3 research outputs found

    Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

    Get PDF
    We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores

    Brain lesion detection in 3D PET images using max-trees and a new spatial context criterion

    No full text
    International audience<p>In this work, we propose a new criterion based on spatial context to select relevant nodes in a max-tree representation of an image, dedicated to the detection of 3D brain tumors for \textsuperscript{18}FF-FDG PET images. This criterion prevents the detected lesions from merging with surrounding physiological radiotracer uptake. A complete detection method based on this criterion is proposed, and was evaluated on five patients with brain metastases and tuberculosis, and quantitatively assessed using the true positive rates and positive predictive values. The experimental results show that the method detects all the lesions in the PET.</p
    corecore