233 research outputs found

    Quantum computation and privacy

    Get PDF
    Quantum mechanics is one of the most intriguing subjects to study. The world works inherently differently on very small scales and can no longer be described by means of classical physics corresponding to our everyday intuition. Contrary to classical computing, quantum computation is based on the rules of quantum mechanics. It not only allows for more efficient local computations, but also has far-reaching effects on multi-party protocols. In this thesis, we investigate two cryptographic primitives for privacy protection using quantum computing: private information retrieval and anonymous transmissions

    Quantum linear network coding as one-way quantum computation

    Get PDF
    Network coding is a technique to maximize communication rates within a network, in communication protocols for simultaneous multi-party transmission of information. Linear network codes are examples of such protocols in which the local computations performed at the nodes in the network are limited to linear transformations of their input data (represented as elements of a ring, such as the integers modulo 2). The quantum linear network coding protocols of Kobayashi et al [arXiv:0908.1457 and arXiv:1012.4583] coherently simulate classical linear network codes, using supplemental classical communication. We demonstrate that these protocols correspond in a natural way to measurement-based quantum computations with graph states over over qudits [arXiv:quant-ph/0301052, arXiv:quant-ph/0603226, and arXiv:0704.1263] having a structure directly related to the network.Comment: 17 pages, 6 figures. Updated to correct an incorrect (albeit hilarious) reference in the arXiv version of the abstrac

    Códigos convolucionais para codificação em rede com múltiplos envios

    Get PDF
    In this thesis, we aim to provide a general overview of the area of multi-shot codes for network coding. We will review the approaches and results proposed so far and present slightly more general definitions of rank metric block and convolutional codes that allows a wider set of rates than the definitions of rank metric codes that exist in the literature. We also present, within this new framework, the notion of column rank distance of a rank metric convolutional code. We investigate it properties and derive an upper-bound that allows us to extend the notions of Maximum Distance Profile and Strongly-Maximum Distance Separable convolutional codes to some rank metric codes analogues. We focused on the development of channel encoders as a mechanism that allows the recovery of the data lost during the transmission. We also concentrate on the construction of novel classes of MRD convolutional codes. In particular we aim at extending the constructions presented by Napp, Pinto, Rosenthal and Vettori, in order to increase the degree of the code and consequently it error correction capability. As alternative to rank metric convolutional codes, we present a novel scheme by concatenation of a Hamming metric convolutional code (as outer code) and a rank metric block code (as a inner code). The proposed concatenated code is defined over the base finite field instead of over several extension finite fields and pretend to reduce the complexity of encoding and decoding process and moreover use the more general definition of rank metric code in order to be more natural.Nesta tese, pretendemos mostrar uma visão geral da área de códigos multishot na codificação em redes. Para o efeito, iremos rever as abordagens e resultados propostos até agora e apresentar definições um pouco mais gerais de códigos a blocos e códigos convolucionais que permitem uma ampliação das definições de códigos de métrica rank que já existem na literatura. Também apresentamos, dentro desta nova estrutura, a noção de distância de coluna de um código convolucional de métrica rank. Investigamos as suas propriedades e derivamos um limite superior para o valor da mesma, que nos permite estender as noções de MDP e Strongly MDS para os códigos de métrica rank. Iremos também focar-nos no desenvolvimento de codificadores de canal como mecanismo que permite uma melhor recuperação dos dados perdidos durante o processo de transmissão. Também nos concentramos na construção de novas classes de códigos convolucionais MRD. Em particular, pretendemos estender as construções apresentadas por Napp, Pinto, Rosenthal e Vettori, com o intuito de incrementar o grau do código e, consequentemente, melhorar a sua capacidade corretora. Como alternativa aos códigos convolucionais de métrica rank, apresentamos um novo esquema usando concatenação de um código convolucional de métrica Hamming (como código externo) e um código a bloco de métrica rank (como um código interno). O código concatenado proposto é definido sobre o corpo finito base, com o intuito de reduzir a complexidade do processo de codificação e decodificação e, além disso, usa a definição mais geral de código de métrica rank, tornando o processo mais natural.Programa Doutoral em Matemátic

    Advanced and current topics in coding theory

    Get PDF

    Anonymity-Preserving Public-Key Encryption: A Constructive Approach

    Get PDF
    Abstract. A receiver-anonymous channel allows a sender to send a message to a receiver without an adversary learning for whom the message is intended. Wireless broadcast channels naturally provide receiver anonymity, as does multi-casting one message to a receiver population containing the intended receiver. While anonymity and confidentiality appear to be orthogonal properties, making anonymous communication confidential is more involved than one might expect, since the ciphertext might reveal which public key has been used to encrypt. To address this problem, public-key cryptosystems with enhanced security properties have been proposed. We investigate constructions as well as limitations for preserving receiver anonymity when using public-key encryption (PKE). We use the constructive cryptography approach by Maurer and Renner and interpret cryptographic schemes as constructions of a certain ideal resource (e.g. a confidential anonymous channel) from given real resources (e.g. a broadcast channel). We define appropriate anonymous communication resources and show that a very natural resource can be constructed by using a PKE scheme which fulfills three properties that appear in cryptographic literature (IND-CCA, key-privacy, weak robustness). We also show that a desirable stronger variant, preventing the adversary from selective “trial-deliveries ” of messages, is unfortunately unachievable by any PKE scheme, no matter how strong. The constructive approach makes the guarantees achieved by applying a cryptographic scheme explicit in the constructed (ideal) resource; this specifies the exact requirements for the applicability of a cryptographic scheme in a given context. It also allows to decide which of the existing security properties of such a cryptographic scheme are adequate for the considered scenario, and which are too weak or too strong. Here, we show that weak robustness is necessary but that so-called strong robustness is unnecessarily strong in that it does not construct a (natural) stronger resource

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    The Topology of Wireless Communication

    Full text link
    In this paper we study the topological properties of wireless communication maps and their usability in algorithmic design. We consider the SINR model, which compares the received power of a signal at a receiver against the sum of strengths of other interfering signals plus background noise. To describe the behavior of a multi-station network, we use the convenient representation of a \emph{reception map}. In the SINR model, the resulting \emph{SINR diagram} partitions the plane into reception zones, one per station, and the complementary region of the plane where no station can be heard. We consider the general case where transmission energies are arbitrary (or non-uniform). Under that setting, the reception zones are not necessarily convex or even connected. This poses the algorithmic challenge of designing efficient point location techniques as well as the theoretical challenge of understanding the geometry of SINR diagrams. We achieve several results in both directions. We establish a form of weaker convexity in the case where stations are aligned on a line. In addition, one of our key results concerns the behavior of a (d+1)(d+1)-dimensional map. Specifically, although the dd-dimensional map might be highly fractured, drawing the map in one dimension higher "heals" the zones, which become connected. In addition, as a step toward establishing a weaker form of convexity for the dd-dimensional map, we study the interference function and show that it satisfies the maximum principle. Finally, we turn to consider algorithmic applications, and propose a new variant of approximate point location.Comment: 64 pages, appeared in STOC'1
    corecore