7,726 research outputs found

    Updating constraint preconditioners for KKT systems in quadratic programming via low-rank corrections

    Get PDF
    This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; nevertheless, their computation may be very expensive for large-scale problems, and resorting to approximations of them may be convenient. Here we propose a procedure for building inexact constraint preconditioners by updating a "seed" constraint preconditioner computed for a KKT matrix at a previous interior point iteration. These updates are obtained through low-rank corrections of the Schur complement of the (1,1) block of the seed preconditioner. The updated preconditioners are analyzed both theoretically and computationally. The results obtained show that our updating procedure, coupled with an adaptive strategy for determining whether to reinitialize or update the preconditioner, can enhance the performance of interior point methods on large problems.Comment: 22 page

    Natural preconditioners for saddle point systems

    Get PDF
    The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or discrete setting, so saddle point systems arising from discretization of partial differential equation problems such as those describing electromagnetic problems or incompressible flow lead to equations with this structure as does, for example, the widely used sequential quadratic programming approach to nonlinear optimization.\ud This article concerns iterative solution methods for these problems and in particular shows how the problem formulation leads to natural preconditioners which guarantee rapid convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness -- in terms of rapidity of convergence -- is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends

    Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization

    Get PDF
    Interior point methods provide an attractive class of approaches for solving linear, quadratic and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this paper, we consider PDE-constrained optimization problems with bound constraints on the state and control variables, and their representation on the discrete level as quadratic programming problems. To tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are required. We present preconditioned iterative techniques for solving a number of these problems using Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the solvers in theory, as well as the solutions observed from practical computations

    Extending Constraint Preconditioners for Saddle Point Problems

    Get PDF
    The problem of finding good preconditioners for the numerical solution of a certain important class of indefinite linear systems is considered. These systems are of a block 2 by 2 saddle point structure. In "Constraint preconditioning for indefinite linear systems" SIAM J. Matrix Anal. Appl., 21 (2000), Keller, Gould and Wathen introduced the idea of using constraint preconditioners that have a specific 2 by 2 block structure for the case of the (2,2) matrix block being zero. We shall extend this idea by allowing the (2,2) block to be non-zero. Results concerning the spectrum and form of the eigenvectors are presented, as are numerical results to validate our conclusions

    Regularization-robust preconditioners for time-dependent PDE constrained optimization problems

    Get PDF
    In this article, we motivate, derive and test �effective preconditioners to be used with the Minres algorithm for solving a number of saddle point systems, which arise in PDE constrained optimization problems. We consider the distributed control problem involving the heat equation with two diff�erent functionals, and the Neumann boundary control problem involving Poisson's equation and the heat equation. Crucial to the eff�ectiveness of our preconditioners in each case is an eff�ective approximation of the Schur complement of the matrix system. In each case, we state the problem being solved, propose the preconditioning approach, prove relevant eigenvalue bounds, and provide numerical results which demonstrate that our solvers are eff�ective for a wide range of regularization parameter values, as well as mesh sizes and time-steps

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure
    • …
    corecore