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ABSTRACT 

We give several old and some new applications of eigenvalue interlacing to 
matrices associated to graphs. Bounds are obtained for characteristic numbers of 
graphs, such as the size of a maximal (colclique, the chromatic number, the diameter, 
and the bandwidth, in terms of the eigenvalues of the Standard adjacency matrix or 
the Laplacian matrix. We also deal with inequalities and regularity results concerning 
the structure of graphs and block designs. 

1. PREFACE 

Between 1975 and 1979, under the inspiring Supervision of J. J. Seidel, 1 
did my Ph.D. research on applications of eigenvalue techniques to combina- 
torial structures. It tumed out that eigenvalue interlacing provides a handy 
tool for obtaining inequalities and regularity results conceming the structure 
of graphs in terms of eigenvalues of the adjacency matrix. After 15 years, my 
thesis [Id] became an obscure reference (1 myself have no spare copies left) 
and, in addition, 1 came across some new applications. This made me decide 
to write the present Paper, which is an attempt to Survey the various kinds of 
applications of eigenvalue interlacing, and 1 am very glad to have the 
opportunity to present it in this issue of Linear Algebra and Apphcations, 
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which is dedicated to the person who educated me in combinatorial matrix 
theory and made me a believer in the power of eigenvalue techniques. 

2. INTERLACING 

Condider two sequences of real numbers: A, 2 *** > A,, and p1 > 
. . . > CL,,, with m < n. The second sequence is said to interlace the first one 

whenever 

for i = 1,. , . , m. 

The interlacing is called tight if there exist an integer k E [0, ml such that 

h=p, forI<i<k and A,,__,+,=cL~ fork+l<i<m. 

If m=n- 1, the interlacing inequalities become A, > pi 2 h, > /_+ > 
‘** > CL, > h,, which clarifies the name. Godsil [13] reserves the name 

“interlacing” for this particular case and 41s it generalized interlacing 
otherwise. Throughout, the A,s and pIs will be eigenvalues of matrices A 
and B, respectively. Basic to eigenvalue interlacing is Rayleigb’s principle, a 
Standard (and easy to prove) result from linear algebra, which tan be stated as 
follows. Let ui,. . . , u, be an orthonormal set of eigenvectors of the real 
symmetric matrix A, such that ui is a A,-eigenvector (we use this abbrevia- 
tion for an eigenvector corresponding to the eigenvalue h,). Then 

UTAU 
- > Ai ifu E (u,,...,ui) 
UTU 

and 

UTAU 
- <Ai ifu E (ul,...,ui_i)‘. 

UTU 

In both cases, equality implies that u is a Ai-eigenvector of A. 

THEOREM 2.1. Let S be a real n X m mutrix such that STS = 1 and let A 
be a symmetric n X n matrix with eigenvalues A, 2 **. > A,. Define B = 



INTERLACING EIGENVALUES AND GRAPHS 595 

STAS and let B haue eigenvalues Z-Q > * * * > p, and respective eigenvectors 
u 1”“> v,* 

(i) The eigenvalues of B interlace those of A. 
(ii) Zf pi = Ai or Pi = A,_,+i fit- som i E [l, m], then B has a 

Pi-eigenvector v such that SV is a Pi-eigenvector of A. 
(iii)Zfforsomeinteger1,~i=hj,fori=1,...,l~or~i=h,_,+i,for 

i = l,..., m), then svi is a Pi-eigenvector of A for i = 1,. . . , 1 (respectively 
i = 1,. . . , m>. 

(iV> Zf the interlacing is tight, then SB = AS. 

Proof. With ul,...,u, as above, for each i E [l, m], take a nonzero 
vector s, in 

( V 1, . ..> Vj) n (STU,y.**,STUi-~>’ ’ (1) 

Then Ssi E (U 1, . . . , ZL, _ 1 > ’ , hence by Rayleigh’s principle, 

A, , (Ss,ITA(Ssi) STBsi , ~, 
’ ’ (Ssi)T(Ssi) = - ’ s;sj I> 

and similarly (or by applying the above ineguality to -A and -B) we get 
4l- m+i < pi, proving (9. 

If Ai = pi, then si and Ssi are Ai-eigenvectors of B and A, respectively, 
proving (ii). 

We prove (iii) by induction on 1. Assume Svi = ui for i = 1,. . . , 1 - 1. 
Then we may take s1 = q in (l), b u in proving (ii) we saw that Ssl is a t 
hl-eigenvector of A. (The Statement between parentheses follows by consid- 
ering - A and - B.) Thus we have (iii). 

Let the interlacing be tight. Then by (iii), SV,, . . . , SV, is an orthonormal 
set of eigenvectors of A for the eigenvalues z+, . . . , p,,,. So we have 
SBv, = $31, = ASV,, for i = 1,. . . , m. Since the vectors vi form a basis, it 
follows that SB = AS. W 

If we take S = [Z OIT, then B is just a principal submatrix of A and we 
have the following corollary. 

COROLLARY 2.2. Zf B is a principal submatrix of a symmetric matrix A, 
then the eigenvalues of B interlace the eigenvalues of A. 
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Suppose rows and columns of 

A 1.1 *-- A l,m 

Ac : I l A’ m-1 9.. Ai,,” 

are partitioned according to a partitioning Xi, . . . , X, of (1, . . . , n} with 
characteristic matrix 5 [that is,_(g)i,j = 1, if i E Xj, and 0, otherwise]. The 
quotient matrix is the matrix B whose entries are the average row sums of 
the blocks of A. More precisely, 

(1 denotes the all-one vector). The partition is called regulur (or equituble) if 
each block Ai,j of A has constant row (and column) sum, that is, AS = SB. 

COROLLARY 2.3. Suppose B’ is the quotient matrir of a symmetric parti- 
tioned matrix A. 

(i) The eigenvalues of B’ interlace the eigenvalues of A. 
(ii) Zf the interlacing is tight, then the partition is regular. 

Proof. Put D = diag(]X,j, . , . , IX,]), S = iD-l/‘. Then the eigenvalues 
of B = STAS interlace those of A. This proves (i), because B and B’ = 
D- i/sBDi/a have the same spectrum. 
SB = AS; hence, AS = 6?. 

If the interlacing is tight, then 
w 

Theorem 2.l(i) is a classical result; see Courant and Hilbert [6, Vol. 1, 
Chap. 11. For the special case of a principal submatrix (Corollary 2.2) the 
result even goes back to Cauchy and is therefore often referred to as Cauchy 
interlacing. Interlacing for the quotient matrix (Corollary 2.3) is especially 
applicable to combinatorial structures (as we shall See). Payne (See, for 
instance, [29]) has applied the extremal inequalities hl > /..L~ > A, to finite 
geometric structures several times. He contributes the method to Higman 
and Sims and therefore calls it the Higman-Sims technique. 
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3. GRAPHS AND SUBGRAPHS 

Throughout the Paper, G is a graph on n vertices (undirected, simple, 
and loopless) having an adjacency matrix A with eigenvalues h, > ..* > h,. 
The size of the largest coclique (independent set of vertices) of G is denoted 
by cr(G). Both Corollaries 2.2 and 2.3 lead to a bound for a(G). 

Proof A has a principal submatrix B = 0 of size (Y = a(G). Corollary 
2.2 gives A, z pa = 0 and h,_,+l < pi = 0. ??

THEOREM 3.2. If G is regtdar, then cr(G) Q n( - A,)/(h, - A,), and ij- 
a coclique C meets this bound, then evey vertex not in C is adjacent to 
precisely - h, vertices of C. 

Proof. We apply Corollary 2.3. Let k = A, be the degree of G and put 
CY = a(G). The coclique gives rise to a partition of A with quotient matrix 

k 

kff . - k-- 
n-cx 1 

B has eigenvalues t.~i = k (row sum) and /,+ = -ka/(n - aXtr( B) - k) 
and so A, < p2 gives the required inequality. If equality holds, then p2 = A,, 
and since p1 = Ai, the interlacing is tight and hence the partition is regular. 

??

The first bound is due to CvetkoviC [7]. The second bound is an 
unpublished result of Hoffman. There are many examples where equality 
holds. For instance, a 4-coclique in the Petersen graph is tight for both 
bounds. The second bound tan be generalized to arbitrary graphs in the 
following way: 

THEOREM 3.3. lf G has smullest degree 6, then 

cr(G) <n 
-4An 

a2 - A,A,, ’ 
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Proof. Now we let k denote the average degree of the vertices of the 
coclique. Then the quotient matrix B is the Same as above, except maybe for 
the entry (B), 2. Interlacing gives 

k2cx S2a 
-A,A, > -p1p2 = -det(B) = - > - 

n-a n-cx’ 

which yields the required inequality. ??

If G is regular of degree k, then 6 = h, = k and Theorem 3.3 reduces to 
Hoffman’s bound (3.2). Lovasz [24] proved that Hoffman’s bound is also an 
upper bound for the Shannon capacity of G. This is a concept from 
information theory defined as follows. Denote by G’ the product of 1 copies 
of G. [That is, the graph with vertex set (1,. . . , n}l, where two vertices are 
adjacent if all of the coordinate places correspond to adjacent or coinciding 
vertices of G. If we denote the Kronecker product of 1 copies of a matrix M 
by M @‘, then the adjacency matrix of G’ is given by ( A + Z)” - Z.] The 
number 

is called the Shannon capacity of G. Clearly O(G) > a(G), so Lovasz’ bound 
implies Hoffman’s bound. Conversely, Lovasz’ bound tan be proved using 
Theorem 3.2. 

THEOREM 3.4. Let G be regular of degree k. Then 

Proof. First note that the proof of Theorem 3.2 remains valid if the 
ones in A are replaced by arbitrary real numbers, as long as A remains sym- 
metric with constant row sum. So we may apply Hoffman’s bound to Al = 
( A - h,Z)@’ - (-h,)‘Z to get a bound for cr(G”). It easily follows that Al 
has row sum (k - A,)’ - C-A,)’ and smallest eigenvalue -(- A,)'. So we 
find cu(G’) < (n( - A,)/(k - A,))‘. ??
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For the Pentagon Cs, we get @(Cs> Q J5. This is sharp since C,Z has a 
coclique of size 5. More generally, one tan obtain results on the size of 
induced subgraphs, analogous to Hoffman’s bound. 

THEOREM 3.5. Let G be regular of &gree k and suppose G has an 
induced subgraph G’ with n’ vertices and m’ edges. Then 

2m’n - n’k 

h,> n 
n - n’ 

> h,. 

lf equality holds on either Si&, then G’ is regular 
induced by the vertices not in G’. 

Proof. We now have quotient matrix 

2m’ 17 2m’ 
k-y 

1 

B= 
n’ n’ 

n’k - 2m’ n’k - 2m’ ’ 

n - 12’ 
k- 

n - n’ l 

with eigenvalues k and 2m’/n’ - (n’k - 2m’)/(n - n’), and Theorem 2.3 
gives the result. ??

If m’ = 0, we get Hoffman’s bound back. If m’ = &‘(n’ - 11, Theorem 
3.5 gives that the size of a Clique is bounded above by 

and so is the subgraph 

1 + h, 
n 

n - k + h, ’ 

which is again Hoffman’s bound applied to the complement of G. Like in 
Theorem 3.3, the above result also tan be generalized to nonregular graphs. 
Better bounds tan sometimes be obtained if more is known about the 
structure of G’ by considering a refinement of the partition. This is, for 
example, the case if G’ is bipartite. See [141 for details. 

4. CHROMATIC NUMBER 

A coloring of a graph G is a partition of its vertices into cocliques (color 
classes). Therefore, the number of color classes, and hence the chromatic 
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number A(G) of G, is bounded below by n/(a(G)). Thus upper bounds for 
o(G) give lower bounds for x(G). For instance, if G is regular, Theorem 3.2 
implies that A(G) > 1 - h,/h,. This bound, however, remains valid for 
nonregular graphs (but note that it does not follow from Theorem 3.3). 

THEOREM 4.1 

(i) Zf G is nd the empty gruph, then x(G) > 1 - (h,/h,). 
(ii) rf As > 0, then x(G) > 1 - (A,-xccj+ JA,). 

Proof. Let X,, . . . , X, [x = x(G)] d enote the color classes of G and let 
ur, . . . , u, be an orthonormal set of eigenvectors of A (where ui corresponds 
to A,). For i = 1,. . . , x, let si denote the restriction of ur to Xi, that is, 

( ).={ s 
("l)j, ifj E Xi, 

’ 3 0, otherwise, 

and put S = [sr .** sx] (if some si = 0, we delete it from S and proceed 
similarly) and D = gT$, S = $D- ‘12, and B = STAS. Then Z3 has zero 
diagonal (since each color class corresponds to a zero submatrix of A) and an 
eigenvahre A, (d = D ““1 is a A,-eigenvector of B). Moreover, interlacing 
Theorem 2.1 gives that the remaining eigenvalues of B are at least A,. Hence 

0 = tr(B) = z_+ + ... +/+ 2 A, + (x- l)A,, 

which proves (i), since A, < 0. The proof of (ii).is similar, but a bit more 
complicated. With sr, . . . , sx as above, choose a nonzero vector s in 

(u.-x+,, . . .,un> fl (SI,. . . > sxY . 

The two spaces have nontrivial intersection since the dimensions add up 
to n and u1 is orthogonal to both. Redefine si to be the restriction of s to Xi, 
and let S, D, S, and d be analogous to above. Put A’ = A - (A, - A,)u,uT. 
Then the largest eigenvalue of A’ equals A,, but all other eigenvalues of A 
are also eigenvalues of A’ with the same eigenvectors. Define B = STA’S. 
Now B has again zero diagonal (since u:S = 0). Moreover, B has smallest 
eigenvalue CL, < A, _ x + 1, because 

dTBd sTA’s 
CL, Q m = z c LX+v 
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So interlacing gives 

0 = tr( B) = pi + -0. +/J* d An-x+1 + (x - l)A,. 

Since A, > 0, (ii) follows. ??

The first inequality is due to Hoffman [20]. The proof given here seems to 
be due to the author [I5] and is a customary illustration of interlacing; see, for 
example, Lovasz [25, Problem 11.211 or Godsil [13, p. 481. In [14], more 
inequalities of the above kind are given, but only the two treated here tumed 
out to be useful. The condition h, > 0 is not strong; only the complete 
multipartite graphs, possibly extended with some isolated vertices, have 
A, < 0. The second inequality looks a bit awkward, but tan be made more 
explicit if the smallest eigenvalue A, has large multiplicity m,, say. Then (ii) 
yields x > min{ I + m,, 1 - (AJA,)} (indeed, if x < m,,, then A, = 
A hence x 2 1 - (AJA,)). F n-,y+l’ or strongly regular graphs with A, > 0, 
it is shown in [I4], by use of Seidels absolute bound (see Delsarte, Goethals, 
and Seidel [ll]), that the minimum is always taken by 1 - (AJA,), except 
for the Pentagon (sec Section 7 for more about strongly regular graphs). So 
we have the next corollary. 

COROLLARY 4.2. Zf G is a strongly regular graph, not the Pentagon or a 
complete multipartite graph, then 

hl 
x(G)>bÄ. 

2 

For example, if G is the Kneser graph K(m, 2) (i.e., the complement 
of the line graph of K,), then G is strongly regular with eigenvalues A, = 
k(rn - 2Xm - 3), A, = 1, and A, = 3 - m (for m > 4). The above bound 
gives (Y(G) z m - 2 , which is tight, whilst Hoffman’s lower bound 
[Theorem 4.l(i)] equals im. On the other hand, if m is even, Hoffman’s 
bound is tight for the complement of G, whilst the above bound is much less. 

5. DESIGNS 

In case we have a nonsymmetric matrix N (say) or different partitions for 
rows and columns, we tan still use interlacing by considering the matrix 

A= 
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Then we find results in terms of the eigenvalues of A, which now satisfy 
Ai = -A,_j+i, for i = l,..., n. The positive eigenvalues of A are the 
Singular values of N; they are also the Square roots of the nonzero eigenval- 
ues of NN T (and of N TN >. In particular, if N is the (0, 1) incidence matrix of 
some design or incidence structure D, we consider the bipartite incidence 
graph G. An edge of G corresponds to a flag (an incident point-block pair) of 
D and D is a l-(u, k, r) design precisely when g is biregular with degrees k 
and r. 

THEOREM 5.1. Let D be a l-Cu, k, r) design with b blocks and let D’ be 
a substructure with vr Points, b’ blocks, and m’ flugs. Then 

m1 : _ b’k )i b 

21’ 
m’ - 

b’ 
- v’r < A~(V - v’)(b - b’). 

Equality implies that all f our substructures induced by the Point set of D’ or 
its complement and the block set of D’ or its complement ferm a l-design 
( possibly degenerste). 

Proof. We apply Corollary 2.3. The substructure D’ gives rise to a 
partition of A with the following quotient matrix: 

1 0 0 
m’ 
- 
0’ 

m’ 
r- 7 

V 

b’k - m’ b’k - m’ 
0 0 

v-v’ 
r- 

B= 
v - v’ 

m’ 

b’ 
k-g 0 0 

v’r - m’ v’r-m’ 

b-b’ 
k- 

b-b’ 
0 0 

We easily have Ai = -A, = pi = -p4 = fi and 

det( B) = rk 
m’(v/v’) - b’k 

v -0’ 

Interlacing gives 

det( B) 
- = -/_+/.L~ < -A,A,_, = A;, 

rk 
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which proves the first Statement. If equality holds, then A, = pl, A, = p2, 
A,_ 1 = p3, and A, = h4, so we have tight interlacing, which implies the 
second Statement. ??

The above result becomes especially useful if we tan express h, in terms 
of the design Parameters. For instance, if D is 2-(u, k, A) design, then 
A; = r - A = A(u - k)/(k - 1) ( see, for example, Hughes and Piper [21]), 
and if D is a generalized quadrangle of Order (s, t), then Ai = s + t (See, for 
instance, Payne and Thas [30]). Let us consider hyo special cases. 

COROLLARY 5.2. lf a symmetric 2-(v, k, A) design has a symmetric 
2-(v’, k’, A’) s-ubdesign (possibly degenerste), then 

(k’u - kv’)’ < (k - A)( u - v’)‘. 

Proof. Take b=v, r=k, b’=v’, m’=v’k’, and At=k-Aand 
apply Theorem 5.1. w 

COROLLARY 5.3. Let X be a subset of the Points and let Y be a subset of 
the blocks of a 2-(u, k, A) design D, such that no Point of X is incident with a 
block of Y. Then krlXI IY 1 Q (r - A)(u - IXlXb - JY 1). Zf equality holds, 
then the incidence structure D’ fonned by the Points in X and the blocks not 
in Y is a 2-design. 

Proof. Take m’ = 0, v ’ = 1x1, b’ = IYI, then Ai = r - A. Now 
Theorem 5.1 gives the inequality and that D’ is a I-design, but then D’ is a 
2-design, because D is. ??

If equality holds in Corollary 5.2, the subdesign is called tight. There are 
many examples of tight subdesigns of symmetric designs; see Haemers and 
Shrikhande [17] or Jungnickel [22]. Wilbrink used Theorem 5.1 to shorten the 
proof of Feit’s result on the number of Points and blocks fixed by an 
automorphism group of a symmetric design; see Lander [23]. The inequality 
of the second corollary is, for example, tight for hyperovals and (more 
generally) maximal arcs in finite projective planes. If we take 1 X 1 = ti - k, we 
obtain 1Y 1 < b/m, which is Mann’s inequality for the number of repeated 
blocks in a 2-design. This is an unusual approach to Mann’s inequality. For 
bounds conceming the intersection numbers of D (these are the possible 
intersection sizes of two blocks of D), it is mostly better to consider the 
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matrix NrN, whose entries are precisely the intersection numbers. We give 
one illustration. 

THEOREM 5.4. Suppose p is an intersection number of a %(v, k, h) 
design D with b bl oc k s and r blocks through a Point. 

(i) p > k - r + A. 
(ii) Calling blocks equivabnt if they are the same or meet in k - r + h 

Points defines an equivalence relation. 
(iii) The number of blocks in an equivalence class is at most b/(b - v + 

1). 
(iV> Equality in (iii) for all classes imnplies that the intersection size of 

two distinct blocks only depends on whether these blocks are in the same class 
or in different classes (that is, D is strongly resolvable). 

Proof. Put A = NrN. Then h, = rk, A, = r - h, and A has a princi- 
pal submatrix 

B= 

So p1 = k + p and /.Q = k - p and (i) follows from Cauchy interlacing. 
Assume the first two blocks b, and b, meet in k - r + h Points. Then 

/.Q = A, and by Theorem 2.l(ii), A has a A,-eigenvector [l, - l,O, . . . , OIT 
(since B has /..+eigenvector [l, - llT>, which implies that ( A)i, 1 = (AI{, 2, 
for i = 3,. . . , b. Hence every block GG {b,, b2} meets b, and b, in the same 
number of Points. Therefore, having intersection k - r + A is a transitive 
relation which proves (ii). 

Suppose the first b’ blocks of D are equivalent. This gives a partitioning 
of A with quotient matrix 

x rk - x 

(rk-r)& 
b’ 

1 
rk-(rk-x)b ’ 

wherein r=b’(k-r+A)+r-A. Then p,=kr=A, and pz=x- 
(r-k - x)b ‘/(b - b ‘). Now puz > A, > 0 leads to the inequality (iii) (using 
the 2-design identities bk = vr and rk - uh = r - A). 

From the proof of (ii) we know that ( A)i, r = ( A)i 2 = e-0 = ( A)i, b, for 
i = b’ + l,... , b. Equality in (iii) implies tight interlacmg; therefore, the row 
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sums of block A, 1 
’ 

are constant and hence all entries of As, I are equal. This 
proves (iV>. ??

See [Id] for more general and other results on intersection numbers. The 
above theorem appeared in Beker and Haemers [I], where the intersection 
number k - r + A is treated in detail. Properties (i) and (ii), however, are 
much older and due to Majumdar [26]. 

6. LAPLACE MATRIX 

The Laplace matrix L of a graph G is defined by 

i 

the degree of i , if i =j, 

(L)i~j = -1, if i and j are adjacent, 

0, otherwise. 

This matrix is Singular and positive semidefinite with eigenvalues 

say (Laplace eigenvalues are usually ordered increasingly). If G is regular of 
degree k with (Standard) adjacency matrix A, then L = kI - A, so Oi = k - 
Ai and we have an easy one-to-one correspondence between eigenvalues of L 
and A. For nonregular graphs, there is a different behavior and the Laplace 
spectrum seems to be the more natural one. For instance, the number of 
components equals the nullity of L ( i.e., the multiplicity of the eigenvalue 01, 
whilst this number is not deducible from the spectrum of A (indeed, K i, 4 
and C, plus an isolated vertex have the same Standard spectrum). Notice that 
the Laplace matrix of a subgraph G’ of G is not a submatrix of L unless G’ 
is a component. So the interlacing techniques of Section 3 do not work in 
such a straightforward manner here. We tan obtain results if we consider 
Off-diagonal submatrices of L in a way similar to the previous section. 

LEMMA 6.1. Let X and Y be disjoint sets of vertices of G, such that there 
is no edge between X and Y. Then 

IX1 IY I en-e, 2 
(n - IXl)(n - IYI) ’ 0, + 8, ’ i 1 
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Proof. Put 8 = - $<0,, + 0,) and 

L + 81 3 0 ’ 

Then - h, = As, = 8 and h, = -A2n_1 = ;(0,, - 0,). The sets X and Y 
give rise to a partitioning of A with quotient matrix 

B= 

0 

0 

0 

fj- 0 ‘IX1 pxl 
0 - - 

n-Ir1 e n - IYI 
e IYI IYI 

n - I-XI 
e-e- 

n - 1x1 
0 0 

0 8 0 0 

Clearly /_Q = h, = - 8 and p4 = As, = 8. Using interlacing, we find 

e2 
1x1 IY l 

(n - IXl)(n - IY 1) = -~2p3 a -hh = (i<% - %))‘, 

which gives the required inequality. ??

A direct consequence of this lemma is an inequality of Helmberg, Mohar, 
Poljak, and Rendl [18], concerning the bandwidth of G. A symmetric matrix 
M is said to have bandwidth w if (M Ii, j = 0 for all i, j satisfying Ii - jl > w. 

The bandwidth w(G) of a graph G is the smallest possible bandwidth for its 
adjacency matrix (or Laplace matrix). This number (or rather, the vertex 
Order realizing it) is of interest for some combinatorial optimization Problems. 

THEOREM 6.2. Suppose G is not the empty graph and dejne b = 
I&92/q,)1. Then 

ifn - biseven, 
, ifn -bisodd. 

Proof. Order the vertices of G such that L has bandwidth w = w(G). If 
n - w is even, let X be the first i(n - w) vertices and let Y be the last 
i(n - w) vertices. Then Lemma 6.1 applies and thus we find the first 
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inequality. If n - w is odd, take for X and Y the first and last $n - w - 1) 
vertices and the second inequality follows. If b and w have different parity, 
then w - b > 1 and so the better inequality holds. ??

In case n - w is odd, the bound tan be improved a little by applying 
Lemma 6.1 with 1x1 = i(n -w + 1) and IYI = i(n - w - 1). It is clear 
that the result remains valid if we consider graphs with weighted edges. 

Next we consider an application of interlacing by Van Dam and Haemers 
[9], which gives a bound for the diameter of G. 

LEMMA 6.3. Suppose G ha.s diameter d and n 3 2 vertices, and Eet P be 
a polynomial of degree less than d, such that P(0) = 1. Then 

1 
y+y Ip(ei)I > - 

n-l’ 

Proof. Assume vertex 1 and n have distance d. Then (L’),, n = 0 for 
0 d 1 < d - 1; hence, (P(L)),, n = 0. Dehne 

A = [p;L) py]. 

Then CA),, 2n = CA),,,, i = 0 and A has row sum P(f3,) = P(O) = 1. This 
leads to a partition of A with quotient matrix 

0 

0 

1 
l- 

n-l 
1 

l- 

1 
1 

n-1 

0 

0 

0 
1 

n-l 

0 

0 

The eigenvalues of B are /_Q = --I_L~ = 1 and p2 = - /_Q = l/(n - 1) and 
those of A are k P( ei 1. Interlacing gives 

which proves the inequality. ??
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The Problem is to find a good choice for the polynomial P. If 8, > 0 and 
L has 1 < d distinct nonzero eigenvalues, we tan take P such that P(Oi> = 0 
for all i E [2, n]. This leads to a contradiction in Lemma 6.3, proving the 
well-known result that d Q Z - 1 if G is connected. In general, it tums out 
that the Chebyshev polynomials are a good choice for P. The Chebyshev 
polynomial Tl of degree 1 tan be defined by 

TI(x) = +( x -t Ilr”-lf + +( x - fl)‘. 
We need the following properties (sec Rivlin [32]): 

ITI(x)l a 1, if 1x1 d 1, 

IT,(x)1 > 1, if Ir1 > 1, 

THEOREM 6.4. i’f G is a connected graph with diameter d > 1, then 

log2(n - 1) 

d < l+ log(& + fl) - log(fl - &) . 

Proof. Define 

Q(x) = Tl-1 
i 

e, + 8, - 2x 

0, - 8, 1 

(0, f 13,) since G is not complete or empty) and put 

Q(x) 
P(x) = Q(o) 

[Q(O) # 0, since (0, + 0,>/(13,, - 0,) > 11. Then IQ(0,>l Q 1, for i = 
2 >.**> n, and P(0) = 1. By use of Lemma 6.3, we have 

1 
n - 1 > min ~ 

iz1 IP(k$)I 
2 Q(0) = T,_, 
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and the bound follows by taking logarithms (the connectivity of G guarantees 
a nonzero denominatorI. W 

Computing the diameter of a given graph probably goes faster than 
computing the above bound, yet the bound tan be of use if the graph is not 
explicitly given, but the involved eigenvalues are. This is, for instance, the 
case with coset graphs of linear Codes with given weights. Then eigenvalues 
correspond to weights in the dual code and diameter bounds lead to bounds 
for the covering radius of the Code (sec Delorme and Sole [lO]). 

7. REGULARITY 

Corollary 2.3(ii) gives a suffcient condition for a partition of a matrix A to 
be regular. This tums out to be handy for proving various kinds of regularity. 
In Sections 3 and 5 we mentioned some examples. Here we give a few more. 
If we apply Theorem 2.3 to the trivial one-class partition of the adjacency 
matrix of a graph G with n vertices and m edges, we obtain 

2m 
- GA,, 

n 

and equality implies that G is regular. This is a well-known result; see 
Cvetkovic, Doob, and Sachs [8]. In fact [since 2m = tr(A2) = xy= 1 hf], it 
implies that G is regular if and only if Cy= 1 hf = n h,. 

Next we consider less trivial partitions. For a vertex o of G, we denote by 
X,(u) the set of vertices at distance i from u. The neighbor partition of G 
with respect to o is the partition into X,(u), X,(u), and the remaining 
vertices. If G is connected, the partition into the X,(u>s is called the distance 
partition with respect to 2). We give examples of tight interlacing involving 
strongly regular and distance-regular graphs. A graph is distance-regular 
around 0 if the distance partition with respect to u is regular. If G is 
distance-regular around each vertex with the Same quotient matrix, then G is 
called distance-regular. A strongly regular graph is a distance-regular graph 
of diameter 2. A distance-regular graph of diameter d has precisely d + 1 
distinct eigenvalues, being the eigenvalues of the quotient matrix of the 
distance partition. See Brouwer, Cohen, and Neumaier [3] for more about 
distance-regular graphs. For strongly regular graphs there is a nice Survey by 
Seidel 1331. 
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THEOREM 7.1. Suppose G is regular of degree k (0 < k < n - 1) and 
let t, be the number of triangles through the vertex v. Then 

nk - 2k2 + 2t, < -A,A,(n -k - 1). 

If equality holds f or eue y vertex, then G is strongly regular. 

Proof. The neighbor partition has the following quotient matrix: 

B = 

Interlacing gives 

0 k 0 

1 
2t” k2 - k - 2t, 

k k 
k” - k - 

0 
2t, nk - 2k2 + 2t, 

n-k-l n-k-l 

k 
nk - 2k2 + 2t, 

n-k-l 
= -det(B) = -k~2~J Q -kh,h,. 

This proves the inequality. If equality holds, then A, = pu, and A, = ps, so 
(since k = h, = pl) the interlacing is tight and the neighbor partition is 
regular with quotient matrix B. By definition, equality for all vertices implies 
that G is strongly regular. ??

The average number of triangles through a vertex is 

-$ tr( A3) = -& $ h(* 
i-l 

So if we replace t, by this expression, the above inequality remains valid. 
Equality then means automatically equality for all vertices, so strong regular- 
ity. In [16], we looked for similar results for distance-regular graphs of 
diameter d > 2, in Order to find sufficient conditions for distance regularity 
in terms of the eigenvalues. Therefor, one needs to prove regularity of the 
distance partition. The Problem is, however, that in general all eigenvalues # 
Ai of a distance-regular graph have a multiplicity greater than 1, whilst the 
quotient matrix has all multiplicities equal to 1. So for d 2 3 there is not 
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much Chance for tight interlacing, but because of the special nature of the 
partition, we still tan conclude regularity. 

LEMMA 7.2. Let A be a symmetric partitioned matrix such that Ai, j = 0 
if Ii - jl > 1 and let B be the yuotient matrix. For i = 1,. . . , m, let 
vi = [Dg,. . . ) UI m IT denote a Pi-eigenvector of B. Zf h, = po, h, = pl, and 
A, = pL, and if’each triple of consecutive rows of [vl v2 vm] is indepen- 
dent, then the partition is regular. 

Proof. By (iii) of Th eorem 2.1, Ahoi = pi<ui, for i = 1,2, m. By consid- 
ering the lth block row of A, we get 

(wherein the undefined terms have to be taken equal to Zero). Since, for 
i = 1,2, m and j = 1 - 1, 1, 1 + 1, the matrix (ui j) is nonsingular, we find 
A,, jl E (1) for j = 1 - 1, l,Z + 1 (and hence for j = 1,. . . , m). Thus the 
partition is regular. ??

In [16] it was proved that the independence condition in the above lemma 
is always fulfilled if we consider the distance partition of a graph. So we have 
the following theorem: 

THEOREM 7.3. Let G be a connected graph and let B be the quotient 
matrix of the distance partition with respect to a vertex v. Zf A, = pO, 
A, = I.Q, and A,, = P,,,, then G is distance-regular around v. 

Using this result it was proved (among others) that if G has the same 
spectrum and the same number of vertices at maximal distance from each 
vertex as a distance regular graph G’ of diameter 3, then G is distance- 
regular (with the same Parameters as G’). 

As a last illustration of tight interlacing we prove a result from [14] used 
by Peeters [31] in his contribution to this Seidel Festschrift. Suppose G is a 
strongly regular graph, pseudogeometric to a generalized quadrangle of Order 
(s, t). This means that G has n = (s + lxst + 1) vertices and the following 
quotient matrix for its neighbor partitions: 

[ 

0 stfs 0 
1 s-l st 
0 t+l st+s-t-1 l 
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for integers s and t. So the eigenvalues of G are h, = st + s, h, = s - 1, 
and h, = -t- 1. 

PROPOSITION 7.4. Let C be a component of the graph induced by the 
neighbors of any vertex v of G. Let C have c vertices. Then c is a multiple of s 
and evey vertex not adjacent to v is adjacent to precisely c/s vertices of C. 

Proof. Assume c < st + s (otherwise the result is immediate). Then C 
gives rise to a refinement of the neighbor partition with quotient matrix 

0 c st+s-c 0 
1 

B=l l s-l 0 st 

0 s-1 st 

0 c/s t + 1 - (c/s) st+s-t-l 1. 

It easily follows that B has eigenvalues Ei = st + s, pg = CL, = s - 1, and 
p4 = -t - 1. Thus we have tight interlacing, so the partition is regular and 
the result follows. W 

8. MISCELLANEA 

Mohar [28] obtained necessary conditions for the existente of a long cycle 
in a graph G using Cauchy interlacing. In particular, he finds an eigenvalue 
condition for Hamiltonicity. 

THEOREM 8.1. Let G be regular of degree k. If G has a cycle of length 1, 
then 

2cos 7 < dm, 
n-l 

fori = l,..., - 
I 1 2 * 

Proof. Let N be the vertex-edge incidence matrix of G. Consider the 
(bipartite) graph G’ with adjacency matrix 

A’ = 
N 

[ 1 is 0’ 
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(G’ is called the subdivision of G; roughly, G’ is obtained from G by putting 
a vertex of degree 2 in the middle of each edge.) If G has a cycle of length 1, 
then G’ has a cycle of length 21 as an induced subgraph, so the eigenvalues 
of the 2Lcycle interlace the eigenvalues of A’. Since G has adjacency matrix 
A = NNT - kZ (sec also the beginning of Section 5), the eigenvalues of G’ 
are + dm and (possibly) Zero. The eigenvalues of the 2Lcycle are 
2 cos(in/l) (i = 0,. . . ,2Z - 1) and Cauchy interlacing finishes the proof. ??

For example, if G is the Petersen graph and 1 = 10, then i = 3 gives 
2cos(3~/10) < 1, which is false. This proves that the Petersen graph is not 
Hamiltonian. The above result has been generalized to arbitrary graphs by 
Van den Heuvel [19]. 

Eigenvalues of graphs have application in chemistry via the so-called 
Hückel theory; see [8]. For instance, a (carbon) molecule is chemically stable 
if its underlying graph has half of its eigenvalues positive and half of its 
eigenvalues negative. Manolopoulos, Woodall, and Fowler [27] proved that 
certain graphs, feasible for a molecule structure, satisfy the desired eigen- 
value property and hence provide chemically stable molecules. Their method 
essentially uses interlacing, although they cal1 it Rayleigh’s inequalities. We 
illustrate their approach by considering the more general question of how to 
make graphs (on an even number of vertices) with A,,, > 0 and hn,s+ 1 < 0. 
By Theorem 3.1, graphs with a coclique of size n/2 satisfy this property. This 
includes the bipartite graphs, but there are many more such graphs. We cal1 a 
graph G an erpanded Eine graph of a graph G’ if G tan be obtained from G’ 
in the following way. The vertices of G are all the ordered pairs (i, j) for 
which (i, j} is an edge in G’. Vertices corresponding to the Same edge are 
adjacent and vertices corresponding to disjoint edges are not adjacent. Of the 
vertices of G that correspond to intersecting edges {i, j} and {i, k} (say) of 
G’, either (i,j) is adjacent to (k, i) or (j, i> is adjacent to (i, k), but (i,j) is 
never adjacent to (i, k) and (j, i) is never adjacent to (k, i). For example, the 
triangle has the following two expanded line graphs: 

THEOREM 8.2. Zf G is an expanded line graph of a graph G' with 
adjacency matrix A, then: 

(9 h,,, > 0 and equality implies that A has a 0-eigenuector u = 

[Ul>. . . > U,lT> where ui = uj if i and j corr-espond to the same edge of G'. 
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(ii) h,,,_ 1 Q 0 and equality implies that A has a 0-eigenuector u = 

Lu,, . . . , u,lT, where ui = -uj if i andj correspond to the same edge of G’. 

Proof. We start with a matrix description of the above construction. Let 
N be the vertex-edge incidence matrix of G’ and let N be a matrix obtained 
from N by replacing in each column one of the two 1s by - 1 (arbitrarily). 
Consider the matrices B = NTN and B’ = N’N (so that B - 2 1 is the 
adjacency matrix of the line graph of G’ and B’ - 21 is a signed Version of 
it). Next we Substitute a 2 X 2 matrix for every entry of B’ as follows. Replace 

but such that the matrix A, thus obtained, is symmetric. Then A is the 
adjacency matrix of an expanded line graph of G’ and every expanded line 
graph of G’ tan be obtained like this. By construction we have a partition of 
A into m = n/2 classes of size 2 with quotient matrix +B. Obviously B has 
smallest eigenvalue pm > 0, so interlacing gives h, > 0 and by (ii) of 
Theorem 2.1 we have the required 0-eigenvector in case h, = CL,,, = 0. To 
prove (ii), we multiply every odd row and column of A by - 1. Then the 
eigenvalues of A remain the Same, but now the partition has quotient matrix 
- $g, which has largest eigenvalue at most 0 and (ii) follows by interlacing. 

??

In [27], the authors considered so-called leapfrog fullerenes, which are 
special cases of expanded line graphs. By use of the second Parts of the above 
Statements, they were able to show that leapfrog fullerenes have no eigen- 
value 0, and so give rise to stable molecules. 

Eigenvalue interlacing has been applied to graphs in many more cases 
than mentioned in this Paper. For instance, Brouwer and Mesner [5] used it 
to prove that the connectivity of a strongly regular graph equals its degree 
and in Brouwer and Haemers [4], eigenvalue interlacing is a basic tool for 
their proof of the uniqueness of the Gewirtz graph. In the present Seidel 
volume there are also some Papers that use eigenvalue interlacing. Brouwer 
[2] uses it to find bounds for the toughness of a graph, Van den Heuvel [19] 
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applies it in his generalization of Mohar’s Hamiltonicity condition (Theorem 
S.l>, and Ghinelli and Löwe [12] use interlacing to reconstruct generalized 
quadrangles. 
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