multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components 

derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of 

the images. 

Methods: We propose a novel 3D supervoxel based learning method for segmentation of 

tumour in multimodal MRI brain images.  Supervoxels are generated using the information 

across the multimodal MRI data set. For each supervoxel, a variety of features including 

Gabor texton and statistical features are extracted. This is then followed by a random 

forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain 

tissue. 

Results: The proposed method is evaluated on two datasets: 1) Our clinical dataset: 11 

multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. 

For our clinical dataset, the average detection sensitivity of tumour (including tumour core 

and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the 

Dice score for automatic tumour segmentation against ground truth is 0.84. The 

corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. 

 
 
  
 
 



 

 Conclusion: The proposed method provides promising results in the segmentation of brain 

tumour. Adding features from multimodal MRI images increases the segmentation 

accuracy.  

Keywords: Brain tumour segmentation, Diffusion tensor imaging, Multimodal MRI, 

Random forests, Supervoxel, Textons 

 
Highlights: 

• Supervoxel segmentation using multimodal MRI to produce boundaries across 

multiple image protocols. 

• Unified framework to classify each supervoxel using features calculated from 

multimodal MRI. 

• Improved performance for classification of brain tumour supervoxels by using 

texton descriptors. 

• Applying DTI with conventional MRI increases the segmentation accuracy for 

tumour structures. 

 

1. Introduction 

Brain tumours can arise from abnormal growth of the cells inside the brain or can 

develop from cells that have spread to the brain from a cancer elsewhere. There are a wide 

variety of brain tumour types that are classified according to their cell of origin, and can be 

categorised as low or high grade depending on their malignancy and growth characteristics. 



 

Diagnosis of tumour grade and type is essential for optimum treatment. Medical imaging 

modalities are used for detection and assessment of tumours. Among these medical imaging 

methods, magnetic resonance imaging (MRI) is the most widely used for clinical diagnosis, 

treatment selection, prognosis and to aid surgery and radiotherapy planning [1]. Due to the 

multimodal nature of MRI there are a range of image types and contrasts that enable a 

subtle radiological assessment of tumour type.  

Computer-aided procedures are being developed to aid conventional neuroradiological 

diagnosis and treatment planning. Image processing with pattern recognition and machine 

learning algorithms are widely used for analysis as an aid to interpretation of medical 

images. Segmentation techniques have been proposed for several clinical applications [2]. 

For brain tumours, image segmentation may aid the fast and objective measurement of 

tumour volume and also find patient-specific features that aid diagnosis and treatment 

planning [3]. 

A primary segmentation task in the case of brain tumours is to accurately label the 

tumour tissue and the normal brain regions.  In many cases, the tumour region is visually 

distinct, but it is a challenge for accurate and reproducible, segmentation and 

characterisation of the abnormality that works across multiple tumour types and with 

different MR scanner types [3]. Even within one pathological class of tumour there is a 

large variety and complexity of tumour imaging characteristics such as signal intensity, 

image texture, and its size, shape, location with respect to other normal brain structures. 

Some tumours with high grades are quite heterogeneous having a necrotic core surrounded 

by viable tumour that infiltrates into the normal brain tissue. Adjacent non-tumour regions 

may also look abnormal due to an inflammatory response creating areas of oedema. Hence 



 

it is a difficult task to develop a universal method to segment tumours accurately [4]. 

Clinical needs for tumour segmentation include dose-planning for radiotherapy, for 

assessing changes in tumour volume when monitoring low to high grade transformation of 

glial tumours, and to monitor the response to treatment. 

    Manual segmentation of tumours in MRI images is time-consuming and subjective since 

it is dependent on the operators’ skill and experience, hence inter-operator reproducibility 

can be low. Automatic computer assisted procedures have the potential to provide more 

objective segmentation of tumours, and also allow large-scale multimodal MRI data to be 

analysed within a reasonable processing time. Nevertheless, manual segmentation by 

experts is commonly used as a gold standard for assessing the automatic or computer-aided 

segmentation techniques and also for training the systems. 

  

1.1. Related Works 

The research work for automatic brain tumour segmentation has increased in recent decades 

which represents the demand for this area of research and currently it is still in progress [5]. 

Several methods have been proposed in the literature for detection and segmentation of 

tumours in MR images [6]. The segmentation methods can be categorized into 

unsupervised and supervised learning based methods [3].  

Unsupervised segmentation techniques use clustering methods for segmenting unlabelled 

images. Expectation maximization (EM) is one of the popular unsupervised methods which 

was utilized in [7] with the application on multimodal conventional MRI (C-MRI) data in 

which the prior-knowledge of the normal brain was obtained from atlas of normal brain and 



 

the intensity model for tumour was estimated. Another popular unsupervised clustering 

method is fuzzy c-Means (FCM) and in [8] an improved approach was proposed for brain 

tumour segmentation which included the information from class centres to regularize the 

clusters. A nonparametric model-based method was proposed in [9]. The method was based 

on graph-cut distribution without involving the training procedure and has low computation 

time. A comparison of most recent unsupervised methods for brain tumour segmentation 

was presented in [10]. They also introduced an unsupervised method for segmentation of 

high grade gliomas (HGG). Their method was applied to multiparametric MRI data which 

combines other modalities than conventional T2-weighted and contrast enhanced MRI and 

included diffusion-weighted imaging (DWI). DWI will also be considered in our paper, but 

using parameters derived from diffusion tensor imaging (DTI). The advantage of 

unsupervised methods is that they do not require a large amount of training data. However, 

the methods are not able to automatically label segmentation results to different tissue types 

(e.g. tumour core, oedema, necrosis, or healthy brain tissue). Those tissue types are 

determined by users, making the methods inherently semi-automated. Furthermore, using 

unsupervised segmentation for brain tumours is challenging due to the lack of shape or 

intensity prior [3].  

 Supervised learning based algorithms use training data for segmentation of tumours, 

which are labelled by experts. Helen et al. developed a hybrid method for brain tumour 

segmentation based on clustering, classification and conventional segmentation methods 

[11]. Several works applied random forests (RF) classification and its variants to segment 

tumours [12–15]. In [12] several features including intensity, geometry and asymmetry 

from multiple protocols are applied to a random forests classifier. Extremely randomized 



 

trees were used in [13] with high level features including appearance and context-based 

features calculated from nonlinear transformation of the images. The work in [14] used 

Gaussian mixture models for different individual protocols (i.e. T1-weighted, T2-weighted 

and FLAIR) separately. Goetz et al. [15] proposed a new random forest based method 

which uses domain adaptation to reduce sample selection errors.  

Few studies have combined different MRI modalities for brain tumour segmentation. A 

number of advanced algorithms [16–20] were recently presented in [5] using the 

Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) dataset [21,22] 

organized in conjunction with the international conference on Medical Image Computing 

and Computer Assisted Interventions (MICCAI) 2012 and 2013 conferences. The methods 

were based on segmentation of different tumour tissues, i.e. tumour core, oedema, necrosis, 

using multimodal conventional MRI containing FLAIR, T1-weighted , T1-contrast and T2 

protocols [23]. In  [24] C-MRI and DTI are combined and fed to support vector machines 

(SVM) to segment different tumour tissue types.  In another work [20], which used 

decision forests to segment HGG,  the segmentation results by adding DTI were improved 

compared to using only C-MRI modalities. Combination of DWI with C-MRI has been also 

researched for unsupervised methods such as spatial fuzzy c-Means [25] to improve the 

segmentation results. The BRATS dataset [21,22] included C-MRI modalities, whereas our 

own clinical dataset contains both C-MRI and DTI modalities. In this paper, we have 

combined multimodal MRI for accurate segmentation and labelling of different tumour 

parts (e.g. tumour core and oedema).  

Most previous studies are voxel-wise, in which a window or subarea around a voxel is 

normally used to extract features for labelling (classifying) the voxel. In the case of 



 

multimodal MRI data, it is comprised of millions of voxels (i.e. the sum of all voxels across 

each image modality) and consequently voxel based methods usually require significant 

computational time. Few studies have used superpixel or supervoxel methods for 

segmentation. Wu et al. used supervoxel based features in a conditional random fields 

(CRF) framework to detect brain tumours [26].  In [17] Markov random fields are applied 

on supervoxels of the images to segment the tumours based on intensity probabilities.  

In this paper, we aim to segment brain tumour parts (core and oedema) using a novel 

multimodal MRI supervoxel based method (combining DTI with conventional MRI 

modalities). Gabor texton based features; alongside first order intensity based statistical 

features are calculated for each supervoxel and used in a random forest classifier to label 

supervoxels into different tissue types.  

 

1.2. Our Contribution 

Most of the existing studies on brain tumour segmentation are performed on conventional 

MRI protocols (i.e. FLAIR, T1-weighted (with contrast) and T2-weighted), which are 

based on qualitative image intensities. In this study, in addition to the conventional MRI 

sequences, we also consider the isotropic (p) and anisotropic (q) diffusion components 

derived from DTI [27], which provides parameters that relate to the average microscopic 

movement of water within tissue structure (p) and whether this movement has an 

anisotropic element of diffusion (q) such as for the water in white matter fibers. We 

hypothesize that combining DTI and C-MRI may provide quantitative features that increase 

the classification accuracy and improve tumour segmentation results. 



 

 Instead of applying voxel based techniques commonly used in classification-based 

segmentation of brain tumour in MR images, in this paper, a supervoxel based method is 

considered, which partitions an image into a number of small 3D patch volumes. The 

advantage of the supervoxel based method is that the required computation for 

classification in the new feature space can be significantly reduced. Feature vector size in 

the general case of supervoxels is less than those that are based on image voxels (i.e. 

moving window).  

The main contributions of our method can be summarised as follows: 

• The supervoxel is formed using multimodal MRI, including FLAIR, T1-weighted 

(with contrast), T2-weighted, p and q diffusion maps. Unlike existing methods [28] 

in which a supervoxel is calculated from one single MRI protocol, in this paper, 

information from multimodal images is combined to produce supervoxel boundaries 

across multiple image protocols. 

• A unified framework is built to classify each supervoxel using features calculated 

from multimodal MRI for segmentation of each brain tumour. 

• We have shown that our novel histogram of texton descriptors, calculated using a 

set of Gabor filters with different sizes and orientations provide improved 

performance for classification of brain tumour supervoxels. Since supervoxels are 

limited to clusters of similar intensities within each MRI modality, using the 

distribution of local textures inside each supervoxel improves further classification 

of supervoxels, Texton has demonstrated its advantages of providing significant 

information to distinguish various patterns. 



 

The paper is organised as follows. Section II describes the proposed method, which 

consists of supervoxel segmentation, feature extraction, classification, and final 

segmentation. Section III presents experimental results and is followed by the discussion 

and discussion in Section IV and Section V. 

2. Materials and Methods 

2.1.Data Acquisition 

Brain tumour patient data was acquired using a GE Signa Horizon LX 1.5T MRI system 

(GE Healthcare, Milwaukee, WI, USA) equipped with a maximum field gradient strength 

of 22mT/m and using a quadrature head coil. The multimodal MRI acquisition used in this 

study is described below. 

FLAIR and T1-weighted images were acquired in the axial plane with a field of view 

(FOV) 240 x 240 mm2, matrix size 256 x 256 and 5 mm slice thickness for FLAIR and 2.8 

mm for T1 with no slice gap. The following acquisition parameters were used for 

FLAIR (TE = 133 ms, TR = 9000 ms, inversion time 2200 ms, band width = 61.04 Hz) and 

T1 weighted (TE = 14 ms, TR = 600 ms, band width = 122.1 Hz). T1-weighted images 

were acquired both with and without intravenously administered contrast agent (0.1 

mmol/kg gadoterate meglumine, Dotarem). 

T2-weighted images were acquired in the axial plane using a dual echo sequence with TR 

= 3500 ms and TE=14/98 ms and FOV of either 220 x 220 mm2 or 240 x 240 mm2, a 256 x 

256 acquisition matrix, and 29 slices with 5 mm thickness [29].  

DTI data were acquired using a diffusion-weighted spin-echo echo-planar imaging 



 

sequence. A b0 acquisition was made without diffusion gradients (b=0 s/mm2) and diffusion 

weighted images were acquired using b=1000 s/mm2 with 12 gradient directions [30]. The 

FOV was 240 x 240 mm2 with a 96 x 96 acquisition matrix. In total 50 contiguous slices 

(2.5 mm in-plane resolution) were acquired with a slice thickness of 2.8 mm. TR and TE 

were 8 secs and 88 ms, respectively. The data was interpolated to a 256 x 256 matrix. The 

diffusion parameters p and q for isotropic and anisotropic diffusion respectively were 

calculated as proposed by Peña et al. [27]. 

A cohort consisting of 11 brain tumour patients (2 grade III, and 9 grade IV) 

retrospectively entered the study and were scanned using the multimodal MRI protocol. 

Histological diagnosis was available for all tumours. Patient ages at the time of scanning 

ranged from 33 to 73 years (mean age 53 and standard deviation 7). The ground truths are 

provided by a trained human expert. 

 

2.2.Overview of the Method 

Our method is comprised of four steps (preprocessing, supervoxel partitioning, feature 

extraction and classification) that are depicted in Fig. 1 and described below. 

After image preprocessing, the supervoxel segmentation partitions the MRI data into 

equally sized patches with similar intensity ranges. Supervoxels are calculated based on a 

distance matrix which is formed using a combination of multimodal images. Use of 

different MRI modalities can enhance the supervoxel segmentation by identifying image 

boundaries simultaneously across all available images. For each supervoxel patch, a 

number of features including statistical and texture features are calculated. The supervoxels 



 

are classified into tumour and nontumour using a random forests classifier. Tumour 

supervoxels are then grouped together to obtain tumour boundaries. 

 

2.3.Preprocessing  

DTI data were realigned to remove eddy current distortions using eddy correct (FSL 

Software Library by FMRIB [31]) prior to generating p and q maps. Images were skull 

stripped using Brain Extraction Tool in FSL. All conventional MRI data were then 

co-registered to the DTI b0 data using an affine transformation with a mutual information 

based cost function using Statistical Parametric Mapping (SPM12 [32]) to avoid 

interpolation of quantitative diffusion characteristics. 

The image intensities are normalised with a two-step procedure: histogram matching and 

dynamic range normalisation. First, one case (one patient data) is selected as reference and 

the histogram of each image protocol of other cases are matched to the corresponding 

protocol of the reference case. To eliminate the bias of the matched histogram to the 

reference case, another stage is added to the process according to [33]. The average of all 

the new histograms including the initial reference case is calculated for each protocol and 

the histograms are again matched to the new reference, e.g. the average histogram for each 

protocol. In the second stage, for each case, the intensity of new images of all the protocols 

obtained from the first step are linearly normalized to the dynamic range of the 

corresponding FLAIR related to that case.  This is to ensure that, in the feature extraction 

stage, for each case, images from different protocols have similar intensity dynamic ranges.   

 



 

2.4.Supervoxel Segmentation  

The aim of supervoxel clustering is to group an image into a predefined number of 

portions, which have similar intensity range. In this paper, the simple linear iterative 

clustering (SLIC) superpixel method [34]  is extended to extract 3D supervoxels  for the 

segmentation of brain tumour. A brief description of SLIC is given below.  

In our method, the initial grid height is chosen based on the slice thickness (spatial 

resolution in Z direction) of the MRI images and the spatial resolution ratio (Rs) between X 

and Y directions. For our own dataset, the resolutions in X and Y directions are the same 

(so Rs=1). Since all the data are co-registered in the preprocessing stage, the slice thickness 

for each dataset is consistent through all the slices in each image data set which is 

considered as Rt. It should be noted that registration of the data is very important to perform 

this multimodal supervoxel segmentation. If the supervoxel width is considered to be WS 

voxels, its height, HS is calculated from the ratio of slice spatial resolution to slice thickness 

𝐻! = 𝑊!×     
!!
!!

. (1) 

The operator ||…|| means the nearest rounding integer to the value. The minimum value 

for supervoxel height, HS, is considered to be 3, whilst, HS=1 results in 2D segments which 

are considered as superpixels.   

In the first instance, the geometrical centres of the initial grids are considered as 

supervoxel region centres. The mean value of the voxel coordinates inside the supervoxel 

provides the centre of gravity of that supervoxel. The locations of the centres of gravity are 

updated during each iteration. The distance between each voxel in the dataset to the 

bounded cluster centres are calculated and then a label of the closest cluster centre is 



 

assigned to that target voxel. The final distance is comprised of both intensity and location 

distances. The intensity distance, dc, is calculated by defining the intensity difference 

between the ith and the jth voxel according to the following formula: 

𝑑! =    𝐼! − 𝐼!
!
, (2) 

where, Ii and Ij are the normalized intensity values of the ith and the jth voxel, respectively. 

The location distance, ds, between the two voxels is calculated as follows, 

𝑑! =    (𝑅!(𝑥! − 𝑥!))!  +(𝑅!(𝑦! − 𝑦!))!  +(𝑅!(𝑧! − 𝑧!))!, (3) 

 

where, (𝑥!, 𝑦!, 𝑧!) is the coordinate of voxel I and Rx, Ry and Rz are the voxel resolutions. 

The distance measure [34] is then defined as,  

 

𝐷 = 𝑑!! +    !!
!!

!
𝑚!, (4) 

where, m, is the compactness coefficient. A higher value of m results in more compact 

segments and a lower value creates more flexible boundaries.  

Fig. 2 shows the supervoxel segmentation of a brain tumour using MRI FLAIR with two 

different initial grid sizes. 

Supervoxel segmentation of multimodal MRI data is not straightforward as tissue 

boundaries apparent on one MRI modality, for example, on T1-weighted (with contrast) are 

not necessarily apparent on other MRI modalities such as DTI or FLAIR, and vice versa. 

Hence supervoxel boundaries determined independently for each MRI modality will not 

match, creating tissue partial volume effects at supervoxel boundaries. To solve this 



 

problem, we adapt the supervoxel intensity distance equation (2) in a multidimensional 

formation and apply this across all MRI modalities, to determine a multimodal supervoxel 

cluster. Assuming that the multimodal MRI data is acquired with MRI protocols P1, P2, …, 

PN, giving the images {IP1, IP2, …, IPN} then the distance equation for multimodal MRI data 

is, 

𝑑! = 𝐼!"#$%,!! − 𝐼!"#$"%,!!   
!
+⋯+ 𝐼!"#$%,!! − 𝐼!"#$"%,!!   

!
, (5) 

where, IVoxel,Pi is the grey-level intensity corresponding to the voxel in protocol Pi.  

A framework for the multimodal supervoxel segmentation method is shown in Fig. 3. 

Combining all MRI modalities helps supervoxel segmentation by enhancing weak image 

boundaries that appear in any single modality. For example, weak edges may appear in one 

image but present strong in the remaining images. An example of this case is shown in Fig. 

4. The calculated supervoxel map using the multimodal segmentation method is overlaid on 

both FLAIR (top row of the first column in Fig. 4) and p map (bottom row of the first 

column in Fig. 4). The middle and the last columns in Fig. 4 show two corresponding 

zoomed-in areas indicated in the FLAIR and p map images (yellow and orange rectangles).  

It is noted that, the middle column of the Fig. 4 shows strong edges in FLAIR image 

(shown by red ellipses), whereas corresponding edges in the p map are quite weak (shown 

by the blue ellipse). The opposite effect is apparent in the right column of Fig. 4. By using 

the multimodal clustering method, the extracted supervoxel map provides good image 

boundaries even when boundaries are not clear in one image modality.  

Fig. 5 shows a comparison of supervoxel segmentation of tumour core calculated from a 

single MRI modality (FLAIR) and from multimodal MRI (FLAIR, T1-weighted (with 



 

contrast), T2-weighted, p and q maps). As it can be seen in Fig. 5, there are misalignments 

between supervoxels boundaries (computed from FLAIR) and the ground truth boundaries 

(see black ellipse in Fig. 5(f)), whilst multimodal supervoxels show improvement in 

boundary alignment to the tumour core (see black ellipse in Fig. 5(i)).  

 

2.5.Feature Extraction 

Grouping the supervoxels for final segmentation of the tumour is based on the feature 

sets that are extracted from each supervoxel. In this section, first order statistical features 

and texton features are considered. 

 

2.5.1. First Order Statistical Features 

First order intensity statistics [35] are also referred to as voxel-intensity based features. 

First order statistical features express the distribution of grey levels within selected regions 

of interest (ROI), represented by supervoxels in our case. We use 16 features including the 

average, standard deviation, variance, mean of the absolute deviation, median absolute 

deviation, coefficient of variance, skewness, kurtosis, maximum, minimum, median and 

mode of the intensity values, central moments, range, interquartile range and entropy. 

 

2.5.2. Texton Features 

Due to the complexity and heterogeneity of tumour tissue, first order intensity features 

are generally not sufficient for an accurate segmentation. In this paper, texton features are 

considered to improve segmentation. Textons are small image elements that can be 



 

generated by convolution of the image with a set of image filters. We use the Gabor filter 

[31] defined in 

 

𝐺 𝑥,𝑦;𝜃, ,𝜓,𝜎, 𝛾 = exp  (− !!"!!!!!"

!  !!
)exp  (𝑖(2𝜋 !!

!
+)), (6) 

where  

𝑥!   =     𝑥 cos𝜃   + 𝑦 sin𝜃 

𝑦! = −𝑥 sin𝜃 + 𝑦 cos𝜃. 
(7) 

The Gabor filter parameters were chosen empirically. Six different filter directions were 

considered: [0o, 30o, 45o, 60o, 90o, 120o] with filter sizes from 0.3 to 1.5 at steps of 0.3. The 

wavelength of sinusoid coefficients of the Gabor filters were 0.8, 1.0, 1.2 and 1.5. This 

provided a filter bank of 120 filters.  

Filter response images are the result of convolution of each filter with an MR image. For 

filters with the same size but different directions, the maximum response is considered, 

leading to a total of 20 filter responses (5 sizes, 4 wavelength coefficients). The texton map 

is then generated by applying 20-dimensional k-Means clustering to the 20 filter responses 

with a predefined number of clusters of kt = 5 to represent tumour core, oedema and normal 

brain tissues. To reduce computation time for clustering, the lowest number of clusters 

which are capable of separating tumour core and oedema from normal brain in the training 

set was chosen. Histograms of the texton parameter were then calculated for each 

supervoxel using the generated texton map. The distribution of the local textures 

(descriptor) used to characterize the local object patterns, is one of the main features used in 



 

our tumour classification.   

Table 1 summarises all extracted features. In total, there are 21 features for each MR 

image, so there are 105 features across the multimodal MRI data (FLAIR, T1-weighted 

(with contrast), T2-weighted, p and q maps). All feature calculations are performed on 

supervoxels and the extracted features for each MR image are concatenated to form the 

final multimodal feature vector. 

 

2.6. Random Forests Classification  

Random forests (RF) is one of the best among classification algorithms [36]. It is an 

ensemble learning method that uses multiple decision trees. During the bagging process and 

at each attribute split, a random subset of features is used. After generating a large number 

of trees, a vote for the most popular class is made [37]. The structures of randomized trees 

are independent of training sample outputs.   

In this study, all supervoxels within the brain are considered for classification. This not 

only represents a large amount of data, but this data is also unbalanced, as the number of 

supervoxels related to normal brain is in the range of 6 to 30 times more than the number of 

tumour supervoxels (average ratio of 12:1). Therefore, the use of a robust classifier is 

essential to achieve accurate segmentation. Due to the many advantages of the RF 

classifier, (e.g. accuracy, efficiency in application to large datasets, and ability to handle 

unbalanced datasets) we use RF to classify each supervoxel into three tissue classes: normal 

brain tissue, tumour core and oedema.  

    The main parameters used in RF, i.e. the number of trees, the number of attributes, and 



 

tree depth, are chosen as follows: number of trees is 50 with depth of 15, and number of 

attributes (ka) selected to perform the random splits for a specific number of features Nf is 

ka = √Nf. For single modality and multimodal experiments, 5 and 10 attributes are selected, 

respectively. Further discussions are given in the Experimental Results Section (Section 

III-A) 

In the training stage, the supervoxels are split into three classes: normal brain tissue, 

tumour core and oedema. Supervoxels which have at least 50% overlap with tumour core or 

oedema regions (ground truth according to manual labelling) are labelled as the appropriate 

corresponding classes. The remaining supervoxels are labelled as normal. The RF classifier 

is trained based on these three labels. In the testing stage, the trained classifier is applied 

and labels are assigned to each supervoxel inside the brain. The tumour area is then 

obtained by grouping the supervoxels classified as either tumour core or the oedema class. 

3. Experimental Results 

Two datasets were analysed: (i) our clinical dataset described in Section II-A for training 

and validation of the algorithm, and (ii) the publicly available MICCAI BRATS 2013 

dataset [21,22] for further comparison and assessment of the robustness of the method. For 

both datasets, quantitative evaluations (e.g. supervoxel classification accuracy and Dice 

score overlap measures for segmented tumour vs ground truth) of the proposed method 

have been conducted using different imaging protocols (e.g. single modality or multimodal 

images). The leave-one-out approach is used to train and test the model. Subsections (A-C) 

are focused on our clinical data cohort; whist subsection D evaluates results of our 

technique to the MICCAI BRATS 2013 dataset [5,21,22]. Subsection E presents statistical 



 

analysis on the two datasets.  

3.1. Parameter Selection 

For 2D superpixel calculation presented in our previous work [38], an optimal initial 

superpixel size of 5 was obtained. In the case of 3D supervoxels, the z direction is 

determined based on Equation (1) from the slice thickness and image resolutions. Due to 

the different resolutions used in our clinical data (all multimodal MRI data were 

co-registered to DTI with voxel dimensions 0.9375 mm × 0.9375 mm × 2.8 mm) and the 

BRATS dataset (isotropic voxel dimensions: 1 mm3), the supervoxel initial sizes were 

chosen to be 8 × 8 × 3 for our clinical data, and 5 × 5 × 5 for the BRATS data. By visually 

inspecting the supervoxel boundaries and area, the value of m = 0.05 (in Equation (4)) was 

chosen, which presents coherent boundaries.  

Implementation of the RF was performed in MATLAB 2016b based on the open source 

code provided in [39]. To select the optimum RF parameters, different ranges of number of 

trees and depth were assessed on our clinical data. 4-fold validation was used to select the 

optimal RF parameters (i.e. number of trees and depth). Classification accuracy was 

calculated for the testing fold in each iteration with different tree depth and number of trees. 

Values were averaged over all folds to determine the effects of number of trees and depth, 

and are presented in Fig. 6. It can be seen in Fig. 6 that, 50 trees with depth 15 give an 

optimum generalization and accuracy. These optimal parameters were also directly used in 

the analysis of the BRATS dataset (in Section D). 

 Table 2 presents the proportion of features selected from each acquisition protocol using 

the RF from two experiments: conventional MRI data only (C-MRI, namely, FLAIR, 



 

T1-weighted (with contrast) and T2-weighted) and conventional MRI plus DTI 

(C-MRI+DTI). It can be seen that, for C-MRI, most of the features (61%) are selected from 

the FLAIR, which shows the importance of FLAIR for tumour segmentation. When DTI is 

added it has 24% of features selected from it (i.e. p (16%) and q (8%) maps); the presence 

of DTI also slightly reduces the proportion of corresponding features from the C-MRI 

modalities alone. Our experimental results in the next section show that p and q maps 

improve the overall segmentation of tumour core.  

 

3.2. Supervoxel Classification Results 

For the standard four classification measures (accuracy, precision, sensitivity, 

specificity), both accuracy and specificity will give very high values due to the highly 

imbalanced nature of our data. Therefore, to properly evaluate the classification 

performance, only precision and sensitivity are considered. Consequently, in this paper, 

evaluation of the performance of the supervoxel classification method was performed using 

precision, sensitivity and balanced error rate (BER). 

To compare the supervoxel classification performances of our method using different 

MRI modalities for the whole tumour including core and oedema, three experiments are 

performed: 1) FLAIR only; 2) C-MRI data; 3) C-MRI+DTI.  

In the first experiment, supervoxels are calculated based on FLAIR image only; whereas 

in the second and third experiments, supervoxels are calculated using Equation (4) based on 

different MRI modalities, i.e. C-MRI data in experiment 2 and C-MRI+DTI in experiment 

3, respectively. The generated supervoxel map using different MRI modalities is then 



 

applied to each modality image to extract features. As discussed in Section II-E and shown 

in Table 1, for each supervoxel, there are 21 features extracted from each modality, so in 

total 21 features for FLAIR only, 63 features for C-MRI data (e.g. FLAIR, T2 and 

T1-contrast), and 105 features for C-MRI+DTI (p and q maps). The random forests 

classification is then performed in each experiment to classify each supervoxel into normal 

brain tissue and tumour. 

Table 3 shows the average results of supervoxel classification for the three experiments, 

using our clinical dataset. Results show significant improvement for classification of 

tumour core, oedema and the whole tumour using C-MRI+DTI, compared to use of the 

FLAIR image or the conventional MRI data alone. 

  

3.3. Segmentation Results 

The Dice score is used to evaluate the overlap ratio between the segmentation results and 

the manual segmented gold standard: 

  DC =    ! !⋂!
! ! !

, (8) 

where, M and S are the manual and proposed segmentation masks, respectively. 

Range of dice scores are 0 to 1 with closer to 1 representing better segmentation.  Table 4 

shows Dice scores comparing the ground truth with our automated method using the three 

experiment sets.  Results show significant improvement in the segmentation of tumour core 

using the C-MRI+DTI approach with a Dice score (DC) of 0.78 compared to C-MRI (DC= 

0.67) and the single FLAIR image (DC=0.54). This demonstrates that adding DTI increases 



 

the tumour segmentation accuracy for multimodal approach. 

Fig. 7 shows examples of the segmentation of tumour core and oedema with three grade 

IV tumours using FLAIR only, C-MRI and C-MRI+DTI.  It can be seen that several 

supervoxels are wrongly classified, e.g. false positive regions (FPs), in the segmented 

masks when using FLAIR and C-MRI images (see Fig. 7(c2) and (c3)) whereas adding DTI 

image modalities reduces these FPs, leading to a more accurate segmentation. For example, 

in Fig. 7(e1) and (e3), there are areas of tumour core which are missed by the C-MRI 

protocol, but these tumour areas can be detected by adding DTI modalities as shown in Fig. 

7(d1) and (d3). This demonstrates an improvement in segmentation accuracy by the use of 

both C-MRI and DTI. 

 

3.4. Evaluation on BRATS 2013 Dataset 

To evaluate the robustness of our proposed method, it is also applied to the BRATS 2013 

[21,22] patient dataset, which consists of 20 high grade and 10 low grade tumour types. In 

this dataset conventional FLAIR, T1-weighted, T2-weighted and T1-weighted with contrast 

image modalities are available. Data were acquired from different centres using different 

MR systems with field strengths of both 1.5T and 3T. The ground truth segmentations are 

manually provided by a human expert [5]. In this study, due to no DTI data available in the 

BRATS dataset, we evaluate the multimodal aspect of our proposed method, by calculating 

tumour segmentation performances using C-MRI (FLAIR, T1, T2 and T1+contrast), 

compared with that using the single imaging modality (FLAIR). The RF parameters 

selected by 4-fold cross-validation experiment on our clinical dataset (discussed in section 



 

III-A) were used to assess robustness of parameter selection. 

The parameters used for feature extraction are similar to those we used for our clinical 

datasets. For the supervoxel segmentation the only parameter that is different from analysis 

of our own data is the initial superpixel size.  

This is due to the different voxel dimensions of the two datasets. The voxel dimension for 

all BRATS data is 1 mm × 1 mm × 1 mm. Therefore, the initial subvolumes are cubes with 

the same dimensions. The supervoxel size for segmenting both oedema and tumour core is 

defined as 5 mm × 5 mm × 5 mm considering small tumours in some images. Table 5 

presents the average evaluation results using RF for supervoxel classification of tumour 

core, oedema against the rest of tissues and also classification of whole tumour against the 

healthy tissue using single modality of FLAIR and multimodal approach on conventional 

MRI protocols (C-MRI) including FLAIR, T1-weighted, T1-weighted (with contrast) and 

T2-weighted imaging. Table 5 shows that the classification performances for different 

tumour regions (e.g. core, oedema, whole tumour) using C-MRI have been significantly 

improved compared to that using the single FLAIR imaging.  

Table 6 shows the Dice score computed between ground truth segmentation and our 

automated segmentation using both FLAIR and C-MRI, on the 30 tumours of the BRATS 

dataset. This demonstrates that using a multimodal approach presents better overlap 

measures for tumour core, oedema, and whole tumour, compared to the use of FLAIR only. 

Fig. 8 shows comparison results of our automated method with the ground truth for both 

tumour core and oedema. Segmentation results are presented in axial slices overlaid on the 

FLAIR image (Fig. 8(e1), (e3), and (e3)). It can be seen that the segmentation from C-MRI 

results in better and more accurate tumour segmentation compared to the FLAIR imaging 



 

alone. For the tumour core segmentation, comparing Fig. 8(d2) (yellow) to Fig. 8(c2) 

(yellow), using a multimodal approach achieved accurate segmentation compared to that 

using single modality. In particular, Fig. 8(c1) shows that several regions of normal brain 

are detected as tumour core and Fig. 8(c2) and (c3) show some regions of oedema that are 

wrongly classified as tumour core. Those regions have been improved in Fig. 8(d1), (d2), 

and (d3) using C-MRI data.  

 

3.5. Statistical Analysis on the Two Datasets 

The Wilcoxon signed-rank test was used on both our clinical dataset and the BRATS 

2013 dataset to investigate if there were significant differences in both Dice scores and 

classification measures of precision, sensitivity and BER, from tumour segmentations 

obtained using the different imaging protocols, at a 95% confidence level.  

Table 7 shows Wilcoxon signed-ranks test statistical results for whole tumour 

segmentation for the Dice scores and classification measures using the different imaging 

protocols on our clinical dataset (N=11).  Results suggest that there is a statistically 

significant improvement in Dice scores and in classification measures of precision, 

sensitivity, BER, when using the C-MRI + DTI multimodal data compared to C-MRI or 

FLAIR alone. 

Table 8 shows the corresponding Wilcoxon signed-ranks test statistical parameters for the 

BRATS 2013 dataset (N=30). These results also demonstrate a statistically significant 

improvement in Dice scores and all classification measures when using multimodal C-MRI 

data compared to FLAIR only. It is noted that there is no DTI available in the BRATS 



 

dataset. 

Finally, we combined our results from the two different datasets (i.e. our clinical data and 

the BRATS data) in a single group containing either FLAIR or C-MRI (N=41). Table 9 

shows the corresponding Wilcoxon signed-ranks test statistical results, which also indicate 

a statistically significant improvement in Dice scores and all classification measures when 

using the C-MRI protocol, instead of the FLAIR image alone.  

4.  Discussion 

Our supervoxel calculation is based on SLIC [34] which was originally developed for 

natural images using 2D regular arrays without considering pixel resolutions. Whilst, our 

3D clinical dataset is anisotropic, with different voxel resolutions along each dimension. To 

address this problem, we adapt the distance formulation in the supervoxel calculation from 

MR data with different acquisition parameters as shown in Equation (3). In this study, two 

different sets of data with different voxel dimension and slice thickness were used to 

evaluate our supervoxel method. Our clinical dataset has slice thickness three times more 

than the in-plane voxel resolutions. Therefore, the initial supervoxel is chosen to be 

rectangular shape (e.g. 8x8x3). Whilst, the BRATS dataset has been interpolated to 1mm 

isotropic resolution, so initial supervoxels are defined to be cubic. The supervoxel 

segmentation boundary for BRATS data has better resolution in the Z direction. This is the 

main reason why the segmentation results from BRATS data are in general better than that 

from our clinical data. The results in Table 4 and Table 6 confirm this and show the overall 

segmentation of tumour for our dataset has average of 0.84 with standard deviation 0.06, 

whereas for the BRATS dataset they are 0.89 and 0.04 respectively.    



 

One limitation of supervoxel segmentation is that there is a minimum size for 

supervoxels regarding its parameters and image characteristics. For this reason, the method 

has a limitation in segmenting very small volumes. The overall Dice score for larger 

tumour cores is more than 80%; whereas for smaller tumour cores the overlap measure 

decreases due to the initial supervoxel size. For example, the Dice scores for patient 

numbers 8 to 11 in Table 4 are relatively low. This is due to very small tumour cores for 

those data, which only contain a limited number of supervoxels. 

To evaluate the robustness and generality of our proposed supervoxel method, it was 

applied to the BRATS 2013 multimodal dataset. However, this dataset doesn’t contain DTI 

protocols p and q. So we only compare the single modal (FLAIR) against the multimodality 

(conventional) MRI. The supervoxel map generated from multimodality is different from 

single imaging modality based on FLAIR. The results show the improvement in 

segmentation of the tumour core. A zoomed-in image of the overlay of the tumour cores 

(shown in Fig. 8) is depicted in Fig. 9. To show the comparison between single modal and 

multimodal approaches, the segmentation results of both methods are overlaid on 2 

different protocols, FLAIR and T1+C. As can be seen in Fig. 9, the information from 

protocol T1+C improves the segmentation of tumour core, as the tumour core has more 

clear boundaries in this protocol. The homogenous region in the FLAIR image (Fig. 9(a)) 

causes a wandering boundary (red dent in the figure) during single modality supervoxel 

segmentation, whereas using multimodal approach with the help of clear tumour core 

boundary in protocol T2 improves the segmentation accuracy (blue contour in Fig. 9(d)). 

The false positive region (shown in red in Fig. 9(b)) is the continuing of a supervoxel from 

adjacent slices. Using multimodal approach, the false positive regions can be successfully 



 

removed from the tumour core.  

The results of our proposed method on the BRATS 2013 clinical dataset and the best 

scores in 2012 and 2013 challenges from other groups [5] are presented in Table 10. The 

method proposed by Tustison et al. [12] was the winner of the on-site BRATS 2013 

challenge. Although our testing dataset is different with their dataset, it provides a 

comparable scale to our method. To fairly evaluate our proposed method, we also provide 

comparison with the best scores for analyses that used the clinical training dataset for 

evaluation their results. Reza et al [18] used the training clinical data to evaluate their 

method and obtained the best results for the same data as we used in this study. The average 

of the top 10 best results which used the same training dataset of BRATS 2013 according to 

their website [21] is also presented in Table 10. The comparison results in Table 10 

demonstrate a good performance of our method for segmentation both of tumour core and 

whole tumour, with Dice scores of 0.80 and 0.89, respectively. 

5. Conclusion 

A supervised learning based method is proposed for segmentation of tumour in multimodal 

MRI brain tumour images. Supervoxels are calculated using information fusion from 

multimodal MRI images. A novel histogram of texton descriptors, calculated using a set of 

3D Gabor filters with different sizes and orientations, are extracted on each supervoxel 

from different MRI imaging modalities. A random forests classifier is then used to classify 

each supervoxel into tumour (including tumour core and oedema) or normal brain tissue. 

The multimodal supervoxel segmentation method results in inclusion of information from 

multimodal MRI, which improves multiple tissue boundary segmentation; whilst using the 



 

distribution of local textures inside each supervoxel helps improving the further 

classification of supervoxel.  

   The experimental results show that the proposed method achieves promising results in the 

segmentation of brain tumour core and oedema. Adding features from different MRI 

imaging protocols increases the classification accuracy of the supervoxels in relation to a 

manually defined gold standard. Table 2 shows the proportion of the features selected from 

each protocol using the RF for the segmentation and classification of the tumour. It can be 

seen that, for our clinical dataset, features extracted from the DTI protocols are included 

(e.g. 16% from p map and 8% from q map) and our final results show the further 

improvement of the segmentation and classification performance by combining the p and q 

protocols into the conventional MRI images. In addition, the proposed supervoxel method 

has also been evaluated on the BRATS 2013 dataset which also presents the accurate and 

robust results.  
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Table 1. Number of features which are used for our learning based method. 

 

Features calculated 

from each supervoxel 

One 

Protocol 

Multimodal (e.g.  

5 protocols) 

Statistical 1st order 16 80 

Texton Histogram 5 25 

Total 21 105 

 

 

  



 

 

Table 2. Ranking based on their repetition in nodes of the forests of a RF with 50 number of trees and depth 

15. 

 

Experiment FLAIR T1C T2 p q 

C-MRI 0.61 0.15 0.24 - - 

C-MRI+DTI 0.49 0.09 0.18 0.16 0.08 

 

  



 

 

Table 3. Classification results for supervoxels using single MRI modality (FLAIR).C-MRI (FLAIR, T1-C and 

T2) and C-MRI+DTI (C-MRI + p and Q MAPS) 

 

  Precision Sensitivity BER 

Core Single  69.49 ± 13.05 65.39 ± 8.38 0.18 ± 0.04 

C-MRI 73.64 ± 13.14 69.67 ± 7.59 0.15 ± 0.04 

C-MRI +DTI 83.44 ± 12.36 74.62 ± 18.95 0.13 ± 0.09 

Oedema Single  84.17 ± 7.93 79.28 ± 8.18 0.11 ± 0.04 

C-MRI 85.63 ± 8.24 80.59 ± 8.44 0.10 ± 0.04 

C-MRI +DTI 88.53 ± 7.37 84.57 ± 8.21 0.08 ± 0.04 

Whole Single  88.16 ± 6.38 81.88 ± 9.81 0.09 ± 0.05 

C-MRI 89.54 ± 6.18 83.66 ± 9.16 0.09 ± 0.05 

C-MRI +DTI 92.22 ± 5.80 86.25 ± 9.02 0.07 ± 0.05 

 

  



 

 

Table 4. Dice score comparison for the segmentation of tumour core, oedema and whole tumour using single 

protocol (FLAIR), C-MRI (FLAIR, T1-Contrast, T2-weighted) and C-MRI+DTI (FLAIR, T1-Contrast, 

T2-weighted, p and q). 

 

 
No 

FLAIR FLAIR, T1-Contrast, 
T2-weighted 

FLAIR, T1-Contrast, 
T2-weighted, p and q 

Core Oedema Whole Core Oedema Whole Core Oedema Whole 
1 0.79 0.63 0.75 0.84 0.69 0.77 0.91 0.71 0.79 
2 0.55 0.66 0.70 0.60 0.69 0.72 0.84 0.73 0.77 
3 0.63 0.70 0.71 0.68 0.70 0.74 0.76 0.71 0.73 
4 0.65 0.73 0.78 0.76 0.77 0.82 0.85 0.86 0.91 
5 0.56 0.81 0.82 0.62 0.83 0.83 0.68 0.85 0.85 
6 0.65 0.72 0.75 0.72 0.73 0.76 0.83 0.81 0.85 
7 0.53 0.85 0.86 0.74 0.86 0.87 0.86 0.85 0.86 
8 0.42 0.85 0.85 0.58 0.86 0.86 0.62 0.87 0.87 
9 0.34 0.82 0.83 0.59 0.83 0.85 0.70 0.89 0.91 

10 0.41 0.86 0.86 0.68 0.85 0.86 0.83 0.86 0.88 
11 0.34 0.83 0.84 0.52 0.85 0.87 0.67 0.86 0.87 

Mean 0.54 0.77 0.79 0.67 0.79 0.81 0.78 0.82 0.84 
STD 0.14 0.08 0.06 0.10 0.07 0.06 0.09 0.07 0.06 

 

 

  



 

 

 

Table 5. Average classification results for superpixels from Single modality (FLAIR) and multimodal C-MRI 

 (FLAIR, T1, T1-Contrast and T2) of BRATS 2013 dataset (20 high grade and 10 low grade tumour) 

 

 Precision Sensitivity BER 

Core Single modal 93.82 ± 5.08 90.69 ± 4.99 0.05 ± 0.02 
C-MRI 98.19 ± 1.90 94.75 ± 3.24 0.03 ± 0.02 

Oedema Single modal 94.01 ± 7.77 87.53 ± 5.91 0.06 ± 0.03 
C-MRI 98.31 ± 1.72 95.89 ± 4.49 0.02 ± 0.02 

Whole Single modal 98.25 ± 2.12 92.29 ± 4.68 0.04 ± 0.02 
C-MRI 99.46 ± 0.66 96.09 ± 3.00 0.02 ± 0.01 

 

  



 

 

 

Table 6. Comparison results for Dice overlap ratio between manual annotation and the automated 

segmentation using single modality (FLAIR) and multimodal C-MRI (FLAIR, T1, T1-Contrast and T2) of 

BRATS 2013. 

 

  Core Oedema Whole 

Single 
modality 

Mean 0.65 0.79 0.85 
STD 0.09 0.09 0.06 

 
C-MRI 

Mean 0.80 0.89 0.89 
STD 0.09 0.05 0.04 

 

  



 

 

 

Table 7. Wilcoxon signed-ranks test statistical parameters results for the segmentation overlap measure of 

Dice and the classification measures using different protocols (i.e. FLAIR only, conventional MRI (C-MRI), 

and conventional MRI plus DTI (C-MRI plus DTI), on our own dataset (11 subjects). 

 

Whole 
Tumour 

FLAIR vs C-MRI FLAIR vs C-MRI + DTI C-MRI vs C-MRI + DTI 
p z p z p z 

DICE 0.003 -2.956 0.003 -2.952 0.003 -2.940 
Precision 0.010 -2.578 0.004 -2.845 0.006 -2.756 

Sensitivity 0.003 -2.936 0.003 -2.934 0.008 -2.667 
BER 0.024 -2.264 0.007 -2.680 0.008 -2.666 

 

  



 

 

Table 8. Wilcoxon signed-ranks test statistical parameters results for the segmentation overlap measure of 

Dice and the classification measures using different protocols (i.e. FLAIR only, and Conventional MRI 

(C-MRI), on BRATS dataset (30 subjects). 

 

Whole 
Tumour 

FLAIR vs C-MRI 
p z 

DICE < 0.001 -4.723 
Precision < 0.001 -4.021 

Sensitivity < 0.001 -4.762 
BER < 0.001 -4.051 

 

  



 

 

Table 9. Wilcoxon signed-ranks test statistical parameters results for the segmentation overlap measure of 

Dice and the classification measures using different protocols (i.e. FLAIR only, and Conventional MRI 

(C-MRI), on both our own dataset and BRATS 2013 (41 subjects). 

 

Whole 
Tumour 

FLAIR vs C-MRI 
p z 

DICE < 0.001 -5.531 
Precision < 0.001 -4.743 

Sensitivity < 0.001 -5.566 
BER < 0.001 -4.589 

 

  



 

 

Table 10. Comparison with other methods which used BRATS 2013 dataset (MICCAI 2012 and 2013) 

 

Work Method Toumor Core 
(Dice) 

Whole 
(Dice) 

Tutison [12] RF (ANTsR package) 0.78 0.87 
Reza [18] RF+ texture features 0.91 0.92 

Top 10 average  0.78 0.87 
Our method RF+ multimodal supervoxel 0.80 0.89 

 

  



 

 

 

 

 

 

 

Fig. 1. Flowchart of the proposed multimodal MRI segmentation method for segmentation of brain tumour. 

  



 

 

 

 

(a)               (b)              (c) 

 

 

Fig. 2. Supervoxel segmentation of MRI FLAIR for different supervoxel sizes: a) original image, b) large 

supervoxel size (30 × 30 × 11), c) small supervoxel size (15 × 15 × 5). 

 

  

  



 

 

 

 

 

Fig. 3. Framework of multimodal supervoxel segmentation.  



 

 

 

             (a)                  (b)               (c) 

 

 

Fig. 4. An example of using a multimodal approach to improve supervoxel boundary by finding the edges 

which appear weak in one modality (blue ovals), but are apparent in the other modality (red ovals). (a) Upper 

image: FLAIR image overlaid by multimodal supervoxel segmentation, lower image: p map overlaid by the 

same multimodal supervoxel segmentation. (b) Close up of the region surrounded by the yellow box for both 

image modalities, (c) Close up of the region surrounded by the red box for both image modalities. 

 

  



 

 

 

 

Fig. 5. One comparison example of tumour core supervoxel segmentation (SV) using single modality and 

multimodal MRI approaches. (a-1) FLAIR, (b-1): overlay of the corresponding supervoxels calculated using 

single modality (FLAIR), (c-1): zoomed-in of (b-1) on tumour area (to show the details of the SV boundaries) 

and overlay of tumour core (ground truth from manual delineation shown in red); (a-2): protocol p map, (b-2): 

Supervoxels calculated using single imaging modal (FLAIR) overlay on image protocol p, (c-2): zoomed-in 

of (b-2) on tumour area and overlay of tumour core (red). (a-3): protocol p, (b-3): Supervoxels calculated 

using multimodal (FLAIR, T1+contrast, T2, p and q) overlay on image protocol p. (c-3): zoomed-in of (b-3) 

on tumour area and overlay of tumour core (red). The boundaries surrounded by black ellipses in (c-2) and 

(c-3) highlighting the improvement of supervoxel boundary alignment with that of the tumour core using the 

proposed multimodal SV method. The supervoxels are initially sized 15 × 15 × 5 with m = 0.2 compactness. 

  



 

 

 

 

Fig. 6. Upper) Effect of number of trees on RF classification accuracy with different depths. Lower) effect of 

tree depth on RF classification accuracy with different numbers of trees.  
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Fig. 7. Comparison examples of segmentation of tumour core and oedema using conventional MRI and 

conventional MRI plus DTI for three different cases with grade IV tumours. A) FLAIR image, B) manual 

segmentation of core (yellow region) and oedema (red region) C) segmentation using conventional MRI, D) 

segmentation using conventional MRI and DTI (M-MRI), E) comparison of both methods C-MRI (red), plus 

DTI (blue) and manual (green) segmentation for core (zoomed in), F) comparison of both methods C-MRI 

(red), plus DTI (blue) and manual (green) segmentation for oedema (zoomed in) 

 



 

 

Fig. 8. Segmentation results overlay on the ground truth (whole tumour including oedema and core), using 

single (FLAIR) and multimodal  (conventional MRI including FLAIR, T1, T1-contrast and T2), for three 

different cases with grade IV tumours; A) FLAIR image, B) manual segmentation of core (yellow region) and 

oedema (red region) C) segmentation using FLAIR  D) segmentation using conventional MRI  E) comparison 

of both methods: single modal (red), multimodal (blue) and manual (green) segmentation for whole tumour 

(zoomed in) 

  



 

 

 

Fig. 9. Comparison between single modality and multimodal segmentation of core. a-c) FLAIR, d-f) T1-C. 

Green: manual ground truth, red: single modal, blue: multimodal. 

  
 


