We propose a family of exactly solvable toy models for the AdS/CFT
correspondence based on a novel construction of quantum error-correcting codes
with a tensor network structure. Our building block is a special type of tensor
with maximal entanglement along any bipartition, which gives rise to an
isometry from the bulk Hilbert space to the boundary Hilbert space. The entire
tensor network is an encoder for a quantum error-correcting code, where the
bulk and boundary degrees of freedom may be identified as logical and physical
degrees of freedom respectively. These models capture key features of
entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi
formula and the negativity of tripartite information are obeyed exactly in many
cases. That bulk logical operators can be represented on multiple boundary
regions mimics the Rindler-wedge reconstruction of boundary operators from bulk
operators, realizing explicitly the quantum error-correcting features of
AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.7041.Comment: 40 Pages + 25 Pages of Appendices. 38 figures. Typos and
bibliographic amendments and minor correction