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SIGNED TOTAL DOUBLE ROMAN DOMINATION NUMBERS IN

DIGRAPHS

J. AMJADI1, F. POUR HOSSEINI1, §

Abstract. Let D = (V,A) be a finite simple digraph. A signed total double Roman
dominating function (STDRD-function) on the digraph D is a function f : V (D) →
{−1, 1, 2, 3} satisfying the following conditions: (i)

∑
x∈N−(v) f(x) ≥ 1 for each v ∈

V (D), where N−(v) consist of all in-neighbors of v, and (ii) if f(v) = −1, then the
vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor as-
signed 3 under f , while if f(v) = 1, then the vertex v must have at least one in-neighbor
assigned 2 or 3 under f . The weight of a STDRD-function f is the value

∑
x∈V (D) f(x).

The signed total double Roman domination number (STDRD-number) γt
sdR(D) of a di-

graph D is the minimum weight of a STDRD-function on D. In this paper we study
the STDRD-number of digraphs, and we present lower and upper bounds for γt

sdR(D) in
terms of the order, maximum degree and chromatic number of a digraph. In addition,
we determine the STDRD-number of some classes of digraphs.

Keywords: signed total double Roman dominating function, signed total double Roman
domination number, directed graph

AMS Subject Classification: 05C69

1. Introduction

Let G be a finite and simple graph with vertex set V (G), and let NG(v) = N(v) be the
open neighborhood of the vertex v. The concept of signed total domination number of an
undirected graph was introduced by B. Zelinka in [1] and has been studied in [2, 3, 4, 5],
and concept of signed total Roman domination number of a graph investigated by L.
Volkmann in [6, 7]. Recently the concept of signed double Roman domination in graphs
has been studied in [8, 9]. A signed total double Roman dominating function (STDRD-
function) on a graph G is defined in [10] as a function f : V (G) −→ {−1, 1, 2, 3} such
that (i) every vertex v with f(v) = −1 is adjacent to least two vertices assigned 2 under
f or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent
to at least one vertex w with f(w) ≥ 2 and (iii) f(N(v)) =

∑
x∈N(v) f(x) ≥ 1 holds for

each vertex v ∈ V (G). The signed total double Roman domination number γtsdR(G) of
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G is the minimum weight of a STDRD-function on G. A γtsdR(G)-function is a STDRD-
function on G of weight γtsdR(G). Following the ideas in [10, 11] and [12], we study the
STDRD-functions on digraphs D.

Suppose D is a finite simple digraph with vertex set V (D) and arc set A(D) (briefly
V and A). The order and the size of D are integers n = n(D) = |V (D)| and m =
m(D) = |A(D)| respectively. If uv is an arc of D, then we also write u → v, and we
say that v is an out-neighbor of u and u is an in-neighbor of v and we also say that
u dominates v. For each vertex v, the set of in-neighbors and out-neighbors of v are
denoted by N−(v) = N−D (v) and N+(v) = N+

D (v), respectively. Assume that N−D [v] =

N−[v] = N−(v) ∪ {v} and N+
D [v] = N+[v] = N+(v) ∪ {v}. We write d+(v) = d+

D(v) for

the out-degree of a vertex v and d−(v) = d−D(v) for its in-degree. We denote the minimum
and maximum in-degree and the minimum and maximum out-degree of D by δ−(D) = δ−,
∆−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆+, respectively. A digraph D is called r-out-
regular if δ+(D) = ∆+(D) = r. In addition, suppose δ = δ(D) = min{δ+(D), δ−(D)}
and ∆ = ∆(D) = max{∆+(D),∆−(D)} is the minimum and maximum degree of D,
respectively. A digraph D is called a directed cycle if its underlying graph is an n-cycle
and d+

D(v) = d−D(v) = 1 for every v ∈ V (D). A digraph D is called regular or r-regular if
δ(D) = ∆(D) = r. The distance dD(u, v) from a vertex u to a vertex v is the length of
the shortest directed u − v path in D. For every set X ⊆ V (D), D[X] is the subdigraph
induced by X. For a real-valued function f : V −→ R the weight of f is ω(f) =

∑
v∈V f(v),

and for S ⊆ V , we write f(S) =
∑

v∈S f(v), so ω(f) = f(V ). Consult West [13] for the
notation and terminology which are not defined here.

A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S
is adjacent from at least one vertex in S. The minimum cardinality of a dominating set in
D is the dominating number γ(D). A dominating set S of D is called a total dominating
set (TD-set) of D if the subdigraph of D induced by S has no isolated vertices. The
total domination number of D, denoted by γt(D), is the minimum cardinality of a total
dominating set of D. A signed total dominating function on a digraph D is defined in [14]
as a function f : V (D) −→ {−1, 1} such that

∑
x∈N−(v) f(x) ≥ 1 for every v ∈ D. The

minimum cardinality of a signed total dominating function is the signed total domination
number γst(D). The concept of signed total roman domination number in digraphs was
introduced by Volkmann in [15] and has been studied in [16, 17].

A signed total double Roman dominating function (STDRD-function) on D is a function
f : V (D) −→ {−1, 1, 2, 3} such that (i)

∑
x∈N−(x) f(x) ≥ 1 for every v ∈ V (D), (ii) every

vertex u for which f(u) = −1 has at least one in-neighbor z with f(z) = 3 or at least
two in-neighbor v, w for which f(v) = f(w) = 2, (iii) every vertex v with f(v) = 1 has at
least one in-neighbor z with f(z) ≥ 2. The weight of a STDRD-function f on a digraph
D is ω(f) =

∑
v∈V (D) f(v). The signed total double Roman domination number (STDRD-

number) γtsdR(D) is the minimum weight of a STDRD-function on D. The signed total
double Roman domination number exists when δ− ≥ 1. Thus we assume throughout this
paper that δ−(D) ≥ 1.

In this paper we study the STDRD-number of digraphs, and we establish lower and
upper bounds for γtsdR(D) in terms of the order, maximum degree and chromatic number
of a directed graph. In addition, we determine the STDRD-number of some classes of
digraphs.

The associated digraph D(G) of a graph G is defined as a digraph obtained from G if
each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since
N−D(G)[v] = NG[v] for each vertex v ∈ V (G) = V (D(G)), we have the next result.
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Observation 1.1. If D(G) is the associated digraph of a graph G, then

γtsdR(D(G)) = γtsdR(G).

Proposition 1.1. Let u be a vertex of indegree one in D and let f be a STDRD-function
on D. Then the following holds.

(1) f assigns a positive value to the vertex of N−D (u).

(2) If f(u) = 1, then f assigns the weight at least two to the vertex of N−D (u).

Proof. (1) Since f(N−D (u)) ≥ 1 and |N−D (u)| = 1, the results follows.
(2) Since f(u) = 1, the vertex u must have at least one in-neighbor assigned 2 or 3

under f and hence f assigns the weight at least two to the vertex of N−D (u).
�

Corollary 1.1. If Cn is the directed cycle on n vertices, then γtsdR(Cn) = d3n
2 e.

Proof. Let Cn = v1v2 . . . vnv1 where the arc goes from vi into vi+1 for 1 ≤ i ≤ n − 1 and
from vn into v1. First we show that γtsdR(Cn) ≥ d3n

2 e. Let f be a γtsdR(Cn)-function. By
Proposition 1.1 (2), we have

2γtsdR(Cn) = 2
n∑
i=1

f(vi) = (f(vn) + f(v1)) +
n−1∑
i=1

(f(vi) + f(vi+1)) ≥ 3n

and this implies that γtsdR(Cn) ≥ d3n
2 e.

Now we show that γtsdR(Cn) ≤ d3n
2 e. Define f : V (D) → {−1, 1, 2, 3} by f(v2i+1) = 2

and f(v2i+2) = 1 for each 0 ≤ i ≤ n−2
2 when n is even, and by f(vn) = 2, f(v2i+1) = 2

and f(v2i+2) = 1 for each 0 ≤ i ≤ n−3
2 when n is odd. Clearly f is a STDRDF of Cn of

weight d3n
2 e yielding γtsdR(Cn) ≤ d3n

2 e. Thus γtsdR(Cn) = d3n
2 e. �

In [10], the authors determine the STDRD-number of some classes of graphs including
complete graphs, complete bipartite graphs and cycle.

Theorem A. If n 6= 4 , then γtsdR(Kn) = 3 and γtsdR(K4) = 4.

Theorem B. If n 6= 5, then γtsdR(Cn) = n and γtsdR(C5) = 6.

Theorem C. For 1 ≤ m ≤ n,

γtsdR(Km,n) =


4, (m = n = 2, 4), (m = 2, n = 4), or (m = 1, n ≥ 2)

2, (m = 3, n 6= 4) or m ≥ 5

3 otherwise.

Let K∗n, C
∗
n and K∗m,n are the associated digraphs of Kn, Cn and Km,n, respectively.

Using Observation 1.1 and Theorems A, B and C we obtain next result.

Corollary 1.2. (1) If n 6= 4, then γtsdR(K∗n) = 3 and γtsdR(K∗4 ) = 4.
(2) If n 6= 5, then γtsdR(C∗n) = n and γtsdR(C∗5 ) = 6.
(3) For 1 ≤ m ≤ n,

γtsdR(K∗m,n) =


4, (m = n = 2, 4), (m = 2, n = 4), or (m = 1, n ≥ 2)

2, (m = 3, n 6= 4) or m ≥ 5

3 otherwise.

The proof of the following result can be found in Szekeres-Wilf [18].

Theorem D. For any graph G,

χ(G) ≤ 1 + max{δ(H) | H is a subgraph of G}.
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2. Basic Properties

In this section we investigate basic properties of the STDRD-functions and the STDRD-
numbers of digraphs. The definitions immediately lead to our first proposition.

Proposition 2.1. For any STDRD-function f = (V−1, V1, V2, V3) on a digraph D of order
n,

(a) |V−1|+ |V1|+ |V2|+ |V3| = n;
(b) ω(f) = |V1|+ 2|V2|+ 3|V3| − |V−1|;
(c) V1 ∪ V2 ∪ V3 is a total dominating set of D. In particular, |V1 ∪ V2 ∪ V3| ≥ γt(D)

where γt(D) is the total domination number of D.

Proposition 2.2. If f = (V−1, V1, V2, V3) is a STDRD-function on a digraph D of order
n with maximum out-degree ∆+ and minimum out-degree δ+, then

(i) (3∆+ − 1)|V3|+ (2∆+ − 1)|V2|+ (∆+ − 1)|V1| ≥ (δ+ + 1)|V−1|;
(ii) (3∆+ + δ+)|V3|+ (2∆+ + δ+)|V2|+ (∆+ + δ+)|V1| ≥ n(δ+ + 1);

(iii) (∆+ + δ+)ω(f) ≥ n(δ+ −∆+ + 2) + (δ+ −∆+)(2|V3|+ |V2|);
(iv) ω(f) ≥ n(δ+ − 3∆+ + 2)/(3∆+ + δ+) + |V2|+ 2|V3|.

Proof. (i) Proposition 2.1 (a) implies that

|V−1|+ |V1|+ |V2|+ |V3| = n

≤
∑

v∈V (D)

∑
x∈N−(v)

f(x)

=
∑

v∈V (D)

d+
D(v)f(v)

=
∑
v∈V3

3d+
D(v) +

∑
v∈V2

2d+
D(v)

+
∑
v∈V1

d+
D(v)−

∑
v∈V−1

d+
D(v)

≤ 3∆+|V3|+ 2∆+|V2|
+∆+|V1| − δ+|V−1|.

This inequality chain leads to the desired bound.
(ii) Using Proposition 2.1 (a) and Part (i), we arrive at (ii).
(iii) This part can be obtained from Proposition 2.1 and Part (ii) as follows

(∆+ + δ+)ω(f) = (∆+ + δ+)(4|V3|+ 3|V2|+ 2|V1| − n)

≥ 2n(δ+ + 1)− 2∆+(2|V3|+ |V2|) + (∆+ + δ+)(2|V3|+ |V2| − n)

= n(δ+ −∆+ + 2) + (δ+ −∆+)(2|V3|+ |V2|).

(iv) The inequality chain in the proof of Part (i) and Proposition 2.1 (a) implies

n ≤ 3∆+|V1 ∪ V2 ∪ V3| − δ+|V−1|
= 3∆+|V1 ∪ V2 ∪ V3| − δ+(n− |V1 ∪ V2 ∪ V3|)
= (3∆+ + δ+)|V3 ∪ V2 ∪ V1| − nδ+

and so

|V1 ∪ V2 ∪ V3| ≥
n(δ+ + 1)

3∆+ + δ+
.
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Applying above inequality and Proposition 2.1, we get

ω(f) = 2|V1 ∪ V2 ∪ V3| − n+ |V2|+ 2|V3|

≥ 2n(δ+ + 1)

3∆+ + δ+
− n+ |V2|+ 2|V3|

=
n(δ+ − 3∆+ + 2)

3∆+ + δ+
+ |V2|+ 2|V3|

and the proof is complete. �

Corollary 2.1. For any r-out-regular digraph D of order n with r ≥ 1, γtsdR(D) ≥ n/r.

Applying Corollary 2.1 and Observation 1.1, we obtain the next known result.

Corollary 2.2. (Ahangar et al. [10]) For any r-regular graph G of order n with r ≥ 1,
γtsdR(G) ≥ n/r.

If D is not out-regular, then we can get the next lower bound on the STDRD-number.

Corollary 2.3. If D is a digraph of order n with minimum out-degree δ+, maximum
out-degree ∆+ and δ+ < ∆+, then

γtsdR(D) ≥
⌈3δ+ − 3∆+ + 4

3∆+ + δ+

⌉
n.

Proof. Multiplying both sides of the inequality in Proposition 2.2 (iv) by ∆+ − δ+ and
adding the resulting inequality to the inequality in Proposition 2.2 (iii) leads to the desired
result. �

Since ∆+(D(G)) = ∆(G) and δ+(D(G)) = δ(G), Observation 1.1 and Corollary 2.3
leads to the next known result.

Corollary 2.4. [10] If G is a non-regular graph of order n, minimum degree δ ≥ 1 and
maximum degree ∆, then

γtsdR(G) ≥
⌈(3δ − 3∆ + 4)n

3∆ + δ

⌉
.

3. Bounds on the signed double Roman domination number

We start with a simple but sharp upper bound on the STDRD-number of a digraph.

Proposition 3.1. For any non-empty digraph D of order n with minimum in-degree
δ− ≥ 1, γtsdR(D) ≤ 2n.

Proof. Obviously the function f defined on D by f(x) = 2 for each x ∈ V (D), is a
STDRD-function on D yielding γtsdR(D) ≤ 2n. �

The bound in Proposition 3.1 can be improved if δ−(D) ≥ 2.

Theorem 3.1. If D is a digraph of order n with minimum in-degree δ− ≥ 2, then

γtsdR(D) ≤ 2n− 3

⌈
δ− − 1

2

⌉
+ 1.

Proof. Assume that t =
⌈
δ−−1

2

⌉
. It follows from

n ·∆+(D) ≥
∑

x∈V (D)

d+(x) =
∑

x∈V (D)

d−(x) ≥ n · δ−(D),
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that ∆+(D) ≥ δ−(D) ≥ t. Suppose u ∈ V (D) is a vertex with out-degree ∆+(D), and let
B = {w1, w2, . . . , wt} be a set of t out-neighbor of u. Define the function f on V (D) by
f(u) = 3, f(x) = −1 for x ∈ B and f(x) = 2 for x ∈ V (D) − (B ∪ {u}). Then for each
vertex z ∈ V (D) we have

f(N−(z)) ≥ −t+ 2(δ− − t) = 2δ− − 3t ≥ 1

and so f is a STDRD-function with weight 3− t+ 2(n− t− 1) = 2n− 3t+ 1. This implies

that γtsdR(D) ≤ 2n− 3
⌈
δ−−1

2

⌉
+ 1. �

Next we present a bound on the signed total double Roman domination number in
terms of the order and signed total domination number of digraphs.

Theorem 3.2. For any digraph D of order n ≥ 2 with δ− ≥ 1,

γtsdR(D) ≤ n+ 2γst(D).

Proof. Let f be a γst(D)-function and let P = {v|f(v) = 1} and M = {v|f(v) = −1}.
Clearly, |P | = n+γst(D)

2 and |M | = n−γst(D)
2 . Define g : V (D) −→ {−1, 1, 2, 3} by g(v) = 3

for v ∈ P and g(v) = −1 for v ∈ M . It is easy to see that g is a STDRD-function of D
and hence γtsdR(D) ≤ 3|P | − |M | = n+ 2γst(D). �

Proposition 3.2. For any digraph D of order n,

γtsdR(D) ≥ 1 + ∆−(D)− n.

Moreover, this bound is sharp.

Proof. Assume v ∈ V (D) is a vertex with in-degree ∆−(D), and f is a γtsdR(D)-function.
By definition we have

γtsdR(D) =
∑

x∈N−(v)

f(x) +
∑

x∈V (D)\N−(v)

f(x)

≥ 1 +
∑

x∈V (D)\N−(v)

f(x)

≥ 1− (n− (∆−(D)))

= 1 + ∆−(D)− n

as desired.
To show the sharpness, let n, t be integers such that n ≥ 3 and 2t + 3 ≤ n − 1, and

let K1,n−1 be a star centered at u with leaves u1, u2, . . . , un−1. Assume Dt is a digraph
obtained from K1,n−1 by orienting the arcs from u into leaves and adding arcs (u2, u),
(ui, u1) for 2 ≤ i ≤ 2t + 3. Define g on V (Dt) by g(u) = 3 and g(u2) = . . . = g(ut) =
g(ut+1) = 1 and g(x) = −1 otherwise. One can see that g is a STDRD-function on Dt

with weight 4 + 2t−n = 1 + ∆−(Dt)−n implying that γtsdR(Dt) ≤ 1 + ∆−(Dt)−n and so
γtsdR(Dt) = 1 + ∆−(Dt)− n. Therefore the bound of Proposition 3.2 is sharp for ∆−(D)
odd.

Assume now that t ≥ 2 be an integer with 2t + 4 ≤ n − 1 and let D2t be the digraph
obtained from K1,n−1 by orienting the arcs from u into leaves and adding arcs (u2, u),
(ui, u1) for 2 ≤ i ≤ 2t + 4. Define h on V (D2t) by h(u) = 3, h(u2) = 2 and h(u3) =
h(u4) = . . . = h(ut+1) = 1 and h(x) = −1 otherwise. Clearly h is a STDRD-function on
D2t with weight 5+2t−n = 1+∆−(D2t)−n. It follows that γtsdR(D2t) = 1+∆−(D2t)−n
by Proposition 3.2. Hence the bound of Proposition 3.2 is sharp for ∆−(D) even too. �
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Theorem 3.3. For any digraph D of order n ≥ 3,

γtsdR(D) ≥ 6− n.
Furthermore, this bound is sharp.

Proof. Consider a γtsdR(D)-function f . If f(u) ≥ 1 for each u ∈ V (D), then we have
γtsdR(D) ≥ n+ 1 > 6− n as desired. Hence we assume that V−1 6= ∅. By definition there
exist two vertices u and v in V1 ∪ V2 ∪ V3 such that f(u) + f(v) ≥ 4. This implies that
γtsdR(D) ≥ 4− (n− 2) = 6− n as desired.

To show the sharpness, we let K1,n−1 (n ≥ 3) be a star centered at u with leaves
u1, u2, . . . , un−1. Assume D is a digraph obtained from K1,n−1 by orienting the arcs from
u into leaves and adding arcs (u1, u). Define g on V (D) by g(u) = 3 and g(u1) = 1 and
g(x) = −1 otherwise. One can see that g is a STDRD-function on D with weight 6 − n
implying that γtsdR(D) = 6− n. �

Proposition 3.3. For any digraph D of order n with ∆+(D) ≥ 2,

γtsdR(D) ≥ (2−∆+)n

∆+
+

2∆+ − 2

∆+
γt(D).

Proof. Let f = (V−1, V1, V2, V3) be a γtsdR(D)-function. Assume that S = V−1 ∩ N+(V3)
and T = V−1\S. Since each vertex in V3 dominate at most ∆+ of S, we have |S| ≤ ∆+|V3|.
Also, since each vertex in V2 dominate at most ∆+ vertices of T and since each vertex in
T has at least two in-neighbors in V2, we get 2|T | ≤ |E(V2, T )| ≤ ∆+|V2| implying that

|T | ≤ ∆+

2 |V2|. Thus |V−1| = |S|+ |T | ≤ ∆+|V3|+ ∆+

2 |V2|. Thus

∆+γtsdR(D) = ∆+(|V1|+ 2|V2|+ 3|V3| − |V−1|)
= ∆+(|V1|+ |V2|+ |V3|) + 2∆+|V3|+ ∆+|V2| −∆+|V−1|
≥ ∆+(|V1|+ |V2|+ |V3|) + (2−∆+)|V−1|
= (2∆+ − 2)(|V1|+ |V2|+ |V3|) + (2−∆+)n

≥ (2∆+ − 2)γt(D) + (2−∆+)n, ( since V1 ∪ V2 ∪ V3 is a TD-set of D)

and this leads to the desired bound. �

Next we present a lower bound in terms of the order and the (total) domination number.

Theorem 3.4. For any digraph D of order n ≥ 2, γtsdR(D) ≥ γt(D) + 2γ(D)− n.

Proof. Consider a γtsdR(D)-function f = (V−1, V1, V2, V3). Note that γ(D) ≤ |V2| + |V3|
because V2 ∪ V3 dominates D, and γt(D) ≤ |V1| + |V2| + |V3| since V1 ∪ V2 ∪ V3 totally
dominates D. Hence

γtsdR(D) = |V1|+ 2|V2|+ 3|V3| − |V−1|
≥ γt(D) + 2γ(D)− n+ |V1|
≥ γt(D) + 2γ(D)− n.

�

For any digraph D, the complement D of D is the digraph with vertex set V (D) such
that for any two distinct vertices u and v, (u, v) ∈ D if and only if (u, v) 6∈ D. Next we
present a lower bound on the sum γtsdR(D) + γtsdR(D) for r-regular digraphs.

Theorem 3.5. Let D be an r-regular digraph of order n. Then

γtsdR(D) + γtsdR(D) ≥ 4n

n− 1
·
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If n is even, then γtsdR(D) + γtsdR(D) ≥ 4(n−1)
n−2 ·

Proof. Since D is r-regular, its complement D is (n− r− 1)-regular. Corollary 2.1 implies
that

γtsdR(D) + γtsdR(D) ≥ n
(1

r
+

1

n− r − 1

)
.

The conditions r ≥ 1, n − r − 1 ≥ 1 imply that 1 ≤ r ≤ n − 2. Since the function
g(x) = 1

(x) + 1
n−x−1 takes its minimum at n−1

2 for 1 ≤ x ≤ n− 2, we obtain

γtsdR(D) + γtsdR(D) ≥ n
( 2

n− 1
+

2

n− 1

)
=

4n

n− 1
,

and this is the desired bound. For even n, the function g takes its minimum at r = x =
(n− 2)/2 or r = x = n/2, because r is an integer and we have

γtsdR(D) + γtsdR(D) ≥ n
(1

r
+

1

n− r − 1

)
≥ n

( 2

n
+

2

n− 2

)
=

4(n− 1)

n− 2
·

and the proof is complete. �

4. A lower bound in terms of chromatic number

In this section we establish a sharp lower bounds on STDRD-number in terms of the
order, the maximum degree and the chromatic number of D.

Theorem 4.1. If D is a connected digraph of order n ≥ 3 and k is a nonnegative integer
such that δ+(D) ≥ k, then

γtsdR(D) ≥ χ(G) +

⌈
3

2
(k −∆(G))

⌉
+ 4− n

where G is the underlying graph of D.

Proof. Let f = (V−1, V1, V2, V3) be a γtsdR(D)-function. Since δ−(D) ≥ 1, we have ∆(G) ≥
2. First let ∆(G) = 2. Then G is a path or a cycle and k ≤ 1 because δ−(D) ≥ 1. We
claim that k = 1. Let, to the contrary, k = 0 and let v ∈ V (D) be a vertex for which
d+(x) = 0. Assume that P is a longest directed path that ends at v. If u is the first vertex
of P , then obviously d−(u) = 0 which is a contradiction. Therefore d+(x) = d−(x) = 1
for each x ∈ V (D) and G is a cycle and D is directed cycle and the result follows from
Theorem 3.3.

Assume that ∆(G) ≥ 3. We show that k ≤ ∆(G) − 2. Suppose, to the contrary,
that k ≥ ∆(G) − 1. Since k ≤ d+(x), d−(x) ≥ 1 and d−(x) + d+(x) ≤ ∆(G) for each
x ∈ V (D), we have d−(x) = 1 for each x ∈ V (D). But then ∆(G)− 1 ≤ 1

n

∑
x∈V d

+(x) =
1
n

∑
x∈V d

−(x) = 1 and this leads to a contradiction. Hence k ≤ ∆(G) − 2 and so µ =
3∆(G)−3k−1

4 ≥ 1.
For each x ∈ V−1, we have

|E(V−1, x)| ≤ 3|E(V3, x)|+ 2|E(V2, x)|+ |E(V1, x)| − 1

and so

∆(G) ≥ deg(x) = |E(V−1, x)|+ |E(V3, x)|+ |E(V2, x)|+ |E(V1, x)|+ d+(x)

≥ |E(V3, x)|+ 2|E(V2, x)|
3

+
|E(V1, x)|

3
+ |E(V−1, x)|+ k

≥ 4|E(V−1, x)|
3

+ k +
1

3
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which implies that |E(V−1, x)| ≤ 3∆(G)−3k−1
4 = µ. Assume H = D[V−1] is the subdigraph

induced by V−1 and let H ′ = G[V−1] be the underlying graph of H. Let H1 be an
induced subdigraph of H. Then d−(x) ≤ |E(V−1, x)| ≤ µ for each x ∈ H1, and hence
Σx∈V (H1)d

+(x) = Σx∈V (H1)d
−(x) ≤ µ|V (H1)|. Hence there exists a vertex x ∈ V (H1)

such that d+(x) ≤ µ. It follows that δ(H ′1) ≤ 2µ, where H ′1 is the underlying graph of H1.
We conclude from Proposition D that

χ(H ′) ≤ 1 + max{δ(H ′′) | H ′′ is a subgraph of H ′}
≤ 1 + 2µ.

Since 3|V3| + 2|V2| + |V1| > 3, we have 3 − |V−1| < γtsdR(D). On the other hand, since
|V1|+ |V2|+ |V3| = n− |V−1| < n+ γtsdR(D)− 3, we have

χ(G) ≤ χ(G[V−1]) + χ(G[V1 ∪ V2 ∪ V3])}
≤ 2µ+ 1 + |V1|+ |V2|+ |V3|
< 2µ+ n+ γtsdR(D)− 3.

Thus γtsdR(D) > χ(G) + 3(k−∆(G))+1
2 + 3− n, as desired. �
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