70 research outputs found

    Signed total double Roman dominatıon numbers in digraphs

    Get PDF
    Let D = (V, A) be a finite simple digraph. A signed total double Roman dominating function (STDRD-function) on the digraph D is a function f : V (D) → {−1, 1, 2, 3} satisfying the following conditions: (i) P x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consist of all in-neighbors of v, and (ii) if f(v) = −1, then the vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor assigned 3 under f, while if f(v) = 1, then the vertex v must have at least one in-neighbor assigned 2 or 3 under f. The weight of a STDRD-function f is the value P x∈V (D) f(x). The signed total double Roman domination number (STDRD-number) γtsdR(D) of a digraph D is the minimum weight of a STDRD-function on D. In this paper we study the STDRD-number of digraphs, and we present lower and upper bounds for γtsdR(D) in terms of the order, maximum degree and chromatic number of a digraph. In addition, we determine the STDRD-number of some classes of digraphs.Publisher's Versio

    The Signed Roman Domatic Number of a Digraph

    Full text link
    Let DD be a finite and simple digraph with vertex set V(D)V(D).A {\em signed Roman dominating function} on the digraph DD isa function f:V(D){1,1,2}f:V (D)\longrightarrow \{-1, 1, 2\} such thatuN[v]f(u)1\sum_{u\in N^-[v]}f(u)\ge 1 for every vV(D)v\in V(D), where N[v]N^-[v] consists of vv andall inner neighbors of vv, and every vertex uV(D)u\in V(D) for which f(u)=1f(u)=-1 has an innerneighbor vv for which f(v)=2f(v)=2. A set {f1,f2,,fd}\{f_1,f_2,\ldots,f_d\} of distinct signedRoman dominating functions on DD with the property that i=1dfi(v)1\sum_{i=1}^df_i(v)\le 1 for eachvV(D)v\in V(D), is called a {\em signed Roman dominating family} (of functions) on DD. The maximumnumber of functions in a signed Roman dominating family on DD is the {\em signed Roman domaticnumber} of DD, denoted by dsR(D)d_{sR}(D). In this paper we initiate the study of signed Romandomatic number in digraphs and we present some sharp bounds for dsR(D)d_{sR}(D). In addition, wedetermine the signed Roman domatic number of some digraphs. Some of our results are extensionsof well-known properties of the signed Roman domatic number of graphs

    International Conference on Discrete Mathematics (ICDM-2019)

    Get PDF

    Recent results and open problems on CIS Graphs

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore