1,471 research outputs found

    Rate-distance tradeoff for codes above graph capacity

    Get PDF
    The capacity of a graph is defined as the rate of exponential growth of independent sets in the strong powers of the graph. In the strong power an edge connects two sequences if at each position their letters are equal or adjacent. We consider a variation of the problem where edges in the power graphs are removed between sequences which differ in more than a fraction δ\delta of coordinates. The proposed generalization can be interpreted as the problem of determining the highest rate of zero undetected-error communication over a link with adversarial noise, where only a fraction δ\delta of symbols can be perturbed and only some substitutions are allowed. We derive lower bounds on achievable rates by combining graph homomorphisms with a graph-theoretic generalization of the Gilbert-Varshamov bound. We then give an upper bound, based on Delsarte's linear programming approach, which combines Lov\'asz' theta function with the construction used by McEliece et al. for bounding the minimum distance of codes in Hamming spaces.Comment: 5 pages. Presented at 2016 IEEE International Symposium on Information Theor

    Golden codes: quantum LDPC codes built from regular tessellations of hyperbolic 4-manifolds

    Full text link
    We adapt a construction of Guth and Lubotzky [arXiv:1310.5555] to obtain a family of quantum LDPC codes with non-vanishing rate and minimum distance scaling like n0.1n^{0.1} where nn is the number of physical qubits. Similarly as in [arXiv:1310.5555], our homological code family stems from hyperbolic 4-manifolds equipped with tessellations. The main novelty of this work is that we consider a regular tessellation consisting of hypercubes. We exploit this strong local structure to design and analyze an efficient decoding algorithm.Comment: 30 pages, 4 figure

    Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

    Get PDF
    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.7041.Comment: 40 Pages + 25 Pages of Appendices. 38 figures. Typos and bibliographic amendments and minor correction

    Approach to a rational rotation number in a piecewise isometric system

    Full text link
    We study a parametric family of piecewise rotations of the torus, in the limit in which the rotation number approaches the rational value 1/4. There is a region of positive measure where the discontinuity set becomes dense in the limit; we prove that in this region the area occupied by stable periodic orbits remains positive. The main device is the construction of an induced map on a domain with vanishing measure; this map is the product of two involutions, and each involution preserves all its atoms. Dynamically, the composition of these involutions represents linking together two sector maps; this dynamical system features an orderly array of stable periodic orbits having a smooth parameter dependence, plus irregular contributions which become negligible in the limit.Comment: LaTeX, 57 pages with 13 figure

    Elias Bound for General Distances and Stable Sets in Edge-Weighted Graphs

    Full text link
    This paper presents an extension of the Elias bound on the minimum distance of codes for discrete alphabets with general, possibly infinite-valued, distances. The bound is obtained by combining a previous extension of the Elias bound, introduced by Blahut, with an extension of a bound previously introduced by the author which builds upon ideas of Gallager, Lov\'asz and Marton. The result can in fact be interpreted as a unification of the Elias bound and of Lov\'asz's bound on graph (or zero-error) capacity, both being recovered as particular cases of the one presented here. Previous extensions of the Elias bound by Berlekamp, Blahut and Piret are shown to be included as particular cases of our bound. Applications to the reliability function are then discussed.Comment: Accepted, IEEE Transaction on Information Theor
    corecore