559 research outputs found

    Domination and location in twin-free digraphs

    Full text link
    A dominating set DD in a digraph is a set of vertices such that every vertex is either in DD or has an in-neighbour in DD. A dominating set DD of a digraph is locating-dominating if every vertex not in DD has a unique set of in-neighbours within DD. The location-domination number γL(G)\gamma_L(G) of a digraph GG is the smallest size of a locating-dominating set of GG. We investigate upper bounds on γL(G)\gamma_L(G) in terms of the order of GG. We characterize those digraphs with location-domination number equal to the order or the order minus one. Such digraphs always have many twins: vertices with the same (open or closed) in-neighbourhoods. Thus, we investigate the value of γL(G)\gamma_L(G) in the absence of twins and give a general method for constructing small locating-dominating sets by the means of special dominating sets. In this way, we show that for every twin-free digraph GG of order nn, γL(G)≤4n5\gamma_L(G)\leq\frac{4n}{5} holds, and there exist twin-free digraphs GG with γL(G)=2(n−2)3\gamma_L(G)=\frac{2(n-2)}{3}. If moreover GG is a tournament or is acyclic, the bound is improved to γL(G)≤⌈n2⌉\gamma_L(G)\leq\lceil\frac{n}{2}\rceil, which is tight in both cases

    Global offensive kk-alliances in digraphs

    Full text link
    In this paper, we initiate the study of global offensive kk-alliances in digraphs. Given a digraph D=(V(D),A(D))D=(V(D),A(D)), a global offensive kk-alliance in a digraph DD is a subset S⊆V(D)S\subseteq V(D) such that every vertex outside of SS has at least one in-neighbor from SS and also at least kk more in-neighbors from SS than from outside of SS, by assuming kk is an integer lying between two minus the maximum in-degree of DD and the maximum in-degree of DD. The global offensive kk-alliance number γko(D)\gamma_{k}^{o}(D) is the minimum cardinality among all global offensive kk-alliances in DD. In this article we begin the study of the global offensive kk-alliance number of digraphs. For instance, we prove that finding the global offensive kk-alliance number of digraphs DD is an NP-hard problem for any value k∈{2−Δ−(D),…,Δ−(D)}k\in \{2-\Delta^-(D),\dots,\Delta^-(D)\} and that it remains NP-complete even when restricted to bipartite digraphs when we consider the non-negative values of kk given in the interval above. Based on these facts, lower bounds on γko(D)\gamma_{k}^{o}(D) with characterizations of all digraphs attaining the bounds are given in this work. We also bound this parameter for bipartite digraphs from above. For the particular case k=1k=1, an immediate result from the definition shows that γ(D)≤γ1o(D)\gamma(D)\leq \gamma_{1}^{o}(D) for all digraphs DD, in which γ(D)\gamma(D) stands for the domination number of DD. We show that these two digraph parameters are the same for some infinite families of digraphs like rooted trees and contrafunctional digraphs. Moreover, we show that the difference between γ1o(D)\gamma_{1}^{o}(D) and γ(D)\gamma(D) can be arbitrary large for directed trees and connected functional digraphs

    Signed total double Roman dominatıon numbers in digraphs

    Get PDF
    Let D = (V, A) be a finite simple digraph. A signed total double Roman dominating function (STDRD-function) on the digraph D is a function f : V (D) → {−1, 1, 2, 3} satisfying the following conditions: (i) P x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consist of all in-neighbors of v, and (ii) if f(v) = −1, then the vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor assigned 3 under f, while if f(v) = 1, then the vertex v must have at least one in-neighbor assigned 2 or 3 under f. The weight of a STDRD-function f is the value P x∈V (D) f(x). The signed total double Roman domination number (STDRD-number) γtsdR(D) of a digraph D is the minimum weight of a STDRD-function on D. In this paper we study the STDRD-number of digraphs, and we present lower and upper bounds for γtsdR(D) in terms of the order, maximum degree and chromatic number of a digraph. In addition, we determine the STDRD-number of some classes of digraphs.Publisher's Versio

    Zero forcing in iterated line digraphs

    Full text link
    Zero forcing is a propagation process on a graph, or digraph, defined in linear algebra to provide a bound for the minimum rank problem. Independently, zero forcing was introduced in physics, computer science and network science, areas where line digraphs are frequently used as models. Zero forcing is also related to power domination, a propagation process that models the monitoring of electrical power networks. In this paper we study zero forcing in iterated line digraphs and provide a relationship between zero forcing and power domination in line digraphs. In particular, for regular iterated line digraphs we determine the minimum rank/maximum nullity, zero forcing number and power domination number, and provide constructions to attain them. We conclude that regular iterated line digraphs present optimal minimum rank/maximum nullity, zero forcing number and power domination number, and apply our results to determine those parameters on some families of digraphs often used in applications

    Absorption Time of the Moran Process

    Get PDF
    The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is O(n^4) on an n-vertex undirected graph, which allows the behaviour of the process on undirected graphs to be analysed using the Markov chain Monte Carlo method. We show that this does not extend to directed graphs by exhibiting an infinite family of directed graphs for which the expected absorption time is exponential in the number of vertices. However, for regular directed graphs, we show that the expected absorption time is Omega(n log n) and O(n^2). We exhibit families of graphs matching these bounds and give improved bounds for other families of graphs, based on isoperimetric number. Our results are obtained via stochastic dominations which we demonstrate by establishing a coupling in a related continuous-time model. The coupling also implies several natural domination results regarding the fixation probability of the original (discrete-time) process, resolving a conjecture of Shakarian, Roos and Johnson.Comment: minor change
    • …
    corecore