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resumo 
 

 

Nesta tese, pretendemos mostrar uma visão geral da área de códigos multi-
shot na codificação em redes. Para o efeito, iremos rever as abordagens e 
resultados propostos até agora e apresentar definições um pouco mais gerais 
de códigos a blocos e códigos convolucionais que permitem uma ampliação 
das definições de códigos de métrica rank que já existem na literatura. 
Também apresentamos, dentro desta nova estrutura, a noção de distância de 
coluna de um código convolucional de métrica rank. Investigamos as suas 
propriedades e derivamos um limite superior para o valor da mesma, que nos 
permite estender as noções de MDP e Strongly MDS para os códigos de 
métrica rank. 
 
Iremos também focar-nos no desenvolvimento de codificadores de canal como 
mecanismo que permite uma melhor recuperação dos dados perdidos durante 
o processo de transmissão. Também nos concentramos na construção de 
novas classes de códigos convolucionais MRD. Em particular, pretendemos 
estender as construções apresentadas por Napp, Pinto, Rosenthal e Vettori, 
com o intuito de incrementar o grau do código e, consequentemente, melhorar 
a sua capacidade corretora. 
 
Como alternativa aos códigos convolucionais de métrica rank, apresentamos 
um novo esquema usando concatenação de um código convolucional de 
métrica Hamming (como código externo) e um código a bloco de métrica rank 
(como um código interno). O código concatenado proposto é definido sobre o 
corpo finito base, com o intuito de reduzir a complexidade do processo de 
codificação e decodificação e, além disso, usa a definição mais geral de código 
de métrica rank, tornando o processo mais natural. 
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abstract 

 
 
In this thesis, we aim to provide a general overview of the area of multi-shot 
codes for network coding. We will review the approaches and results proposed 
so far and present slightly more general definitions of rank metric block and 
convolutional codes that allows a wider set of rates than the definitions of rank 
metric codes that exist in the literature. We also present, within this new 
framework, the notion of column rank distance of a rank metric convolutional 
code. We investigate it properties and derive an upper-bound that allows us to 
extend the notions of Maximum Distance Profile and Strongly-Maximum 
Distance Separable convolutional codes to some rank metric codes analogues. 
 
We focused on the development of channel encoders as a mechanism that 
allows the recovery of the data lost during the transmission. We also 
concentrate on the construction of novel classes of MRD convolutional codes. 
In particular we aim at extending the constructions presented by Napp, Pinto, 
Rosenthal and Vettori, in order to increase the degree of the code and 
consequently it error correction capability. 
 
As alternative to rank metric convolutional codes, we present a novel scheme 
by concatenation of a Hamming metric convolutional code (as outer code) and 
a rank metric block code (as a inner code).  The proposed concatenated code 
is defined over the base finite field instead of over several extension finite fields 
and pretend to reduce the complexity of encoding and decoding process and 
moreover use the more general definition of rank metric code in order to be 
more natural. 
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Notation

C the code

Fq finite field

Fq[D] polynomials with coefficients in Fq
Fqm extension field

Fqm [D] polynomials with coefficients in Fqm
intdeg(A(D)) internal degree of A(D)

extdeg(A(D)) external degree of A(D)

u, u(D) message

v, v(D) codeword

V, V (D) codeword in matrix form

G,G(D) encoder of a block code/convolutional code

H,H(D) parity-check matrix of a block code/convolutional code

Gj
c truncated sliding generator matrices

Hj
c truncated sliging parity check matrices

(n, k, δ) parameters of a convolutional code

(n, k) parameters of a rank metric block code over extention fields

(n×m, k) parameters of a rank metric block code over the base field

(n×m, k, δ) parameters of a rank metric convolutional code

(no, ko, δ) parameters of the outer convolutional code

(nI , kI) parameters of the inner rank metric block code

wt(v) Hamming weight of v

dH(a− b) Hamming distance between a and b

dH(C) Hamming distance of a block code

dfree(C) the free Hamming distance of a convolutional code

dcj(C) the j-th column distance of a convolutional code

rank(A) rank of the matrix A

drank(A,B) rank distance between A and B

drank(C) the rank distance of a rank metric block code

rwt(A(D)) rank weight of a polynomial matrix A(D)

dSR(A(D), B(D)) sum rank distance between A(D) and B(D)

dSR(C) the sum rank distance of a rank metric convolutional code

dcrj (C) the j-th column sum rank distance of a rank metric convolutional code

GGC Gabidulin codes encoder

A deficiency channel matrix
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Chapter 1

Introduction

In this chapter we present the general ideas of this thesis. We describe the context in

which these ideas have been developed and motivate the main research goals pursued

in this work. We first start introducing the area of coding theory as it has been

studied in the last decades. We then present a more modern subarea called network

coding that is devoted to investigate coding theory when the information is being sent

through a network. Within this context we describe the main research goal proposed

in this thesis, namely, the study of an algebraic framework for the use of convolutional

codes for network coding. We conclude this introductory chapter by providing a brief

description of each chapter and therefore outlining the structure of the thesis.

1.1 Classical Coding Theory

The information suffer specific transformations during its transmission process from

a source to the receiver. This process is represented in the Figure 1.1. When an

information source sends a message, a process, which we called source encoder, divides

the message into blocks. Each of these blocks is transformed into its digital form , i.e.,

into a set of symbols that we often call alphabet, forming an algebraic structure, which

usually corresponds to a field or a ring. By means of this process, the initial message

becomes a source message. After that, a certain amount of redundancy is added by

the channel encoder to each block in order to create a longer block that we will call

codeword . The set of all possible codewords will form the code.

A codeword is then transmitted over a transmission channel, or simply stored in

memory. During the transmission process or during the storage errors can occur. To

recover the original message, a channel decoder is activated. This decoder will use

the redundancy added to detect and correct the errors, wherever it is possible, and

retrieve the most likely codeword. Finalizing the process, a source decoder determines

3



4 1. Introduction

and reconstruct the source message and deliver it to the destination.

Figure 1.1: Transmission process

In this thesis we focused on the development of channel encoders as a mechanism

that allows the recovery of the data against errors that occur during the transmission

and assume that the information is already given in terms of elements of a finite

field. The aim of coding theory is to develop the methods to detect and correct these

errors. For instance, CD players, computer hard drives or video streaming applications

would not be possible without the development of coding theory. Error correction

codes are used in everyday practical applications and have been the foundation of the

revolutionary growth in digital communications and storage.

When we refer to coding theory, we refer to the study of the codes properties and

their specific applications. Coding theory is the mathematical theory for algebraic and
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combinatorial codes that has emerged out of the need for better communication. Its

rich inter-dependency with other areas of mathematics and its applications to a number

of areas such as cryptography, electrical engineering, and theoretical computer science

have brought forward coding theory as a highly important area of applicable discrete

mathematics.

The study of error correcting codes started in the late 40’s by the hand of Shannon

and Hamming, and since then it became a very active area of research. Shannon,

Hamming and Golay were the pioneers in the area and developed the first studies

and ideas that are still used nowadays. Hamming’s codes [13] were the first codes,

but many other authors developed variations. The first followers of Hamming were

Hocquenghem [14], in 1959, and Bose and Ray-Chaudhari [5], in 1960. They introduced

the BCH codes, a generalization of the Hamming codes for multiple-error correction

over the binary field. Also in 1960, Reed and Solomon [33] built a class of codes

for nonbinary channels, named Reed-Solomon codes. Over the years new codes have

been discovered and a well-developed algebraic theory of linear block codes has been

developed [6, 15, 24, 35].

The encoding process depends heavily on the type of channel in which the inform-

ation is being sent. The most studied channel is the q-ary symmetric channel. In this

channel, the sender typically sends a vector of bits (zeros and ones) to the receiver. The

channel is noisy, i.e., each symbol can be exchanged by other symbol in the alphabet

with a probability of p or otherwise is received correctly. This type of channel appear

frequently in communication channels such as telephone lines or disk drive storage. In

this scenario we have one-sender and one-receiver. However, modern communications

often requires the transmission of data from multiple sources to multiple receivers or

computers.

There exists two types of error-correcting codes: block codes and convolutional

codes. Block codes provide the framework to encode and decode vectors of informa-

tion of fixed size. Convolutional codes were introduced around the mid-20th century

as an alternative to block codes [8]. The main difference between block codes and

convolutional codes is the way they encode the data. While block codes encode a

fixed number of bits, convolutional encoders of convolutional codes take the string of

information bits globally and process a continuous sequence of data. The data that is

being encoded at a certain time depends on previous information, i.e., the encoder has

memory. In other words, block codes are convolutional codes without memory.

In contrast to block codes which are limited to the transmission of codewords in

blocks, convolutional codes can naturally deal with streams of information. When the



6 1. Introduction

sender needs to encode a sequence of data, convolutional codes have the advantage

that they tend to be much easier to implement than comparable block codes [17]. For

this reason they have many practical and interesting applications [17].

1.2 Modern Coding Theory

Contemporary communication and computation environments are network communic-

ation channels, i.e., the transmission is sent through a network where there may be

many information sources and possibly many receivers. The internet, wireless network

communication, and cloud computing are examples of these new communication scen-

arios where a transmitter sends packets to several users through a series of intermediate

nodes.

These relatively new channels are based on certain mathematical models that pose

interesting challenges for researchers. Network communication models can be rep-

resented using a directed graph carrying an information flow with possibly several

information sources and sinks. The seminal paper [22] provided the mathematical

foundations for this communication scenario: an algebraic theory of network coding.

Network coding has since then became a very active are for research among researchers

in mathematics, coding theory, and cryptography.

Traditional approaches to the operation of packet networks treat the data in a very

simplistic way by just routing the information along network pathways. The channel

that can better illustrate this situation is the Internet. On the Internet, the inform-

ation is transmitted in the form of packets through a series of nodes or routers that

just forward the received packets. The packets have headers and number sequences

describing their position within a given stream. Moreover the integrity of the packets

is controlled via cyclic redundancy check (CRC) codes. So, the receiver knows exactly

when there are the missing or corrupted packets. In order to warrant reliable trans-

mission of data the TCP/IP protocol asks for the retransmission of lost or corrupted

packets. This ensures the reception of the correct information by the receiver, however

it enlarges the transmission time and has unsatisfactory performance when data need

to be transmitted from one server to multiple receivers or in real-time applications such

like video-calling.

Network coding challenges this conventional approach and is based on a simple, yet

far-reaching, idea: rather than simply routing packets, intermediate nodes are permit-

ted to combine packets in order to add redundancy that allows the error correction of

the transmitted packets. The award-winning paper [1] presented the butterfly network
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example that illustrates how linear network coding can outperform routing and we

explain next.

Figure 1.2: The butterfly example

Two source nodes, the senders, see Figure 1.2, have information A and B that must

be transmitted to two receivers, i.e., each receiver node must receive both A and B.

Each edge can carry only a single value. If only routing were allowed, then the central

link would be only able to carry A or B, but not both. Suppose we send A through

the center; then the left destination would receive A twice and not know B at all. No

routing scheme can transmit both A and B simultaneously to both destinations and

therefore it takes four time instances to transmit A and B to the receivers. However,

we can reduce this time if we can use a simple code: We just need to encode A and B

summing them up and send ”A+B”. That is, A and B can be sent to both destinations

simultaneously by transmitting the sum of the symbols through the two relay nodes.

The left destination receives A and A + B, and can calculate B by subtracting the two

values. Similarly, the right destination will receive B and A + B, and will also be able
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to determine both A and B. Therefore, with network coding, it takes only three time

slots and improves the throughput.

The communication between transmitter and receiver occurs in a series of rounds or

”shots” during each generation where the transmitter injects a number of fixed-length

packets into the network, each of which may be regarded as a row vector over a finite

field Fq. These packets propagate through the network, possibly passing through a

number of intermediate nodes between transmitter and receiver. Whenever an inter-

mediate node has an opportunity to send a packet, it creates an Fq-linear combination

of the packets it has available and transmits this random linear combination. Finally,

the receiver collects such randomly generated packets and tries to infer the set of pack-

ets injected into the network.

Let us denote by {p1, p2, . . . , pK} ⊂ FMq the packets or vectors that are injected

into the network. If there are not errors during the transmission process, then the

receivers will obtain linear combinations of the pi, i.e., yj =
∑K

i=1 aj,ipi where aj,i ∈ Fq
are coefficients generated by the nodes of the network. If we choose to consider the

injection of erroneous packets, denoted by et ∈ FMq , t = 1, . . . T , this model is enlarged

to include error packets as

yi =
K∑
i=1

aj,ipi +
T∑
t=1

sj,tet

with sj,t ∈ Fq. In a matrix form, the transmission model may be written as

Y = PA+ ES

where Y = (y1, . . . , yM), P = [p1 · · · pK ] ∈ FM×K
q , E = [e1, . . . , eT ] , A ∈ FK×N

q and

S ∈ FT×Nq . Note that if no errors occur during the transmission, then the receiver gets a

linear combination of the packets (columns of P ), i.e., the F-linear subspace generated
by the columns of P remains invariant over a noiseless transmission. Hence, in this

communication model, a projective geometry, i.e., the set of all subspaces of a finite

vector space, serves as communication alphabet. If these subspaces are represented

with matrices (which rows or columns represent a basis of such subspace), then the

code is equipped with the rank metric in order to correct the errors. This gives rise

to the so-called rank metric codes that will be formally defined in Chapter 2. More

details on network coding can be found in [12].
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1.3 Novel contributions of the Thesis

Most of the existing literature in the area of network coding is concerned with the

situation in which the network is used only once to propagate the information, i.e., a

fixed number of packets are encoded and sent via the network at one time instant. We

call the codes used in such a scenario one-shot network codes. To achieve a reliable

communication over network channels, matrix codes can be employed by the hand of

the so-called rank metric codes. Rank metric codes such as Gabidulin codes are known

to be able to protect packets in such a scenario.

The rank metric codes were introduced by Delsarte in [7] and were further developed

by Gabidulin, in 1985 [9], by Ruth, in 1991, and generated a vivid interest among

researchers (see for instance [4, 22, 28]) and became very popular in the last decade,

due mainly to their application to random network coding [22].

However, if one needs to transmit a lot of information and requires to use the net-

work several instants, then one can improve the error-correction capability of the code

by creating correlation among the transmitted data in the different shots. These codes

are referred as multi-shot network codes. This new class of codes has recently attrac-

ted much attention due to possible application in the fast-growing areas of distributed

storage and streaming communications [3, 4, 25, 31] (video traffic has had an explos-

ive growth and already accounts for over 50% of the traffic on networks). As coding

techniques for streaming are fundamentally different from the classical ones fascinating

new open problems have appeared in the design of multi-shot network codes. In this

thesis we propose the use of convolutional codes for this scenario.

The work in [34] was pioneer in this direction by presenting the first class of con-

volutional codes for multi-shot network coding. However, the results were only valid

for unit memory codes and in [4] a new class of convolutional codes was introduced

but only for delay-free networks and restricted parameters, see also [3, 25]. In [28], a

general framework was proposed without restrictions on the parameters and in [2, 30]

a new metric was introduced to cope with delay networks. Also, In [29] some new ideas

regarding more efficient Viterbi decoding algorithms were proposed using the idea that

one can reduce the number of branch metrics to be calculated in the trellis. All these

ideas surely contribute to the maturity of the area of rank metric convolutional codes,

which is in its infancy. However, although some preliminary ideas have been developed

there is no general theory till date for this area. The main goal of this thesis is the de-

velopment of a new mathematical theory which will lead to improved design techniques

and more efficient convolutional codes in network environments.
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1.4 Structure of the Thesis

This thesis is divided into 5 chapters. Then we give a brief outline of the contents of

each chapter.

Chapter 2 - Hamming and rank block codes and convolutional codes

This chapter presents some preliminaries about both block and convolutional codes

and their Hamming distance properties. Most of the definitions and results were from

[9, 17, 19, 36]. Further, we explain that when these codes are used over channels, that

can be represented by networks, we need to introduce a different metric, called rank

metric. We presented novel definitions and properties of rank metric codes. Some of

these results have been already published in [28, 30] and presented in Fifth International

Castle Meeting on Coding Theory and Applications (5ICMCTA), Estonia, in 2017 [27].

In particular, we introduce slightly more general definitions of rank metric block

and convolutional codes that allows a wider set of rates than the definitions of rank

metric codes that exist in the literature. We also present, within this new framework,

the notion of column rank distance of a rank metric convolutional code. We investigate

their properties and derive new upper-bounds that allows us to extend the notions of

Maximum Distance Profile and Strongly-Maximum Distance Separable convolutional

codes to some rank metric codes analogues.

Chapter 3 - Constructions of MRD convolutional codes

In this chapter we concentrate on the construction of novel classes of MRD convo-

lutional codes. In particular we aim at extending the constructions presented by Napp,

Pinto, Rosenthal and Vettori [28] where the degree of the MRD convolutional codes

were restricted to one.

These constructions have been briefly presented by the author of this thesis in three

local conferences, namely: in the Systems and Control Group Workshop in Aveiro (Por-

tugal) in 2019, on the Annual meeting of the Center for Research and Development in

Mathematics and Applications (CIDMA) in Aveiro (Portugal) in 2020 and on Research

summit UA in Aveiro (Portugal) in 2021.

Chapter 4 - Concatenated code

In this chapter we address the problem of building multi-shot codes. We present

a concatenation of a convolutional code and a rank metric block code as a alternative

approach of rank metric convolutional codes. We present a novel scheme by concat-

enation of a Hamming metric convolutional code (as outer code) and a rank metric

block code (as a inner code). As opposed to the scheme presented in [32] the proposed
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concatenated code is defined over the base finite field instead of over several extension

finite fields. This will reduce the complexity of encoding and decoding process and

moreover use the more general definition of rank metric code as presented in Chapter

2.

Chapter 5 - Conclusions

In the last chapter we summarize the main results obtained in our work and discuss

some interesting avenues for future investigations.





Chapter 2

Hamming and rank metric block

and convolutional codes

In this chapter we introduce both block and convolutional codes and present their

basic properties. These codes could be equipped with different metrics depending on

the channel in which the information is being sent. In this chapter we study their

Hamming and rank distance properties.

The distance of a code measures its capability of error detection and error correc-

tion. In the context of the Hamming metric, the free distance is defined for block

and convolutional codes. As opposite to block codes, several types of distances can be

defined for convolutional codes. The column distance is another important notion of

distance of a convolutional code that will be considered. These distances have been

thoroughly investigated and their properties have been fully understood. This is not

the case within the context of the rank metric. In this chapter we introduce the novel

notion of column rank distance and study its properties. We show that it is also pos-

sible to derive upper bounds on the column rank distances in a similar way as it is

done for the Hamming distance case.

2.1 Hamming metric codes

When we want to transmit digital data over a noisy channel, errors may occur and

therefore we need to develop a mechanism allowing recovery against these errors. Nor-

mally, the data that we want to transmit is represented by a vector of bits or elements

in a finite field. This vector is encoded into a codeword, by adding redundancy. After

transmission of this codeword through a channel, the receiver attempts to reconstruct

the original sent codeword. It starts by examining the received word (a possibly cor-

rupted version of this codeword), and then makes a decision by selecting, in the set of

13



14 2. Hamming and rank metric block and convolutional codes

all possible codewords, the codeword which is more similar to the received word. This

process is called the decoding.

The set of all possible codewords is called the code. When the encoding map is

linear, the obtained code is also said to be linear. In the case that the code is formed by

fixed vectors we are in the context of block codes, whereas when the set of information

data is formed by sequences of vectors we are in the context of convolutional codes.

Let Fq be the finite field constituted by q elements. Next, we formally introduce

both block codes and convolutional codes. More details and properties of block codes

can be found in [16, 24] and of convolutional codes in [16, 17, 26].

2.1.1 Block codes

A linear block code of rate k/n is an Fq-subspace of Fnq of dimension k. A full row rank

matrix G ∈ Fk×nq such that:

C = ImFqG =
{
uG : u ∈ Fkq

}
is called an encoder of C. Two encoders of C differ by left multiplication by an invertible

matrix and are called equivalent encoders. The elements of C are called codewords.

Linear block codes can also be described by means of themparity-check matrices.

A parity-check matrix of a linear block code C is an (n − k) × k full row rank matrix

such that

C = kerFqH =
{
v ∈ Fnq : HvT = 0

}
.

Parity-check matrices can be used in order to decide whether a specific vector is a

codeword of C, as a particular vector v is a codeword of C if and only if HvT = 0. For

this reason they are commonly used in decoding algorithms.

If a codeword is sent over a noisy channel then some components of the codeword

may arrive corrupted. In order to allow a block code to correct such errors we need to

define a distance for C. The Hamming distance is a metric for comparing two vectors of

data a and b that measures the number of coordinates in which the two vectors differ,

denoted by dH(a, b). Hence,

dH(a, b) = wt(a− b),

where wt(a− b) is the Hamming weight of the vector a− b, i.e., the number of nonzero

components of a− b.
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The free Hamming distance of a block code C is given by

dH(C) = min
v∈C,v ̸=0

wt
(
v
)
.

When the linear block code is equipped with the Hamming distance we shall refer

to it as simply Hamming metric codes. Moreover, if no confusion arises we refer to

the free Hamming distance of C simply as the Hamming distance of C. The Hamming

distance is keyed to the error-correcting capability of the code. In fact, after channel

transmission, a code can detect s errors in a received word w if the Hamming distance

of C is greater or equal than s+1, since this means that w cannot be a sent codeword.

Moreover, the code can always correct s errors if the Hamming distance is greater or

equal than 2s+1, because this means that there is a unique codeword that differ from

w in s positions. This is stated in the following theorem.

Theorem 2.1. [24, Theorem 2] Let C be a code with Hamming distance d. Then,

1. C can always detect d− 1 errors;

2. C can always correct ⌊d−1
2
⌋ errors;

3. C can always correct d − 1 erasures, where erasures are errors whose location is

known.

Note that in an erasure we assume to know the location of the error but not its

exactly value.

In this way, the larger the distance the more errors and erasures the code can

correct. Hence, the main problem in coding theory is to build codes having the largest

possible distance for a given rate k/n together with the creation of an efficient decoding

algorithm.

The Hamming distance of a block code of rate k/n is upper bounded by

dH(C) ≤ n− k + 1.

This bound is called the Singleton bound . A block code of rate k/n whose Hamming

distance attains the Singleton bound is calledmaximum distance separable (MDS) code.
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2.1.2 Convolutional codes

In this section we consider a different class of linear Hamming codes, the convolutional

codes. These codes are constituted by polynomial vectors. Let Fq[D] be the ring of

polynomials with coefficients in a finite field Fq. We start this section by recalling

some notions and results on matrices over Fq[D] that will be useful in the definition of

convolutional codes.

Definition 2.2. A matrix U(D) ∈ Fq[D]k×k is said to be unimodular if it has a

polynomial inverse, i.e., if there exists V (D) ∈ Fq[D]k×k such that U(D)V (D) =

V (D)U(D) = I.

A matrix U(D) ∈ Fq[D]k×k is unimodular if and only if its determinant belongs to

Fq\{0}, [10, 20].

Definition 2.3. Let A(D) ∈ Fq[D]k×n be a full row rank matrix. A(D) is said to be

left prime if

A(D) = X(D)Ã(D),

X(D) ∈ Fq[D]k×k and Ã(D) ∈ Fq[D]k×n, then X(D) is unimodular.

Next theorem gives some characterizations of left prime matrices.

Theorem 2.4. [20] Let A(D) ∈ Fq[D]k×n. The following statements are equivalent:

1. A(D) is left prime;

2. A(D) admits a polynomial right inverse;

3. the greatest common divisor of the k × k minors of A(D) is 1.

The following result follows immediately from the above theorem.

Corollary 2.5. Let A(D) ∈ Fq[D]k×n be a left prime matrix and U(D) ∈ Fq[D]k×k be

a unimodular matrix. Then U(D)A(D) is left prime.

Polynomial matrices that differ by left multiplication by unimodular matrices are

said to be (left) equivalent. Among equivalent polynomial matrices we will consider the

ones that have least sum of the its row degrees. The degree of a row of a polynomial

matrix is defined as the maximum degree of the entries of the row.

Definition 2.6. Let A(D) ∈ Fq[D]k×n.
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1. The internal degree of A(D) is the maximum degree of all k× k minors of A(D)

and it is represented by intdeg (A(D));

2. The external degree of A(D) is the sum of the row degrees of A(D), and it is

represented by extdeg (A(D)).

It is clear that the internal degree of a polynomial matrix is smaller or equal than

its external degree.

Definition 2.7. Let A(D) ∈ Fq[D]k×n be a full row rank matrix. A(D) is said to be

row reduced if intdeg (A(D)) =extdeg (A(D)).

The following theorem gives an efficient way to check if a matrix is row reduced.

Theorem 2.8. [20] Let A(D) ∈ Fq[D]k×n be a full row rank matrix and [A]hc ∈ Fk×nq

be the matrix with the i-th row constituted by the coefficients of Dνi, where νi is the

row degree of the i-th row of A(D). Then A(D) is row reduced if and only if [A]hc is

full row rank.

Example 2.9. The matrix

A(D) =

[
1 +D +D2 1 +D 1 +D2

D 1 +D 1

]
∈ F2[D]2×3

has row degrees 2 and 1 and it is row reduced because

[A]hc =

[
1 0 1

1 1 0

]

is full row rank. In fact, extdegA(D)) = 2 + 1 = 3 and intdegA(D)) = 3 since the full

size minors of A(D) are

det

[
1 +D +D2 1 +D

D 1 +D

]
= 1 +D +D2 +D3,

det

[
1 +D +D2 1 +D2

D 1

]
= 1 +D2 +D3

det

[
1 +D 1 +D2

1 +D 1

]
= D2 +D3.
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Next theorems present some results about row reduced matrices.

Theorem 2.10. [20] Let A(D) ∈ Fq[D]k×n be a full row rank matrix. Then there exists

a unimodular matrix U(D) ∈ Fq[D]k×k such that U(D)A(D) is row reduced.

Theorem 2.11. [20] Let A(D), B(D) ∈ Fq[D]k×n be two row reduced matrices such

that

A(D) = U(D)B(D),

for some unimodular matrix U(D) ∈ Fq[D]k×k. Then A(D) and B(D) have the same

row degrees, up to a permutation.

Next we define and give some results on convolutional codes. There are several

possible definitions of convolutional codes, however, in this work, we consider the one

provided in [19].

Definition 2.12. A convolutional code C of rate k/n is an Fq[D]-submodule of Fq[D]n

with rank k. If G(D) ∈ Fq[D]k×n is a full row rank matrix such that

C = ImFq [D]G(D) =
{
u(D)G(D) : u(D) ∈ Fq[D]k

}
,

then G(D) is called an encoder of C.

Any other encoder G̃(D) of C differ from G(D) by left multiplication by a unimod-

ular matrix, i.e., G̃(D) = U(D)G(D), for some unimodular matrix U(D) ∈ Fq[D]k×k.

Therefore, if C admits a left prime convolutional encoder then all its encoders are left

prime (see Corollary 2.5). Such a code is called observable .

A convolutional code always admits a minimal encoder, an encoder in row reduced

form (see Theorem 2.10). The sum of the row degrees of a minimal encoder attains its

minimum among all the encoders of C. Such sum is usually denoted by δ and called

the degree of C. A rate k/n convolutional code C of degree δ is called an (n, k, δ)

convolutional code [26].

As we mentioned above, the distance is the most important parameter to evaluate

the performance of a code and, for the case of convolutional codes the most important

distances are the free distance and the column distance [17]. Such distances are again

important measures of the capability of error detection and correction of the code: the

free distance allows the correction of errors when the complete sequence of information

is known and the column distance is used for correction per time intervals.
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The free Hamming distance, or simply the Hamming distance, of a convolutional

code C is given by

dfree(C) = min
v(D)∈C, v(D)̸=0

wt
(
v(D)

)
,

where wt
(
v(D)

)
is the Hamming weight of a polynomial vector

v(D) =
∑
i∈N

viD
i ∈ Fq[D]n,

defined as

wt
(
v(D)

)
=
∑
i∈N

wt(vi).

Rosenthal and Smarandache [18] showed that the free Hamming distance of an

(n, k, δ) convolutional code is upper bounded by

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

This bound was called the generalized Singleton bound . An (n, k, δ) convolutional

code whose free Hamming distance is equal to the generalized Singleton bound is called

maximum distance separable (MDS) convolutional code [18].

Let us now introduce the notion of column distances of convolutional codes C. As

opposite to the block code case, not all convolutional codes admit a representation in

terms of the parity-check matrix. Next theorem characterizes the class of convolutional

codes that admit such representation.

Theorem 2.13. [19] Let C be a convolutional code of rate k/n. Then there exists a

full row rank matrix H(D) ∈ Fq[D](n−k)×n such that:

C = kerH(D) = {w(D) ∈ Fq[D]n : w(D)TH(D) = 0},

if and only if C is observable.

A full row rank matrix H(D) ∈ Fq[D](n−k)×n such that C = kerH(D) is called a

parity-check matrix of C. From the above theorem it follows that only the observable

codes admit parity-check matrices. We will see that these matrices have an important

role in the study of the column distances of a convolutional code. Thus, we will restrict

the study of column distances to observable convolutional codes.
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Let C be an observable convolutional code. The j-th column distanceof C, for j ∈ N0,

is given by

dcj(C) = min{wt(v(D)|[0,j]) : v(D) ∈ C, v0 ̸= 0},

where v(D) =
∑
i∈N

viD
i and v(D)|[0,j] =

j∑
i=0

viD
i.

Let

G(D) =
ν∑
j=0

GjD
j ∈ Fq[D]k×n, Gj ∈ Fk×nq , Gν ̸= 0

be an encoder of C and

H(D) =

µ∑
j=0

HjD
j ∈ Fq[D](n−k)×n, Hi ∈ F(n−k)×n

q , Hµ ̸= 0

be a parity-check matrix of C. For every j ∈ N0, the truncated sliding generator

matrices Gc
j ∈ F(j+1)k×(j+1)n

q and the truncated sliding parity-check matrices Hc
j ∈

F(j+1)(n−k)×(j+1)n
q are given by

Gc
j =


G0 G1 · · · Gj

G0 · · · Gj−1

. . .
...

G0


and

Hc
j =


H0

H1 H0

...
...

. . .

Hj Hj−1 . . . H0

 ,
respectively. When j > ν, we consider Gj = 0 and when j > µ, we define Hj = 0.

Note that since any encoder G(D) =
∑ν

j=0GjD
j ∈ Fq[D]k×n of C is left prime, it

follows that there exists B(D) ∈ Fq[D]n×k such that G(D)B(D) = I (see Theorem

2.4), and therefore G(0)B(0) = I, which means that G0 = G(0) is full row rank. Thus,

for every j ∈ N0, the j-th column distance of C is given by

dcj(C) = min{wt([v0v1 · · · vj]) : [v0v1 · · · vj] = [u0u1 · · ·uj]Gc
j, ui ∈ Fkq , u0 ̸= 0}

= min{wt(v) : v = (v0, . . . , vj) ∈ F(j+1)n
q , v(Hc

j )
T = 0, v0 ̸= 0}.
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It is clear that the column distances are invariants of the code, i.e., they do not

depend on the encoder that was selected. For the sake of simplicity we sometimes

write dcj instead of dcj(C). The following result provides an upper bound on the column

distances of an (n, k, δ) convolutional code. Some other properties related to these

bounds are also presented.

Proposition 2.14. [19, Proposition 2.2] Let C be an (n, k, δ) convolutional code. For

every j ∈ N0, we have

dcj ≤ (n− k)(j + 1) + 1.

Corollary 2.15. [19, Corollary 2.3] Let C be an (n, k, δ) convolutional code. If dcj =

(n− k)(j + 1) + 1 then dci = (n− k)(i+ 1) + 1, for every i ≤ j.

The following result shows the first possible time instant that an (n, k, δ) convolu-

tional code can achieve the generalized Singleton bound for this class of codes.

Proposition 2.16. [19, Proposition 2.7] Let C be an MDS (n, k, δ) convolutional code

with column distances dcj and free distance dfree. Let M = min{j ∈ N, dcj = dfree}.
Then,

M ≥
⌊
δ

k

⌋
+

⌈
δ

n− k

⌉
.

These results leads to the following definitions.

Definition 2.17. [19, Definition 2.8 and 2.9] Let C be an (n, k, δ) convolutional code

and M =
⌊
δ
k

⌋
+
⌈

δ
n−k

⌉
. Then, C is called strongly-MDS, if

dcM = (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1

and is said to have a maximum distance profile (MDP) if

dcj = (n− k)(j + 1) + 1, for j = 1, . . . , L,

where

L =

⌊
δ

k

⌋
+

⌊
δ

n− k

⌋
,

that is

L =

{
M if (n− k)|δ

M − 1 otherwise
.
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MDP convolutional codes are very appealing for error correction as fast growth

of column distances is an attractive property for codes to be used with sequential

decoding. The maximal possible growth in the column distances implies that they can

correct the maximal number of errors and erasures per time interval. Strongly MDS

means that they achieve the maximum error correction capability as fast as possible.

This property is particularly useful for low-delay streaming applications.

2.2 Rank metric codes

In the previous section we considered codes that were equipped with the Hamming

distance as this is the appropriate distance in the context of one-sender to one-receiver

communication channels. In such a channel the Hamming distance characterizes the

error correction capabilities of the code.

However, network coding theory is concerned with multicast communications where

the data transmission is addressed to a group of destination computers simultaneously

and therefore there can be multiple receivers and even multiple senders. In this context

codes are not equipped with the Hamming distance anymore but rather with a different

metric: the rank metric, see [22] for more details.

This is a comparably fresh area of coding theory that differs from the classical

one in that a network takes the role of the traditional single-link communication. As

this specific area of coding theory is comparably new, many fundamental results that

have been fully understood in the context of the Hamming distance have not yet been

intensively investigated or even defined in the rank metric setting.

The theory of network coding developed so far is concerned to large extent with the

so-called one-shot network coding, where the coding is performed over one use of the

network. In this scenario linear block codes can be used to protect the information sent

through the network. However, coding can also be performed over multiple uses of the

network, giving rise to the multi-shot network coding. The potential of using multi-shot

network coding was already observed in the seminal paper [22]. The general idea stems

from the fact that creating dependencies among the transmitted codewords of different

shots can improve the error-correction capabilities. In this section we introduce rank

metric convolutional codes as a natural class of codes for multi-shot network coding.

We will base our work on the definition of rank metric codes developed by [28].
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2.2.1 Rank metric block codes

A rank metric code C is defined as any nonempty subset of Fn×mq . Let A,B ∈ Fn×mq .

Gabidulin [9] defines rank distance between A and B as

drank(A,B) = rank(A−B).

Then, any subset of Fn×mq equipped with this distance is a rank metric code.

Although rank metric codes in Fn×mq are usually constructed as block codes of length

n over the extension field Fmq (see Remark 2.19 below). We consider in this thesis a

more general construction as defined in [28]. An (n × m, k) linear rank metric code

C ⊂ Fn×mq of rate k/nm < 1 is the image of a monomorphism φ : Fkq → Fn×mq . We

write φ = ψ ◦ γ as a composition of an isomorphism ψ and a monomorphism γ:

φ : Fkq
γ−→ Fnmq

ψ−→ Fn×mq

u 7−→ v = uG 7−→ V = ψ(v),

where G ∈ Fk×nmq is full row rank and the rows of V are simply the n consecutive

blocks of v with m elements.

The rank distance of C, drank(C), is defined as

drank(C) = min
U,V ∈C

drank
(
U − V

)
= min

V ∈C,V ̸=0
drank

(
V
)
,

or simply the minimum rank distance between two different codewords. In the follow-

ing, for the sake of simplicity we will assume that n ≤ m (but analogous results can be

given for the other case). Linear rank metric codes also have a Singleton-like bound

which provides a limit for the value of the code distance.

Theorem 2.18. [28, Theorem 1] The rank distance of an (n×m, k) linear rank metric

code is upper bounded by

drank(C) ≤ n−
⌊
k − 1

m

⌋
= n−

⌈
k

m

⌉
+ 1.

A code C that attains the Singleton-like bound is called maximum rank distance

code (MRD code). The first MRD codes over a finite field Fq have been constructed by

Delsarte and Gabidulin [7, 9]. In the literature these codes are often called (generalized)

Gabidulin codes.



24 2. Hamming and rank metric block and convolutional codes

Remark 2.19. As mentioned above, linear rank metric codes are typically defined over

the extension field Fqm using an isomorphism ϕ between Fqm and Fmq . More concretely,

a linear rank metric code is typically defined via

C = ImFm
q
G =

{
uG : u ∈ Fkqm

}
⊂ Fnqm ,

with G ∈ Fk×nqm . Then, the rank metric code is ϕ(C). Gabidulin MRD codes (and most

of the existing rank metric codes) are defined within this framework. Note that in this

setting the rate is km/nm whereas in the more general framework described above the

rate is k/mn.

Example 2.20. The so-called Gabidulin codes were introduced by Delsarte and Gabid-

ulin in [7, 9] and represent the first general constructions of MRD codes for any n and

k. Their generator matrices are defined via the Moore matrices:

GGC =


αq

0

1 αq
0

2 . . . αq
0

n

αq
1

1 αq
1

2 . . . αq
1

n
...

...
. . .

...

αq
k−1

1 αq
k−1

2 . . . αq
k−1

n

 ∈ Fk×nqm ,

where α1, . . . , αn ∈ Fqm are linearly independent over Fq. This in particular implies

that m ≥ n. The linear independence of the α′
is over Fq is equivalent to the linear

independence of any k columns of the generator matrix GGC over Fqm which guarantees

that the code is MRD. Note again that using the isomorphic matrix representation we

can interpret the codewords of C as matrices in Fm×n
q .

In this thesis, we will only focus on erasures occurrence. Similarly to the case of

Hamming metric codes, the analogue of an erasure in the context of network coding

is rank deficiency. Adapting the proposal of [2] to the rank metric code definition

presented by [28] this very especial type of errors in the network can be described as

follows: Let v ∈ Fnmq , or equivalently V ∈ Fn×mq , be called channel packet, then V

represents the n packets of length m to be sent through the network. Following the

approach of [4] and consider a rank-deficiency channel for one shot given by

x = AvT ,

where x ∈ Fnmq represents the received packets and A the deficiency channel matrix.

The channel matrix A corresponds to the overall linear transformations applied by the
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network over the base field Fq and it is known by the receiver. For perfect communic-

ations we have that rank(A) = n, but channel interference may cause a rank deficient

channel matrix. We will call n− rank(A) the rank deficiency of the channel which, in

a practical way, represents the number of packets lost during the transmission.

2.2.2 Rank metric convolutional codes

In this section we will consider rank metric convolutional codes whose codewords are

polynomials matrices in Fq[D]n×m. These codes were introduced in [28] where it was

also defined the notion of sum rank distance. We will introduce the definition of column

sum rank distances of a rank metric convolutional code and derive an upper bound on

this distance.

A rank metric convolutional code C ⊂ Fq[D]n×m is the image of an homomorphism

φ : Fq[D]k → Fq[D]n×m. We write φ = ψ ◦ γ as a composition of a monomorphism γ

and an isomorphism ψ:

φ :Fq[D]k
γ−→ Fq[D]nm

ψ−→ Fq[D]n×m

u(D) 7→v(D)=u(D)G(D) 7→ V (D),
(2.1)

where G(D) ∈ Fk×nmq is a full row rank polynomial matrix, called encoder of C. We

will consider that the isomorphism ψ is such that Vi,j(D) = vmi+j(D), i.e., the rows of

V (D) are the n consecutive blocks of v(D) each one with m elements .

Again, two encoders of C differ by left multiplication by a unimodular matrix and

therefore C always admits minimal encoders (i.e., row reduced encoders).

The degree δ of a rank metric convolutional code C is the sum of the row degrees

of a minimal encoder of C , i.e., the minimum value of the sum of the row degrees

of its encoders. A rank metric convolutional code C is said to be delay-free if it has

an encoder G(D) with constant term G(0) full row rank. Note that since any other

encoder of C, G̃(D), is such that G̃(D) = U(D)G(D) for some unimodular matrix

U(D), it follows that all encoders of C have constant term full row rank. This means

that if V (D) = φ(u(D)) for some u(D) =
∑

i∈N0
uiD

i, with uℓ ̸= 0 and ui = 0 for i < ℓ,

then the same happens for V (D) =
∑

i∈N0
ViD

i, i.e., Vℓ ̸= 0 and Vi = 0 for i < ℓ.

A rank metric convolutional code C of degree δ, defined as in (2.1), is called an

(n×m, k, δ)-rank metric convolutional code.

When dealing with rank metric codes, a different measure of distance must be

considered. The rank weight of a polynomial matrix A(D) =
∑

i∈NAiD
i ∈ Fq[D]n×m,
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is given by

rwt
(
A(D)

)
=
∑
i∈N

rank(Ai).

If B(D) =
∑

i∈NBiD
i ∈ Fq[D]n×m, the sum rank distance between A(D) and B(D)

is defined as

dSR
(
A(D), B(D)

)
= rwt

(
A(D)−B(D)

)
=
∑
i∈N

rank(Ai −Bi).

Lemma 2.21. [28, Lemma 2] The sum rank distance dSR is a distance in Fq[D]n×m.

Next we will focus on two rank distances definitions for rank metric convolutional

codes: the sum rank distance [28] and the column rank distance [27].

The sum rank distance of a rank metric convolutional code C is defined as

dSR(C) = min
V (D),U(D)∈C,V (D)̸=U(D)

dSR(V (D), U(D)).

As C is linear, V (D)− U(D) ∈ C for any V (D), U(D) ∈ C, and therefore it follows

that

dSR(C) = min
0̸=V (D)∈C

rwt
(
V (D)

)
.

Next theorem establishes an upper bound on the sum rank distance of a rank metric

convolutional code. Analogously, as for the free Hamming distance of a convolutional

code, this bound is referred as the generalized Singleton bound for rank metric convo-

lutional codes. We will assume that n ≤ m for simplicity, but similar results can be

given for the case in which n > m.

Theorem 2.22. [28, Theorem 3] Let C be an (n×m, k, δ) rank metric convolutional

code. Then, the sum rank distance of C is upper bounded by

dSR(C) ≤ n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k(
⌊
δ
k

⌋
+ 1)− δ

m

⌉
+ 1. (2.2)

This result can also be founded in [28, Theorem 3]. An (n ×m, k, δ) rank metric

convolutional code whose sum rank distance attains the generalized Singleton bound
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is called Maximum Rank Distance (MRD) convolutional code . The minimal encoders

of MRD convolutional codes have a well-established set of row degrees as stated in the

following lemma.

Corollary 2.23. [28, Corollary 4]. Let C be an (n×m, k, δ) rank metric convolutional

code and G(D) ∈ Fq[D]k×n be a minimal encoder of C. Then G(D) has k
(⌊

δ
k

⌋
+ 1
)
− δ

rows of degree
⌊
δ
k

⌋
and δ − k

⌊
δ
k

⌋
rows of degree

⌊
δ
k

⌋
+ 1.

It is not known the existence of MRD (n×m, k, δ) rank metric convolutional codes

for any given set of parameters n,m, k, δ ∈ N. Napp, Pinto, Rosenthal and Vettori [28]

proposed the first construction of (n ×m, k, δ) MRD rank metric convolutional codes

for m ≥ δ + k. We will present first the particular case k = 1, n = m and m > δ, for

clarity, and after that the general case, for any value of k .

Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial χ(λ). Then

the matrices Ai, i = 0, 1, . . . ,m− 1 are Fq-linearly independent and

Fq[A] =

{
m−1∑
i=0

uiA
i : ui ∈ Fq, i = 0, . . . ,m− 1

}
∼= Fqm

is a field. Moreover, let δ be an integer smaller than m and define the matrix

G(D) =
δ∑
i=0

ψ−1(Ai)Di ∈ Fq[D]1×m
2

. (2.3)

Then G(D) is an encoder of an MRD (m×m, 1, δ) rank metric convolutional code [28].

Remark 2.24. An (n×m, 1, δ) MRD rank metric convolutional, with n < m, can be

easily constructed following the same idea as the construction above, by multiplying the

matrices Ai, i = 0, 1, . . . ,m− 1 by a full row rank matrix X ∈ Fn×mq , in the definition

of the encoder G(D). More precisely, the rank metric convolutional code with encoder

G(D) =
δ∑
i=0

ψ−1(XAi)Di ∈ Fq[D]1×m
2

,

with X ∈ Fn×mq a full row rank matrix, is an (n×m, 1, δ) MRD rank metric convolu-

tional.

The following example shows the construction of an (4×4, 1, 3) MRD convolutional

code.
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Example 2.25. Consider the companion matrix A of the irreducible polynomial χ(λ) =

λ4 + λ+ 1 ∈ F2[λ], i.e.,

A =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 ∈ F4×4
2 .

The rank metric convolutional code with encoder

G(D) = G0 +G1D +G2D
2 +G3D

3

with

G0 = ψ−1(I) =
[
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

]
,

G1 = ψ−1(A) =
[
0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0

]
,

G2 = ψ−1(A2) =
[
0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0

]
,

and

G3 = ψ−1(A3) =
[
0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1

]
,

is an (4× 4, 1, 3) MRD convolutional code.

In the same paper [28], the authors show a more general construction of an (n ×
m, k, δ) MRD convolutional codes with m ≥ δ+k. For that they still consider a matrix

A ∈ Fm×m
q with irreducible characteristic polynomial χ(λ) and a full row rank matrix

X ∈ Fn×mq . The matrix

G(D) =

⌊ δ
k⌋+1∑
i=0

GiD
i ∈ Fq[D]k×nm (2.4)

with

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤
⌊
δ

k

⌋
,
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and

G⌊ δ
k⌋+1 =



0 if k divides δ,

ψ−1(XAk⌊
δ
k⌋+k)

...

ψ−1(XAk+δ−1)

0
...

0


otherwise.

(2.5)

is an encoder of and (n×m, k, δ) MRD rank metric convolutional code, whenm ≥ δ+k.

The next example illustrates the above construction.

Example 2.26. [28] Let us consider the same matrix

A =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 ∈ F4×4
2

as in Example 2.25, and the full row rank matrix

X =

1 0 0 0

0 1 0 0

0 0 1 0

 ∈ F3×4
2 .

Let δ = 2 (note that m = 4 ≥ δ + k = 2 + 2). Note that the XAi is the matrix

constituted by the first 3 rows of Ai. The rank metric convolutional code with encoder

G(D) = G0 +G1D where

G0 =

[
ψ−1(X)

ψ−1(XA)

]
=

[
1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1

]
,

G1 =

[
ψ−1(XA2)

ψ−1(XA3)

]
=

[
0 0 1 0 0 0 0 1 1 1 0 0

0 0 0 1 1 1 0 0 0 1 1 0

]
,

is a (3× 4, 2, 2) MRD convolutional code.

Next we will define a new notion of sum rank distance, called column rank distance,

which can be seen as the analog of column distance for the rank metric case. We will

restrict to (n×m, k, δ) delay-free rank metric convolutional codes.
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Definition 2.27. Let C be an (n×m, k, δ) delay-free rank metric convolutional code.

For j ∈ N we define the j-th column rank distance of C as

dcrj (C) = min{rwt(V (D)|[0,j]) : V (D) ∈ C and V0 ̸= 0},

where V (D) =
∑
i∈N

ViD
i and V (D)|[0,j] =

j∑
i=0

ViD
i.

Similarly to the Hamming case, the column rank distances are upper bounded at

each time instant j as the following result shows. Again when no confusion arises we

write dcrj for dcrj (C).

Theorem 2.28. Let C be an (n × m, k, δ) delay-free rank metric convolutional code.

Then, the j-th column rank distance of C is upper bounded by

dcrj (C) ≤ j

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
.

Proof. Let G(D) =
∑
i∈N

GiD
i be an encoder of C. Since G0 is full row rank (because C

is delay-free) it contains an invertible k × k submatrix. We will assume, without loss

of generality, that the k × k submatrix of G0 is constituted by the first k columns.

We will prove the theorem by induction on j. For j = 0 let u0 ∈ Fk be such

that v0 = u0G0 has the first k − 1 entries equal to zero, i.e., wt(v0) ≤ nm − k + 1,

and let V0 = ψ(v0). Then, the first
⌊
k−1
m

⌋
rows of V0 are equal to zero and therefore

rwt(V0) ≤ n−
⌊
k−1
m

⌋
and so dcr0 ≤ n−

⌊
k−1
m

⌋
.

Let us suppose now that dcrj ≤ j
(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
and let us prove that

dcrj+1 ≤ (j + 1)
(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
. Let u(D) ∈ F[D]k, v(D) = u(D)G(D) and

V (D) = ψ(v(D)) =
∑
i∈N

ViD
i ∈ C be such that rwt(V (D)|[0,j]) = dcrj . Moreover, since

the k × k submatrix of G0 constituted by the first k columns is invertible, we can

consider uj+1 such that vj+1 = uj+1G0 + uj−1G1 + · · · + u0Gj+1 has the first k entries

equal to zero. Then,

dcrj+1 ≤ rwt((V (D))|[0,j+1])

= dcrj + rwt(Vj+1)

≤ j

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
+ n−

⌊
k

m

⌋
= (j + 1)

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
.

This concludes the proof.
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With a similar reasoning as in the proof of the above theorem we can prove that

if the j-th column rank distance of a rank metric convolutional code achieves the

corresponding bound then the same happens for all the i-th column rank distance, for

i < j.

Theorem 2.29. Let C be an (n×m, k, δ) delay-free rank metric convolutional code. If

dcrj (C) = j
(
n−

⌊
k
m

⌋)
+ n−

⌊
k−1
m

⌋
for some j ∈ N, then

dcri (C) = i

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
,

for all i ≤ j.

Proof. It is enough to prove that dcrj = j
(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
implies that dcrj−1 =

(j− 1)
(
n−

⌊
k
m

⌋)
+n−

⌊
k−1
m

⌋
. Let us assume that dcrj−1 < (j− 1)

(
n− k

m

)
+n−

⌊
k−1
m

⌋
and let u(D) ∈ F[D]k, v(D) = u(D)G(D) and V (D) = rmatn×m(v(D)) =

∑
i∈N

ViD
i ∈ C

be such rwt(V (D))|[0,j−1] = dcrj−1. Let uj be such that vj = u0Gj + u1Gj−1 + · · · +
uj−1G1 + ujG0 has the first k entries equal to zero. Then, rank(Vj) ≤ n −

⌊
k
m

⌋
and,

therefore, rwt(V (D)[0,j]) < j
(
n−

⌊
k
m

⌋)
+n−

⌊
k−1
m

⌋
. Consequently, dcrj < j

(
n−

⌊
k
m

⌋)
+

n−
⌊
k−1
m

⌋
It is obvious that the sequence of column rank distances of the code is nondecreasing

and that they cannot grow over the Singleton bound for rank metric convolutional codes

given in (2.2). This implies that there exists an integer M such that dcrM = dcrj , for

j > M . If the code is MRD then M is precisely determined as stated in the next

proposition.

Proposition 2.30. Let C be an (n×m, k, δ) MRD delay-free rank metric convolutional

code with column rank distances dcrj , for j ∈ N0 and sum rank distance dSR. Let

M = min{j ∈ N, dcrj = dSR}. Then,

M ≥


n
⌊
δ
k

⌋
+

⌊
δ−k⌊ δ

k⌋
m

⌋
n−

⌊
k
m

⌋
 .

Proof. M is such that

dSR = n

⌊
δ

k

⌋
+

⌊
δ − k

⌊
δ
k

⌋
m

⌋
+ n−

⌊
k − 1

m

⌋
= dcrM ≤M

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
.
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Let M̃ =
n⌊ δ

k⌋+
⌊

δ−k⌊ δ
k⌋

m

⌋
n−⌊ k

m⌋
. We will show that M̃

(
n−

⌊
k
m

⌋)
+ n −

⌊
k−1
m

⌋
= dSR and

therefore M ≥ ⌈M̃⌉.
We will consider two cases, when m | k and when m ∤ k.
Case 1: m | k. In this case it holds that

M̃

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
= n

⌊
δ

k

⌋
+

⌊
δ − k

⌊
δ
k

⌋
m

⌋
+ n−

⌊
k − 1

m

⌋
= n

(⌊
δ

k

⌋
+ 1

)
− k

m

⌊
δ

k

⌋
+

⌊
δ

m

⌋
−
⌊
k − 1

m

⌋
.

Then, since
⌊
k−1
m

⌋
= k

m
− 1, we have that

M̃

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
= n

(⌊
δ

k

⌋
+ 1

)
− k

m

(⌊
δ

k

⌋
+ 1

)
+

⌊
δ

m

⌋
+ 1

= n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k(
⌊
δ
k

⌋
+ 1)− δ

m

⌉
+ 1

= dSR.

Case 2: m ∤ k. In this case it follows that

M̃

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
= n

(⌊
δ

k

⌋
+ 1

)
+

⌊
δ − k

⌊
δ
k

⌋
m

⌋
−
⌊
k − 1

m

⌋

= n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k
(⌊

δ
k

⌋
+ 1
)
− δ − k

m

⌉
−
⌊
k − 1

m

⌋

= n

(⌊
δ

k

⌋
+ 1

)
−

(⌈
k
(⌊

δ
k

⌋
+ 1
)
− δ

m

⌉
−
⌈
k

m

⌉)
−
⌊
k − 1

m

⌋

= n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k
(⌊

δ
k

⌋
+ 1
)
− δ

m

⌉
+ 1

= dSR,

because
⌈
k
m

⌉
=
⌊
k
m

⌋
− 1 and

⌊
k
m

⌋
=
⌊
k−1
m

⌋
. Hence, in both cases we obtain that

M = ⌈M̃⌉.

Definition 2.31. Let C be an (n×m, k, δ)-rank metric convolutional code. C is called

Strongly MRD (sMRD) if

dcrM(C) = dSR(C),



2.2. Rank metric codes 33

where

M =


n
⌊
δ
k

⌋
+

⌊
δ−k⌊ δ

k⌋
m

⌋
n−

⌊
k
m

⌋
 .

Thus, sMRD codes are MRD codes. For (n × m, k, δ) rank metric convolutional

codes such that k = 1 or m ≥ δ + k the above definition has the following form.

Definition 2.32. Let C be an (n×m, k, δ)-rank metric convolutional code. Then

1. if k = 1, C is Strongly MRD if

dcrM(C) = n(δ + 1),

where M = δ.

2. if m ≥ δ + k, C is Strongly MRD if

dcrM(C) = n

(⌊
δ

k

⌋
+ 1

)
,

where M =
⌊
δ
k

⌋
.

The rank metric convolutional codes defined in (2.3) and (2.4) are sMRD codes as

shown in the next theorems.

Theorem 2.33. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial

χ(λ), and C the (m×m, 1, δ) rank metric convolutional code with encoder

G(D) =
δ∑
i=0

ψ−1(Ai)Di ∈ Fq[D]1×m
2

.

Then C is an sMRD rank metric convolutional code.

Proof. Note that since G0 ̸= 0, G(D) is delay-free. To show that C is sMRD we have

to prove that dcrM(C) = m(δ + 1), for M = δ. Let us consider a message u(D) =∑
i∈N0

uiD
i ∈ Fq[D] with u0 ̸= 0 and V (D) = φ(u(D)). Then

V (D)|[0,δ] =
δ∑
i=0

ViD
i,

where

Vi =
i∑

j=0

ui−jA
j,
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i = 0, 1, . . . , δ. Thus Vi is a nonzero element of Fq[A] (since it is a nontrivial linear

combination of I, A, . . . , Am−1) and therefore is invertible, which means that rank(Vi) =

m and therefore rwt(V|[0,δ]) = m(δ + 1). So we conclude that dcrM(C) = m(δ + 1), for

M = δ and therefore C is sMRD.

Next we will show that the rank metric convolutional code with encoder defined in

(2.4) is an sMRD code. First we prove that such code is delay-free.

Lemma 2.34. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial

χ(λ), X ∈ Fq[D]n×m a full row rank matrix and C the (n×m, k, δ) rank metric convo-

lutional code (where m ≥ δ + k) with encoder

G(D) =

⌊ δ
k⌋+1∑
i=0

GiD
i ∈ Fq[D]k×nm,

with

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤
⌊
δ

k

⌋
, and

G⌊ δ
k⌋+1 =



0 if k divides δ,

ψ−1(XAk⌊
δ
k⌋+k)

...

ψ−1(XAk+δ−1)

0
...

0


otherwise.

Then C is a delay-free rank metric convolutional code.

Proof. Let us assume that G0 is not full row rank. Then there exists a nonzero vector[
a0 a1 · · · ak−1

]
∈ Fq such that

[
a0 a1 · · · ak−1

]


ψ−1(X)

ψ−1(XA)
...

ψ−1(XAk−1)

 = 0.
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Consequently,

a0X + a1XA+ · · ·+ ak−1XA
k−1 = 0,

which implies that

a0I + a1A+ · · ·+ ak−1A
k−1 = 0,

and so we conclude that I, A, . . . , Ak−1 are not Fq-linearly independent, which is not

true. So, we conclude that G0 is full row rank and therefore C is delay-free.

Theorem 2.35. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polyno-

mial χ(λ), X ∈ Fq[D]n×m a full row rank matrix and C the (n ×m, k, δ) rank metric

convolutional code (where m ≥ δ + k) with encoder

G(D) =

⌊ δ
k⌋+1∑
i=0

GiD
i ∈ Fq[D]k×nm,

with

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤
⌊
δ

k

⌋
, and

G⌊ δ
k⌋+1 =



0 if k divides δ,

ψ−1(XAk⌊
δ
k⌋+k)

...

ψ−1(XAk+δ−1)

0
...

0


otherwise.

Then C is an sMRD rank metric convolutional code.

Proof. Let M =
⌊
δ
k

⌋
. We have to show that dcrM(C) = n

(⌊
δ
k

⌋
+ 1
)
. Let u(D) =∑

i∈N0
uiD

i ∈ Fq[D]k with u0 ̸= 0. Let us represent ui =
[
ui,0 ui,1 · · · ui,k−1

]
and

let v(D) = u(D)G(D) and V (D) = φ(u(D)) = ψ(v(D)). Then v(D) =
∑

i∈N0
viD

i and
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V (D) =
∑

i∈N0
ViD

i are such that

vi =
i∑

h=0

ui−hGh

=
i∑

h=0

k−1∑
l=0

ui−h,lψ
−1(XAkh+l)

=
i∑

h=0

kh+k−1∑
l=kh

ui−h,l−khψ
−1(XAl)

=
i∑

h=0

kh+k−1∑
l=kh

ui−⌊ l
k⌋,l−k⌊ l

k⌋ψ
−1(XAl)

=
ki+k−1∑
l=0

ui−⌊ l
k⌋,l−k⌊ l

k⌋ψ
−1(XAl)

= ψ−1(X
ki+k−1∑
l=0

ui−⌊ l
k⌋,l−k⌊ l

k⌋A
l)

= ψ−1(XBi),

where Bi =
∑ki+k−1

l=0 ui−⌊ l
k⌋,l−k⌊ l

k⌋A
l, and

Vi = XBi.

Note that for i = 0, 1, . . . ,
⌊
δ
k

⌋
, Bi is a nontrivial linear combination of some matrices of

the form Aj, j ∈ {0, 1, . . . ,m−1}, since u0 ̸= 0. This means that for i ∈ {0, 1, . . . ,
⌊
δ
k

⌋
},

Bi is a nonzero element of the field Fq[A] and therefore is full rank, and consequently

XBi is full row rank, i.e. rank(XBi) = n. Thus

rwt(V|[0,⌊ δ
k⌋]) =

⌊ δ
k⌋∑
i=0

rank(Vi)

=

⌊ δ
k⌋∑
i=0

rank(XBi)

= n

(⌊
δ

k

⌋
+ 1

)
.

So we conclude that dcrM(C) = n
(⌊

δ
k

⌋
+ 1
)
and therefore C is sMRD.

Let C be an (n×m, k, δ) sMRD rank metric convolutional code. From the proof of

the above theorem we have that if M̃ =
n⌊ δ

k⌋+
⌊

δ−k⌊ δ
k⌋

m

⌋
n−⌊ k

m⌋
is an integer, i.e., if M̃ = M ,
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then

dcM = dSR =M

(
n−

⌊
k

m

⌋)
+ n−

⌊
k

m

⌋
+ 1,

and therefore, by Theorem 2.28, we conclude that all column rank distances attain the

optimal value, i.e.,

dcrj =

{
j
(
n−

⌊
k
m

⌋)
+ n−

⌊
k
m

⌋
+ 1 for j < M

M
(
n−

⌊
k
m

⌋)
+ n−

⌊
k
m

⌋
+ 1 for j ≥M

,

In case M̃ is not an integer we have that dcrM < M
(
n−

⌊
k
m

⌋)
+ n −

⌊
k
m

⌋
+ 1

and therefore the i-th column distances, for i < M , may not attain their optimal

value. Next we consider rank metric convolutional codes that have optimal column

rank distance as long as it is possible.

Definition 2.36. Let C be an (n×m, k, δ)-rank metric convolutional code. C is called

Maximum Rank Profile (MRP) if

dcrj (C) = j

(
n−

⌊
k

m

⌋)
+ n−

⌊
k − 1

m

⌋
,

for j = 1, 2, . . . , L where

L =

n
⌊
δ
k

⌋
+

⌊
δ−k⌊ δ

k⌋
m

⌋
n−

⌊
k
m

⌋
 .

Note that L =M or L =M−1. The following lemma is an immediate consequence

of Definitions 2.32 and 2.36.

Lemma 2.37. Let C be an (n×m, k, δ)-rank metric convolutional code such that L =

M . The C is is sMRD if and only if it is MRP.

The next result in an immediate consequence of the above lemma.

Corollary 2.38. Let C be an (n×m, k, δ)-rank metric convolutional code. If k = 1 or

m ≥ δ + k, then C is sMRD if and only if it is MRD.

Proof. If δ = 0, M = L = 0 (this is the trivial situation in that C is a rank metric

code).

Let us assume that δ > 0. If k = 1, then M = L = nδ. If m ≥ δ + k we have that⌊
k
m

⌋
= 0. On the other hand, δ = k

⌊
δ
k

⌋
+r where 0 ≤ r < k implies that 0 ≤ δ−

⌊
δ
k

⌋
< k



38 2. Hamming and rank metric block and convolutional codes

and consequently

⌊
δ−k⌊ δ

k⌋
m

⌋
= 0. This yields M̃ =

n⌊ δ
k⌋+

⌊
δ−k⌊ δ

k⌋
m

⌋
n−⌊ k

m⌋

 =
n⌊ δ

k⌋
n

= n
⌊
δ
k

⌋
and therefore M = L = n

⌊
δ
k

⌋
.

We immediately conclude that the rank metric convolutional codes defined in (2.3)

and (2.4) are also MRP.

Although general decoding algorithms are not analyzed in this thesis, for the case

of rank metric convolutional codes, that it is an interesting topic of research that is left

for future work.



Chapter 3

Constructions of MRD

convolutional codes

In this chapter we will present novel constructions of MRD rank metric convolutional

codes. As referred in Chapter 2, the only known constructions of (n ×m, k, δ) MRD

convolutional codes are the ones defined in (2.4) (and in (2.3) for the particular case

k = 1). These constructions were proposed by Napp, Pinto, Rosenthal and Vettori [28],

and are restricted to codes such that δ ≤ m− k. Inspired by their work, we define new

constructions of (n×m, k, δ̃) MRD convolutional codes with larger values for the code

degree. The proposed constructions are based on the idea of extending the encoders of

the constructions defined in (2.4) by adding terms of higher degree which coefficients

are obtained from coefficients of lower degree. We will first consider the case k = 1 for

clarity and after that present the more general case.

As we saw in previous chapters the degree δ of the code has influence on the distance

that a code can achieve. Therefore, larger values of the code degree may lead to larger

distances and, consequently, to the increase of the correcting capability of the code.

3.1 Construction 1

In this section we propose a new construction of an (m × m, 1, δ) MRD rank metric

convolutional code that fulfills the condition δ ≤ 2m − 1. For the purpose, we will

define an encoder of the code which can be seen as an extension of the encoder of an

(m×m, k, δ) MRD convolutional as defined in (2.3), which is presented next.

Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial. Recall that

Fq[A] =

{
m−1∑
i=0

uiA
i : ui ∈ Fq, i = 0, 1, . . . ,m− 1

}

39
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is a field. Moreover, since I, A, . . . , Am−1 are linearly independent, any nontrivial linear

combination of I, A, . . . , Am−1 is full rank.

Theorem 3.1. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial

and δ be an integer smaller than 2m. The (m × m, 1, δ) convolutional code C with

encoder

G(D) =
m−1∑
i=0

ψ−1(Ai)Di +
δ−m∑
i=0

ψ−1(Am−1−i)Dm+i ∈ Fq[D]1×m
2

,m ≤ δ ≤ 2m− 1. (3.1)

is MRD.

Proof. It is clear that G(D) is row reduced since Gδ ̸= 0, and therefore C has degree

δ. To prove that C is MRD we have to show that dSR(C) = m(δ + 1).

Let u(D) =
∑l

i=0 uiD
i ∈ Fq[D]k, l ∈ N, be a nonzero vector and V (D) = φ(u(D)) ∈

Fq[D]n×m. Let us see that rank(V (D)) ≥ m(δ + 1).

Without loss of generality, we can assume that u0 ̸= 0. If u(D) has degree zero, i.e.,

if l = 0, then Vj = u0A
j, for 0 ≤ j ≤ m − 1 and Vj = u0A

2m−j−1, for m − 1 ≤ j ≤ δ,

and therefore Vj is full rank for 0 ≤ j ≤ δ, which means that rwt(V (D)) = m(δ + 1).

Let us now assume that l > 0. It follows that Vj =
∑j

i=0 uj−iA
i with 0 ≤ j ≤ m−1

is a nonzero element of Fq[A], i.e., Vj is full rank. So, we have that

m−1∑
j=0

rank(Vj) = m2.

Let us now consider Vj, m ≤ j ≤ δ. Note that Vj = 0 or Vj is full row rank for

j = m, . . . , δ, since they are elements of Fq[A]. Thus, if Vj ̸= 0 for m ≤ j ≤ δ, then

rwt(V (D)) ≥
∑δ

j=0 rank(Vj) = m(δ+ 1). If this is not the case, let Vj, with j = m+ r

and 0 ≤ r ≤ δ −m− 1, be the first Vj equal to zero. Then,

Vm+r =
m−1∑
i=0

um+r−iA
i +

r∑
i=0

ur−iA
m−1−i =

m−1∑
i=0

ûiA
i = 0,

where

ûi = um+r−i,

for i = 0, 1, . . . ,m− r − 2 and

ûi = um+r−i + ur−m+i+1,

for i = m − r − 1,m − r, . . . ,m − 1. In particular, ûm−1−r = u0 + u2r+1. Then it

follows that ûi = 0, for i = 0, 1, . . . ,m − 1 because I, A,A2, . . . , Am−1 are linearly
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independent and therefore, u2r+1 = −u0 is nonzero, since u0 ̸= 0. Moreover ui = 0, for

i = 2r + 2, . . . ,m+ r.

Consequently, if we consider any Vj, with j = m + r + s and s ≤ δ − (m + r), we

have that

Vm+r+s =
m−1∑
i=0

um+r+s−iA
i +

r+s∑
i=0

ur+s−iA
m−1−i =

m−1∑
i=0

ũiA
i,

where ûm−1−r−s = u0 + u2r+1+2s. Since u2r+1+2s = 0 it follows that ûm−1−r−s ̸= 0 and

therefore Vm+r+1 is full rank.

Therefore, Vj is also full rank, for m+ r + 1 ≤ j ≤ δ, and consequently

δ∑
j=0

rank(Vj) = m2 +m(δ −m) = mδ.

Moreover, Vl+δ = ulA
δ is full rank, since ul ̸= 0.

Then,

rwt(V (D)) =
δ+l∑
j=0

rank(Vj) ≥ m(δ + 1).

Consequently, C is MRD.

Example 3.2. Consider the companion matrix

A =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 ∈ F4×4
2

of the irreducible polynomial χ(λ) = λ4 + λ+ 1 ∈ F2[λ].

The rank metric convolutional code with encoder

G(D) = G0 +G1D +G2D
2 +G3D

3 +G3D
4 +G2D

5 +G1D
6 +G0D

7,

where

G0 = ψ−1(I) =
[
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

]
,

G1 = ψ−1(A) =
[
0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0

]
,

G2 = ψ−1(A2) =
[
0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0

]
,
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and

G3 = ψ−1(A3) =
[
0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1

]
,

is an (4× 4, 1, 7) MRD rank metric convolutional code.

Note that the construction defined in (2.3) only allowed to obtain (m × m, 1, δ)

MRD rank metric convolutional codes for δ ≤ m − 1. The construction proposed in

this section allows to obtain (m × m, 1, δ) MRD rank metric convolutional codes for

δ̃ ≤ 2m− 1.

Remark 3.3. An (n × m, 1, δ) MRD rank metric convolutional, with n ≤ m and

δ ≤ 2m− 1, can be constructed by multiplying the matrices Ai, i = 0, 1, . . . ,m− 1, in

the definition of the encoder G(D) in (3.1) by a full row rank matrix X ∈ Fn×mq , i.e.,

the rank metric convolutional code with encoder

G(D) =
m−1∑
i=0

ψ−1(XAi)Di +
δ−m∑
i=0

ψ−1(XAm−1−i)Dm+i ∈ Fq[D]1×nm,

is an (n×m, 1, δ̃) MRD rank metric convolutional.

3.2 Construction 2

In this section and in the following one we present more general constructions of (n×
m, k, δ) MRD convolutional codes for larger values of k than the one presented in

Section 3.1. In this section we will consider the case k|δ and in the next section we will

present the opposite case.

Let us consider an (n ×m, k, δ) MRD convoltutional code as defined in 2.4, with

n ≤ m, k < nm, m ≥ δ + k and such that k|δ.

Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial andX ∈ Fn×mq

a full row rank matrix.

Let

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤ δ

k
,
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and

Gi =


0 1

...

1 0

G2 δ
k
+1−i,

for δ
k
+ 1 ≤ i ≤ 2 δ

k
+ 1.

Let us define the polynomial matrix

G(D) =

2 δ
k
+1∑

i=0

GiD
i ∈ Fq[D]k×nm, (3.2)

and let C be the rank metric convolutional code with encoder G(D). Next lemma shows

that C has degree 2δ + k.

Lemma 3.4. Let m,n, k and δ be integers such that n ≤ m, k < nm, m ≥ δ + k and

such that k|δ. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial

and X ∈ Fn×mq a full row rank matrix. Let C be the rank metric convolutional code

with encoder G(D) as defined in (3.2). Then C is an (n × m, k, 2δ + k) rank metric

convolutional code.

Proof. Let us see that G(D) is row reduced. Note that:

[G]hc = G2 δ
k
+1 =


0 1

...

1 0

G0.

Let
[
α0 α1 · · · αk−1

]
∈ Fq such that:

[
α0 α1 · · · αk−1

]
G0 = 0.

Then,

α0XA
0 + α1XA

1 + · · ·+ αk−1XA
k−1 = 0,

which implies that

α0A
0 + α1A

1 + · · ·+ αk−1A
k−1 = 0,

because X is full row rank, and therefore, since A0, A1, . . . Ak−1 are linearly independ-

ent, we have that α0 = α1 = · · · = αk−1 = 0 and consequently G0 is full row rank and

so it is [G]hc = G2 δ
k
+1. This means that G(D) is row reduced (see Theorem 2.8). Thus

the degree of C is equal to the external degree of G(D) which is k
(
2 δ
k
+ 1
)
= 2δ+k.
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Next theorem shows that C is an (n×m, k, 2δ+k) MRD rank metric convolutional

code.

Theorem 3.5. Let m,n, k and δ be integers such that n ≤ m, k < nm, m ≥ δ+k and

such that k|δ. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial and

X ∈ Fn×mq a full row rank matrix. Let C be the rank metric convolutional code with

encoder G(D) as defined in (3.2). Then C is an (n ×m, k, 2δ + k) MRD rank metric

convolutional code.

Proof. In order to make the statement holds true, we have to prove that

dSR(C) = n

(
2δ + k

k
+ 1

)
= 2n

(
δ

k
+ 1

)
.

(see Theorem 2.2). For that, we will show that dSR(V (D)) ≥ 2n
(
δ
k
+ 1
)
for any nonzero

V (D) ∈ C. Let u(D) =
∑l

i=0 uiD
i ∈ Fd[D]k be a nonzero vector, v(D) = u(D)G(D) ∈

Fq[D]nm and V (D) = ψ(v(D)) ∈ C. We can assume, without loss of generality, that

u0 ̸= 0.

We will first consider the case in which u(D) has degree zero, i.e., u(D) = u0. Then

v(D) =

2 δ
k
+1∑

i=0

u0GiD
i,

and

V (D) = ψ(

2 δ
k
+1∑

i=0

u0GiD
i)

=

2 δ
k
+1∑

i=0

ψ(u0GiD
i)

=

δ
k∑
i=0

(u00XA
ki + u10XA

ki+1 + · · ·+ uk−1
0 XAki+k−1)Di+

+

δ
k∑
i=0

(u00XA
δ−ki+k−1 + u10XA

δ+ki+k−2 + · · ·+ uk−1
0 XAδ−k)D

δ
k
+i+1

= X(

δ
k∑
i=0

(u00A
ki + u10A

ki+1 + · · ·+ uk−1
0 Aki+k−1)Di+

+

δ
k∑
i=0

(u00A
δ−ki+k−1 + u10A

δ+ki+k−2 + · · ·+ uk−1
0 Aδ−k)D

δ
k
+i+1),
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i.e., V (D) =

2 δ
k
+1∑

i=0

ViD
i with Vi = XBi and i = 0, 1, . . . , 2 δ

k
+ 1, where

Bi = u00A
ki + u10A

ki+1 + · · ·+ uk−1
0 Aki+k−1, i = 0, 1, . . . ,

δ

k
,

and

B δ
k
+i+1 = u00A

δ−ki+k−1 + u10A
δ+ki+k−2 + · · ·+ uk−1

0 Aδ−k i = 0, 1, . . . ,
δ

k
.

Since us0 ̸= 0 for some s ∈ {0, 1, . . . , k − 1}, then Bi is a nontrivial linear combination

of I, A, . . . , Am−1. Therefore Bi is full rank, i ∈ {0, 1, . . . , 2 δ
k
+ 1}, and consequently

Vi = XBi is full row rank for i ∈ {0, 1, . . . , 2 δ
k
+ 1}. Thus,

rwt(V (D)) =

2 δ
k
+1∑

i=0

rank(Vi)

= n

(
2
δ

k
+ 2

)
= 2n

(
δ

k
+ 1

)
.

Let us now consider any message u(D) =
∑l

i=0 uiD
i, with u0 ̸= 0 and ul ̸= 0, with

l > 1. Let us represent ui =
[
u0i u1i · · · uk−1

i

]
and let v(D) = u(D)G(D) =∑

i∈N0
viD

i ∈ Fq[D]nm and V (D) = ψ(v(D)) =
∑

i∈N0
ViD

i. Then,

vi =
i∑

j=0

ui−jGj, 0 ≤ i ≤ δ

k
,

and, consequently, using the same reasoning as in the proof of Theorem 2.35,

Vi = ψ(vi)

=

(
ki+k−1∑
h=0

u
h−k⌊h

k
⌋

i−⌊h
k
⌋ XAh

)
= XBi,

for 0 ≤ i ≤ δ
k
, where Bi =

∑ki+k−1
h=0 u

h−k⌊h
k
⌋

i−⌊h
k
⌋ Ah.

Note that Bi is a nontrivial linear combination of I, A,A2, . . . Am−1, because us0 ̸= 0

for some s ∈ {0, 1, . . . , k − 1}. Thus, Bi is full rank and consequently Vi = XBi is full

row rank, because X is a full row rank matrix, for i = 0, 1, . . . , δ
k
.
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The next δ
k
+ 1 vector coefficients of v(D) are defined as

v δ
k
+i =

δ
k
+i∑

j=0

u δ
k
+i−jGj

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

u δ
k
+i−jGj +

δ
k
+i∑

j= δ
k
+1

u δ
k
+i−jGj

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

u δ
k
+i−jGj +

δ
k
+i∑

j= δ
k
+1

u δ
k
+i−jG δ

k
−(( δ

k
−j+1)−1)

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

u δ
k
+i−jGj +

δ
k
+i∑

j= δ
k
+1

u δ
k
+i−j


0 1

...

1 0

G2 δ
k
−j+1

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

u δ
k
+i−jGj +

δ
k∑

j= δ
k
−i+1

uj+i− δ
k
−1


0 1

...

1 0

Gj

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

i−1∑
j=0

ui+jG δ
k
−j +

i−1∑
j=0

ui−j+1


0 1

...

1 0

G δ
k
−j

=

δ
k
−i∑

j=0

u δ
k
+i−jGj +

i−1∑
j=0

(ui+j + ûi−j+1)G δ
k
−j,

where ûi−j+1 = ui−j+1


0 1

...

1 0

 =
[
uk−1
i−j+1 uk−2

i−j+1 · · · u0i−j+1

]
, j = 0, 1, . . . , i− 1

and i = 1, 2, . . . . Thus,

V δ
k
+i =

δ
k
−i∑

j=0

(u0δ
k
+i−jXA

kj + u1δ
k
+i−jXA

kj+1 + · · ·+ uk−1
δ
k
+i−jXA

kj+k−1)+

+
i−1∑
j=0

((u0i+j + uk−1
i−j−1)XA

δ−kj + (u1i+j + uk−2
i−j−1)XA

δ−kj+1 + · · ·+

+ (uk−1
i+j + u0i−j−1)XA

δ−kj+k−1

= XB δ
k
+i, (3.3)
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where

B δ
k
+i =

δ
k
−i∑

j=0

(u0δ
k
+i−jA

kj + u1δ
k
+i−jA

kj+1 + · · ·+ uk−1
δ
k
+i−jA

kj+k−1)+

+
i−1∑
j=0

((u0i+j + uk−1
i−j−1)XA

δ−kj + (u1i+j + uk−2
i−j−1)XA

δ−kj+1 + · · ·+

+ (uk−1
i+j + u0i−j−1)A

δ−kj+k−1.

If B δ
k
+i ̸= 0, i = 1, 2, . . . , δ

k
+ 1, then B δ

k
+i is full rank because it is an element of

Fq[A], and therefore V δ
k
+i = XB δ

k
+i is full row rank and

∑2 δ
k
+1

i= δ
k
+1

rank(Vi) = n( δ
k
+ 1).

So, we have that

rwt(V (D)) ≥
2 δ
k
+1∑

i=0

rank(Vi) = 2n(
δ

k
+ 1).

Let us assume that there exists V δ
k
+i, as defined in (3.3) equal to zero, for some

i ∈ {1, 2, . . . , δ
k
+ 1}. Let i be such that V δ

k
+i = 0 and V δ

k
+j ̸= 0, for j = 1, . . . , i − 1.

Then
i−1∑
j=1

rank(V δ
k
+j) = ni.

Moreover,

u δ
k
+i = u δ

k
+i−1 = · · · = u2i = 0,

and for j = 0, 1, . . . , i− 1,

u0i+j + uk−1
i−j−1 = u1i+j + uk−2

i−j−1 = · · · = uk−1
i+j + u0i−j−1 = 0.

In particular,

u02i−1 + uk−1
0 = u12i−1 + uk−2

0 = · · · = uk−1
2i−1 + u00 = 0,

which means that

u2i−1 = −u0


0 1

...

1 0

 ̸= 0,

since u0 ̸= 0.

Let us now consider one of the coefficients of degree δ
k
+ i + r, for some r ∈
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{1, 2, . . . , δ
k
− i}. Then, it follows that,

v δ
k
+i+r =

δ
k
−(i+r)∑
j=0

u δ
k
+i+r−jGj +

i+r−1∑
j=0

ui+r+jG δ
k
−j +

i+r−1∑
j=0

ûi+r−1−jG δ
k
−j,

where ûi+r−1−j = ui+r−1−j


0 1

...

1 0

, for 0 ≤ j ≤ i+ r − 1. Thus,

V δ
k
+i+r =

δ
k
−(i+r)∑
j=0

(
k−1∑
ℓ=0

uℓδ
k
+i+r−jXA

kj+ℓ

)
+

i+r−1∑
j=0

(
k−1∑
ℓ=0

(uℓi+r+j + uk−1−ℓ
i+r−1−j)XA

δ−kj+ℓ

)
= XB δ

k
+i+r,

where

B δ
k
+i+r =

δ
k
−(i+r)∑
j=0

(
k−1∑
ℓ=0

uℓδ
k
+i+r−jA

kj+ℓ

)
+

i+r−1∑
j=0

(
k−1∑
ℓ=0

(uℓi+r+j + uk−1−ℓ
i+r−1−j)A

δ−kj+ℓ

)
.

Since u2i−1 ̸= 0, B δ
k
+i+r is a nontrivial linear combination of I, A, . . . , Am−1 then,

B δ
k
+i+r is full rank and consequently XB δ

k
+i+r is full row rank.

So, we conclude that all Vj for
δ
k
+i+1 ≤ j ≤ 2 δ

k
are full row rank and consequently,

2 δ
k
+1∑

j=0

rank(Vj) =

δ
k∑
j=0

rank(Vj) +

δ
k
+i−1∑

j= δ
k
+1

rank(Vj) +

2 δ
k∑

j= δ
k
+i+1

rank(Vj)

= n

(
δ

k
+ 1

)
+ ni+ n

(
δ

k
− i

)
= 2n

(
δ

k

)
+ n.

Moreover,

vl+2 δ
k
+1 = ulG2 δ

k
+1

= ul


0 1

...

1 0

G0
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and, therefore,

Vl+2 δ
k
+1 =

k−1∑
j=0

ûjlXA
k−1−j = XBl+2 δ

k
+1,

with Bl+2 δ
k
+1 =

∑k−1
j=0 û

j
lA

k−1−j, which is full rank since ul ̸= 0 and therefore Vl+2 δ
k
+1

is full row rank. Thus,

rwt(V (D)) ≥
2 δ
k
+1∑

j=0

rank(Vj) + rank(Vl+2 δ
k
+1) = 2n

(
δ

k
+ 1

)
.

Consequently, C is MRD.

Next example illustrates the above theorem.

Example 3.6. Consider the companion matrix

A =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 ∈ F4×4
2 .

of the irreducible polynomial χ(λ) = λ4 + λ+ 1 ∈ F2[λ]. and the full row rank matrix

X =

1 0 0 0

0 1 0 0

0 0 1 0

 ∈ F3×4
2 .

Let δ = 2 and k = 2 (note that m ≥ δ + k and k|δ).

The rank metric convolutional code with encoder G(D) = G0+G1D+G2D
2+G3D

3

with

G0 =

[
ψ−1(X)

ψ−1(XA)

]
=

[
1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1

]
,

G1 =

[
ψ−1(XA2)

ψ−1(XA3)

]
=

[
0 0 1 0 0 0 0 1 1 1 0 0

0 0 0 1 1 1 0 0 0 1 1 0

]
,
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G2 =


0 1

...

1 0

G1

=

[
ψ−1(XA3)

ψ−1(XA2)

]
=

[
0 0 0 1 1 1 0 0 0 1 1 0

0 0 1 0 0 0 0 1 1 1 0 0

]

and

G3 =


0 1

...

1 0

G0

=

[
ψ−1(XA)

ψ−1(X)

]
=

[
0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0

]
,

is a (3× 4, 2, 6) MRD convolutional code.

The construction presented in this section allows to obtain an (n × m, k, 2δ + k)

MRD convolutional code for m ≥ δ + k and such that k|δ. In the next section we

generalize this construction for the case in which k ∤ δ.

3.3 Construction 3

Let us consider an (n×m, k, δ) MRD convolutional code as defined in (2.4) with n ≤ m,

k < nm, m ≥ δ + k and such that k ∤ δ.

Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial andX ∈ Fn×mq

a full row rank matrix.

Let

Gi =


ψ−1(XAki)

ψ−1(XAki+1)
...

ψ−1(XAki+k−1)

 , 0 ≤ i ≤
⌊
δ

k

⌋
(3.4)

G⌊ δ
k⌋+1 =



ψ−1(XAk⌊
δ
k⌋+k)

...

ψ−1(XAk+δ−1)

ψ−1(XI)

. . .

ψ−1(XAk−1−(δ−k⌊ δ
k⌋))


, (3.5)
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and

Gi =


0 1

...

1 0

G2⌊ δ
k⌋+3−i, (3.6)

for
⌊
δ
k

⌋
+ 2 ≤ i ≤ 2

⌊
δ
k

⌋
+ 3.

Let C be the rank metric convolutional code with encoder

G(D) =

2⌊ δ
k⌋+3∑
i=0

GiD
i ∈ F[D]k×nm. (3.7)

Next lemma states that C has degree k
(
2
⌊
δ
k

⌋
+ 3
)
.

Lemma 3.7. Let m,n, k and δ be integers such that n ≤ m, k < nm, m ≥ δ + k and

such that k ∤ δ. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial

and X ∈ Fn×mq a full row rank matrix. Let C be the rank metric convolutional code with

encoder G(D) as defined in (3.7). Then C is an
(
n×m, k, k

(
2
⌊
δ
k

⌋
+ 3
))

rank metric

convolutional code.

Proof. By a similar reasoning as in the proof of Lemma 3.4 we show that [G]hc =
0 1

...

1 0

G0 is full row rank and so we conclude that G(D) is row reduced and

therefore the degrre of the code is equal to extdeg(G(D)) = k
(
2
⌊
δ
k

⌋
+ 3
)
.

Next theorem shows that C is an
(
n×m, k, k

(
2
⌊
δ
k

⌋
+ 3
))

MRD rank metric con-

volutional code.

Theorem 3.8. Let m,n, k and δ be integers such that n ≤ m, k < nm, m ≥ δ+k and

such that k ∤ δ. Let A ∈ Fm×m
q be a matrix with irreducible characteristic polynomial

and X ∈ Fn×mq a full row rank matrix. Let C be the rank metric convolutional code with

encoder G(D) as defined in (3.7). Then C is an
(
n×m, k, k

(
2
⌊
δ
k

⌋
+ 3
))

MRD rank

metric convolutional code.

Proof. C is an MRD rank metric convolutional code if dSR(C) = 2n
(⌊

δ
k

⌋
+ 2
)
(see

Theorem 2.2). Thus we have to prove that rank(V (D)) ≥ 2n
(⌊

δ
k

⌋
+ 2
)
for all nonzero

V (D) ∈ C.
Let us consider u(D) =

∑l
i=0 uiD

i, with u0 ̸= 0, v(D) = u(D)G(D) ∈ F[D]nm and

V (D) = ψ(v(D)) ∈ C.
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If u(D) = u0 has degree zero then,

v(D) =

2⌊ δ
k⌋+3∑
i=0

u0GiD
i

and

V (D) = ψ(u0Gi)D
i =

2⌊ δ
k⌋+3∑
i=0

XBi,

where

Bi = u00A
ki + u10A

ki+1 + · · ·+ uk−1
0 Aki+k−1,

for i = 0, 1, . . . ,
⌊
δ
k

⌋
,

B⌊ δ
k⌋+1 = u00A

k⌊ δ
k⌋+k + u10A

k⌊ δ
k⌋+k+1 + · · ·+ u

δ−k⌊ δ
k⌋−1

0 Ak+δ−1 + u
δ−k⌊ δ

k⌋
0 I+

+u
δ−k⌊ δ

k⌋+1

0 A+ · · ·+ uk−1
0 Ak⌊

δ
k⌋−1

and

Bi = u00A
k(2⌊ δ

k⌋+3−i)+k−1 + u10A
k(2⌊ δ

k⌋+3−i)+k−2 + · · ·+ uk−1
0 Ak(2⌊

δ
k⌋+3−i),

⌊
δ
k

⌋
+ 1 ≤ i ≤ 2

⌊
δ
k

⌋
+ 3.

Bi is a nontrivial linear combination of the matrices I, A, . . . , Am−1 for i = 0, 1, . . . , 2
⌊
δ
k

⌋
+

3 since us0 ̸= 0 for some s ∈ {0, 1, . . . , k − 1}, and therefore Vi = XBi is full row rank

for i = 0, 1, . . . , 2
⌊
δ
k

⌋
+ 3. So, we conclude that

rwt(V (D)) =

2⌊ δ
k⌋+3∑
i=0

rank(Vi)

= n

(
2

⌊
δ

k

⌋
+ 4

)
= 2n

(⌊
δ

k

⌋
+ 2

)
.

Let us consider u(D) =
∑l

i=0 uiD
i with u0 ̸= 0, ul ̸= 0 and l ≥ 1. Then,

vi =
i∑

j=0

ui−jGj, 0 ≤ i ≤
⌊
δ

k

⌋
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and Vi = ψ(vi) will be given by

Vi =
ki+k−1∑
h=0

u
h−k⌊h

k
⌋

i−⌊h
k
⌋ XAh

and since k
⌊
δ
k

⌋
− 1 < δ and, by hypothesis, δ + k ≤ m, then k

⌊
δ
k

⌋
+ k − 1 < δ + k.

Therefore, Vi is full row rank because it is a nontrivial linear combination of elements

of F[A], for all i ≤
⌊
δ
k

⌋

Let us now consider V⌊ δ
k⌋+1, which is given by,

V⌊ δ
k⌋+1 =

δ−k⌊ δ
k⌋−1∑

j=0

ûjXA
k⌊ δ

k⌋+k+j+
k−1∑

j=δ−k⌊ δ
k⌋
ûjXA

δ−k⌊ δ
k⌋−j+

⌊ δ
k⌋∑
j=1

[
k−1∑
h=0

ûkj+kXA
k(⌊ δ

k⌋+1−j)+h

]

+

k−δ+k⌊ δ
k⌋−1∑

j=0

ûk(⌊ δ
k⌋+1)+jXA

j +
k−1∑

j=k−δ+k⌊ δ
k⌋
ûk(⌊ δ

k⌋+1)+jXA
j,

where ûki+j = uji .

This vector can be written as

V⌊ δ
k⌋+1 =

δ−k⌊ δ
k⌋−1∑

j=0

ûjXA
k⌊ δ

k⌋+k+j +
⌊ δ

k⌋∑
j=1

[
k−1∑
h=0

ûkj+kXA
k(⌊ δ

k⌋+1−j)+h

]

+

 k−1∑
j=δ−k⌊ δ

k⌋
ûjXA

δ−k⌊ δ
k⌋−j +

k−δ+k⌊ δ
k⌋−1∑

j=0

ûk(⌊ δ
k⌋+1)+jXA

j

+

+
k−1∑

j=k−δ+k⌊ δ
k⌋
ûk(⌊ δ

k⌋+1)+jXA
j

=

δ−k⌊ δ
k⌋−1∑

j=0

ûjXA
k⌊ δ

k⌋+k+j +
⌊ δ

k⌋∑
j=1

[
k−1∑
h=0

ûkj+kXA
k(⌊ δ

k⌋+1−j)+h

]

+

k−1−(δ−k⌊ δ
k⌋))∑

h=0

ûδ−k⌊ δ
k⌋−hXA

h +

k−1−(δ−k⌊ δ
k⌋))∑

j=0

ûk(⌊ δ
k⌋+1)+jXA

j

+

+
k−1∑

j=k−δ+k⌊ δ
k⌋
ûk(⌊ δ

k⌋+1)+jXA
j,
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and, therefore,

V⌊ δ
k⌋+1 =

δ−k⌊ δ
k⌋−1∑

j=0

ûjXA
k⌊ δ

k⌋+k+j +
⌊ δ

k⌋∑
j=1

[
k−1∑
h=0

ûkj+kXA
k(⌊ δ

k⌋+1−j)+h

]

+

k−1−(δ−k⌊ δ
k⌋))∑

j=0

[
ûδ−k⌊ δ

k⌋−j + ûk(⌊ δ
k⌋+1)+j

]
XAj

+

+
k−1∑

j=k−δ+k⌊ δ
k⌋
ûk(⌊ δ

k⌋+1)+jXA
j.

Because we know that u0 ̸= 0 then, at least, one of the ûr, for r ∈ {0, . . . , k − 1}
is nonzero. Therefore, if r ≤ δ − k

⌊
δ
k

⌋
− 1, V⌊ δ

k⌋+1 is full row rank. Otherwise it is

possible to V⌊ δ
k⌋+1 to be equal zero.

The next
⌊
δ
k

⌋
+ 2 vector coefficients of v(D) are represented by

v⌊ δ
k⌋+1+i = u⌊ δ

k⌋+1+iG0 + · · ·+ u2iG⌊ δ
k⌋+1−i + u2i−1G⌊ δ

k⌋+2−i + · · ·+ uiG⌊ δ
k⌋+1

+ui−1Ĝ⌊ δ
k⌋+1 + ui−2Ĝ⌊ δ

k⌋ + · · ·+ u0Ĝ⌊ δ
k⌋+2−i,

for 1 ≤ i ≤
⌊
δ
k

⌋
+ 2.

Let us consider the transformation uji = ûki+j. Then

V⌊ δ
k⌋+1+i =

k−1−(δ−k⌊ δ
k⌋)∑

j=0

(
ûk(⌊ δ

k⌋+1+i)+j + ûki+δ−k⌊ δ
k⌋+j + ûk(i−1)+j

)
XAj

+

⌊ δ
k⌋+1−i∑
j=1

[
k−1∑
h=0

ûk(⌊ δ
k⌋+1+i−j)+hXA

kj+h

]
+

+
k−1∑
j=0

(
ûk(2i−1)+j + ûk−1−j

)
XAk(⌊

δ
k⌋+2−i)+j

+ · · ·+
δ−k⌊ δ

k⌋−1∑
j=0

(
ûki+j + ûk(i−1)+k−1−j

)
XAk⌊

δ
k⌋+k+j.

Then if V⌊ δ
k⌋+1+i = 0, it follows that:

• u⌊ δ
k⌋+1+i−j = 0, for all j ∈

{
1, . . . ,

⌊
δ
k

⌋
+ 1− i

}
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• if ûs is the first element of the vector u0 different from zero (i.e., ut0 ̸= 0 for t < s

and us0 = 0), then û2ki−(s+1) ̸= 0

• ûki+j + ûk(i−1)+k−1−j = 0

• ûk(⌊ δ
k⌋+1+i)+j + ûki+δ−k⌊ δ

k⌋+j + ûk(i−1)+j = 0

Now, if we choose any Vj, with j =
⌊
δ
k

⌋
+ 1+ i+ r for 1 ≤ r ≤

⌊
δ
k

⌋
+ 2− i, then it

follows that,

V⌊ δ
k⌋+1+i+r =

k−1−(δ−k⌊ δ
k⌋)∑

j=0

(
ûk(⌊ δ

k⌋+1+i+r)+j + ûk(i+r)+δ−k⌊ δ
k⌋+j + ûk(i+r−1)+j

)
XAj+

+

⌊ δ
k⌋+1−(i+r)∑

j=1

[
k−1∑
h=0

ûk(⌊ δ
k⌋+1+i+r−j)+hXA

kj+h

]
+

+
k−1∑
j=0

(
ûk(2(i+r)−1)+j + ûk−1−j

)
XAk(⌊

δ
k⌋+2−(i+r))+j+

+ · · ·+
δ−k⌊ δ

k⌋−1∑
j=0

(
ûk(i+r)+j + ûk(i+r−1)+k−1−j

)
XAk⌊

δ
k⌋+k+j.

Note that

(ûs+û2k(i+r)−(s+1))XA
k(⌊ δ

k⌋+2−(i+r))+k−1−j = X((ûs+û2k(i+r)−(s+1))A
k(⌊ δ

k⌋+2−(i+r))+k−1−j)

is a term of V⌊ δ
k⌋+1+i+r and since 2k(i+ r)− (s+1) > k(2i− 1) + k− 1 it follows that

û2k(i+r)−(s+1) = 0 and therefore X((ûs+ û2k(i+r)−(s+1))A
k(⌊ δ

k⌋+2−(i+r))+k−1−j) is full row

rank and consequently V⌊ δ
k⌋+1+i+r is also full row rank.

Therefore, all Vj for
⌊
δ
k

⌋
+ i + 2 ≤ j ≤ 2

⌊
δ
k

⌋
+ 3 and 1 ≤ i ≤

⌊
δ
k

⌋
+ 2 are full row

rank and consequently,

2⌊ δ
k⌋+3∑
j=0

rank(Vj) = n

(⌊
δ

k

⌋
+ 1

)
+ n

(⌊
δ

k

⌋
+ 1

)
= 2n

(⌊
δ

k

⌋
+ 1

)
.
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Moreover,

Vl+2⌊ δ
k⌋+3 = ψ(vl+2⌊ δ

k⌋+3) = ψ

ul

0 1

...

1 0

G0

 =
k−1∑
j=0

ûkl+jXA
k−1−j

and

Vl+2⌊ δ
k⌋+3−1 = ψ(vl+2⌊ δ

k⌋+3−1) = ψ

ul

0 1

...

1 0

G1 + ul−1


0 1

...

1 0

G0


are full row rank matrices since ul ̸= 0. Then,

2⌊ δ
k⌋+3+l∑
j=0

rank(Vj) ≥ 2n

(⌊
δ

k

⌋
+ 1

)
+ 2n = 2n

(⌊
δ

k

⌋
+ 2

)
.

Consequently, C is MRD.

Next example presents an MRD rank metric convolutional code that it is not pos-

sible to build using the construction of Section 3.2.

Example 3.9. Consider the companion matrix

A =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 ∈ F4×4
2 .

of the irreducible polynomial χ(λ) = λ4+λ+1 ∈ F2[λ] and the full row rank matrix

X =

1 0 0 0

0 1 0 0

0 0 1 0

 ∈ F3×4
2 .

Let δ = 1 and k = 3 (note that m ≥ δ + k and that k ∤ δ).
The rank metric convolutional code with encoder G(D) = G0+G1D+G2D

2+G3D
3

with
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G0 =

 ψ−1(X)

ψ−1(XA)

ψ−1(XA2)

 =

 1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 1 1 0 0

 ,

G1 =

ψ
−1(XA3)

psi−1(X)

psi−1(XA)

 =

 0 0 0 1 1 1 0 0 0 1 1 0

1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1

 ,

G2 =


0 1

...

1 0

G1

=

 ψ
−1(XA)

ψ−1(X)

ψ−1(XA3)

 =

 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 1 0 0 0 1 1 0

 ,
and

G3 =


0 1

...

1 0

G0

=

ψ
−1(XA2)

ψ−1(XA)

ψ−1(X)

 =

 0 0 1 0 0 0 0 1 1 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0

 ,
is a (3× 4, 1, 6) MRD convolutional code.

3.4 Construction of a (5× 5, 1, 19) MRD rank metric

convolutional code

In this section we consider (5×5, 1, δ) rank metric convolutional codes. The above con-

structions only allowed to obtain (5×5, 1, δ) MRD rank metric convolutional codes for

δ ≤ 9. Next we present a construction of a (5×5, 1, 19) MRD rank metric convolutional

code.

Let A ∈ F5×5
q be a matrix with irreducible characteristic polynomial, consider the
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polynomial matrix

G(D) = ψ−1(I) + ψ−1(A)D + ψ−1(A2)D2 + ψ−1(A3)D3 + ψ−1(A4)D4+

+ ψ−1(I)D5 + ψ−1(A2)D6 + ψ−1(A4)D7 + ψ−1(A)D8 + ψ−1(A3)D9+

+ ψ−1(I)D10 + ψ−1(A3)D11 + ψ−1(A)D12 + ψ−1(A4)D13 + ψ−1(A2)D14+

+ ψ−1(I)D15 + ψ−1(A4)D16 + ψ−1(A3)D17 + ψ−1(A2)D18 + ψ−1(A)D19 (3.8)

and the rank metric convolutional code C with encoder G(D).

Since [G]hc = ψ−1(A) ̸= 0 (and k = 1), G(D) is row reduced and therefore the

degree of C is extdeg(G(D)) = 19. Thus, to prove that C is an MRD rank metric

convolutional code we have to show that

dSR(C) = m(δ + 1) = 5× (19 + 1) = 100.

Without loss of generality, let us consider u(D) = u0+u1D+ · · ·+ulDl,with u0 ̸= 0

and ul ̸= 0, v(D) = u(D)G(D) and V (D) = ψ(v(D)) =
∑l+19

i=0 ViD
i.

If l = 0, Vi = u0A
t, for some t ∈ {0, 1, 2, 3, 4}, i = 0, 1, . . . , 19, and therefore all the

coefficients of V (D), Vi, i = 0, 1, . . . , 19, are full rank and we have that

rwt(V (D)) = 20× 5 = 100.

Let us consider the case l < 5. Then

V0 = u0I

V1 = u1I + u0A

V2 = u2I + u1A+ u0A
2

V3 = u3I + u2A+ u1A
2 + u0A

3

V4 = u4I + u3A+ u2A
2 + u1A

3 + u0A
4

Since u0 ̸= 0, each Vi, for 0 ≤ i ≤ 4 is full rank,and then

4∑
i=0

rank(Vi) = 5× 5 = 25.
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Moreover,

V5 = u0I + u4A+ u3A
2 + u2A

3 + u1A
4

V6 = u1I + (u0 + u4)A
2 + u3A

3 + u2A
4

V7 = u2I + u1A
2 + u4A

3 + (u0 + u3)A
4

V8 = u3I + u0A+ u2A
2 + (u1 + u4)A

4

V9 = u4I + u1A+ u3A
2 + u0A

3 + u2A
4.

Note that V5, V8 and V9 are full rank because they are a nontrivial linear combination

of I, A,A2, A3, A4 since u0 ̸= 0. However V6 and V7 can be zero. In these cases we have

the following:

• If V6 = 0 then u1 = u2 = u3 = u0 + u4 = 0, which means that u1 = u2 = u3 = 0

and u4 = −u0 ̸= 0. This implies that V7 is full rank.

• If V7 = 0 then u1 = u2 = u4 = u0 + u3 = 0, and therefore u1 = u2 = u4 = 0 and

u3 = −u0 ̸= 0. Thus V6 is full rank.

So, we conclude that
9∑
i=5

rank(Vi) ≥ 20.

The next five coefficients of V (D) are,

V10 = u0I + u2A+ u4A
2 + u1A

3 + u3A
4

V11 = u1I + u3A+ (u0 + u2)A
3 + u4A

4

V12 = u2I + (u0 + u4)A+ (u1 + u3)A
3

V13 = u3I + u1A+ (u2 + u4)A
3 + u0A

4

V14 = u4I + u2A+ u0A
2 + u3A

3 + u1A
4.

Using the same reasoning as before we conclude that V10, V13 and V14 are full rank

and that

• V11 = 0 implies that u1 = u3 = u4 = u0 + u2 = 0, and therefore u1 = u3 = u4 = 0

and u2 = −u0 ̸= 0. Thus V12 is full rank.

• V12 = 0 implies that u2 = u0 + u4 = u1 + u3 = 0, and therefore u2 = 0,

u4 = −u0 ̸= 0 and u3 = −u1. Thus V11 is full rank.

This means that
14∑
i=10

rank(Vi) ≥ 20.
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By reasoning in a similar way we prove that

19∑
i=15

rank(V i) ≥ 20.

Let us now analyze in more detail the cases l = 1, l = 2, l = 3 and l = 4.

If l = 1, it is easy to see that

4∑
i=0

rank(Vi) =
9∑
i=5

rank(Vi) =
14∑
i=10

rank(Vi) =
19∑
i=15

= rank(Vi) = 25,

and therefore

rwt(V (D)) ≥ 100.

If l = 2, we have that

4∑
i=0

rank(Vi) =
9∑
i=5

rank(Vi) =
19∑
i=15

= rank(Vi) = 25,

14∑
i=10

rank(Vi) ≥ 20

and

rank(V20) = 5.

So we conclude that

rwt(V (D)) ≥ 100.

If l = 3, then

4∑
i=0

rank(Vi) = 25,

9∑
i=5

rank(Vi) ≥ 20,

14∑
i=10

rank(Vi) ≥ 20,

19∑
i=15

rank(Vi) ≥ 20
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and since

V20 = u1A+ u2A
2 + u3A

3

V21 = u2A+ u3A
2

V22 = u3A

and u3 ̸= 0, it follows that

rank(V20) + rank(V21) + rank(V22) = 15,

and therefore

rwt(V (D)) ≥ 100.

Finally, if l = 4 then
4∑
i=0

rank(Vi) = 25,

9∑
i=5

rank(Vi) ≥ 20,

14∑
i=10

rank(Vi) ≥ 20

19∑
i=15

rank(Vi) ≥ 20,

and since

V21 = u2A+ u3A
2 + u4A

3

V22 = u3A+ u4A
2

V23 = u4A

and u4 ̸= 0, we have that

rank(V21) + rank(V22) + rank(V23) = 15,

and therefore

rwt(V (D)) ≥ 100.

Let us now examine the case l ≥ 5.

Let V (D) =
∑l+19

i=0 ViD
i. Using the same reasoning as before we conclude that



62 3. Constructions of MRD convolutional codes

∑4
i=0 rank(Vi) = 25.

Let us consider the next five coefficients of V (D),

V5 = (u0 + u5)I + u4A+ u3A
2 + u2A

3 + u1A
4

V6 = (u1 + u6)I + u5A+ (u0 + u4)A
2 + u3A

3 + u2A
4

V7 = (u2 + u7)I + u6A+ (u1 + u5)A
2 + u4A

3 + (u0 + u3)A
4

V8 = (u3 + u8)I + (u0 + u7)A+ (u2 + u6)A
2 + u5A

3 + (u1 + u4)A
4

V9 = (u4 + u9)I + (u1 + u8)A+ (u3 + u7)A
2 + (u0 + u6)A

3 + (u2 + u5)A
4

It is quite simple to see that we can have one of the V ′
i s equal to zero. However,

we will see that we cannot have two null V ′
i s. In fact, the ui, i = 0, 1, . . . , 9, such that,

for instance,

V5 = 0 ∧ V7 = 0,

are such that 

u0 + u5 = 0

u4 = 0

u3 = 0

u2 = 0

u1 = 0

u2 + u7 = 0

u6 = 0

u1 + u5 = 0

u4 = 0

u0 + u3 = 0

which is a system with unique solution, the trivial solution. However, this is not

possible since u0 ̸= 0. So we conclude that it is not possible that V5 = V7 = 0.

Using the same reasoning we conclude that it is not true that

Vr = 0 ∧ Vs = 0,

for r, s ∈ {5, 6, . . . , 9}, with r ̸= s.

Therefore,
9∑
i=5

rank(V i) ≥ 20.

Let us now analyze the rank of the following coefficients of V (D) by considering

the cases l > 5 and l = 5, separately.
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If l > 6, following the same reasoning we can observe that in the next five coefficients

V10, V11, V12, V13, V14 we see that we can have two V ′
i s equal zero but not three and in

the following five coefficients, V15, V16, V17, V18, V19 we can have three coefficients equal

to zero but not four. Thus,

19∑
i=0

rank(V i) ≥ 25 + 20 + 15 + 10 = 70

Since

Vl+13 = ul−6A+ (ul−1 + ul−5)A
2 + ul−4A

3 + (ul + ul−3)A
4 + ul−2I

Vl+14 = ul−5A+ (ul + ul−4)A
2 + ul−3A

3 + ul−2A
4 + ul−2I

Vl+15 = ul−4A+ ul−3A
2 + ul−2A

3 + ul−1A
4 + ulI

Vl+16 = ul−3A+ ul−2A
2 + ul−1A

3 + ulA
4

Vl+17 = ul−2A+ ul−1A
2 + ulA

3

Vl+18 = ul−1A+ ulA
2

Vl+19 = ulA,

and ul ̸= 0, it follows that
l+19∑
i=l+13

rank(Vi) ≥ 30

because Vl+13 and Vl+14 cannot be simultaneously equal o zero and Vl+15,Vl+16,Vl+17,Vl+18

and Vl+19 are nonzero. Therefore,

rwt(V (D)) ≥
19∑
i=0

rank(Vi) +
l+19∑
i=l+14

rank(Vi) ≥ 100.

To finalize, it remains to analyze the case l = 5 and the case l = 6. Considering

first the case l = 5 , we already saw that

9∑
i=0

rank(V i) ≥ 25 + 20 = 45.

The coefficients Vi, for i = 10, 11, . . . , 14, are

V10 = (u0 + u5)I + u2A+ u4A
2 + u1A

3 + u3A
4

V11 = u1I + u3A+ u5A
2 + (u0 + u2)A

3 + u4A
4
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V12 = u2I + (u0 + u4)A+ (u1 + u3)A
3 + u5A

4

V13 = u3I + (u1 + u5)A+ (u2 + u4)A
3 + u0A

4

V14 = u4I + u2A+ u0A
2 + (u3 + u5)A

3 + u1A
4.

Using the same reasoning as before we can have one of the above coefficients equal

to zero, but it is not possible to have two of these coefficients equal to zero. The same

happens if we consider the coefficients V15, . . . , V19. Thus,

19∑
i=0

rank(V i) ≥ 25 + 20 + 20 + 20 = 85.

However, the last V ′
i s with i taking values between 20 and 24, will compensate for

the possible rank loss in the previous V ′
i s, because we will have 5 full row rank matrices

V ′
i s. Finally, it means

24∑
i=0

rank(V i) ≥ 25 + 20 + 20 + 20 + 25 ≥ 100.

The case l = 6 is similar to l = 5. So, we conclude that C is MRD.

This constructions allows to obtain a (5 × 5, 1, δ̃) MRD rank metric convolutional

code for δ̃ ≤ 19. For that we have to consider the corresponding encoder

G̃(D) =
δ∑
i=0

Gi,

where Gi, i = 0, 1, . . . , δ, are the first δ+1 coefficients of the matrix G(D) =
∑19

i=0GiD
i

defined in (3.8).

Generalizing, we believe that the statement holds true for all m, with m a prime

number, as it is stated as the following conjecture.

Conjecture 3.10. An (m×m, 1,m2 −m− 1) rank metric convolutional code C with

m a prime number and with encoder

G(D) =
m−1∑
i=1

[
m−1∑
k=0

Aik(mod. m)D(i−1)m+k

]
, (3.9)
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i.e.,

G(D) = I + AD + A2D2 + · · ·+ Am−1D
m−1+

+ IDm + A2Dm+1 + A4Dm+2 + · · ·+ Am−2D2m−1+

+ ID2m + A3D2m+1 + · · ·+ Am−3D3m−1+

+ · · ·+

+ ID(m−2)m + Am−1D(m−2)m+1 + · · ·+ AD(m−1)m−1

is MRD and dSR(C) = m2(m− 1).

As above, for the cases in which the above result is true, the matrix

G̃(D) =
δ∑
i=0

Gi,

whereGi, i = 0, 1, . . . , δ, are the first δ+1 coefficients of the matrixG(D) =
∑(m−1)m−1

i=0 GiD
i

defined in (3.9) is an encoder of an (m×m, 1, δ̃) MRD rank metric convolutional code

for δ̃ ≤ m2 −m− 1 .





Chapter 4

Concatenated code

In this chapter we address the problem of concatenation of a convolutional code and a

rank metric code as an alternative approach for building multi-shot codes. In particular,

we present a novel scheme of a concatenation of a Hamming metric convolutional code

and a rank metric block code.

The work presented in this chapter is inspired by the work done by Napp, Pinto

and Sidorenko [32]. There are however important differences between these two coding

schemes that will be described in detail in this chapter. The main difference is in

the way the information is concatenated. The novel scheme presented here is able

to encode vectors with no restrictions on the length and requires vectors over smaller

finite fields which lead to a reduction in the complexity of the encoding and decoding

process. Moreover, we will show that the inner code (the rank metric) is able to recover

lost packets that remain lost in the concatenation scheme introduced in [32]. We will

illustrate the nuances of each coding procedure by presenting several examples for

different parameters and erasure patterns.

4.1 Concatenation scheme over extension fields

In [32] the authors Napp, Pinto and Sidorenko proposed a concatenation scheme with

a Hamming metric convolutional code as an outer code and a rank metric block code

as an inner code. The way these two are concatenated is described below.

Let CO be an (nO, kO, δ) convolutional code over an extension field of FqmkI with

encoder GO, (Hamming) free distance dfree(CO), (Hamming) column distance dcj(CO).
Using the framework described in Remark 2.19 we consider an (nI , kI) rank metric

block code CI with rank distance drank(CI) and encoder GI also over an extension field

of Fqm .

67
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Consider u(D) = u0 + u1D + u2D
2 + · · · ∈ FqmkI [D]kO be the information vector.

Then, the information vector we will be encoded through GO(D) ∈ FqmkI [D]kO×nO in

order to obtain v(D) ∈ CO defined as:

v(D) = v0 + v1D + v2D
2 + · · · = u(D)GO(D) ∈ CO ⊂ FqmkI [D]nO

and we write vi = (v0i , . . . , v
no−1
i ) with vji ∈ FqmkI .

For a given basis of FqmkI over Fqm we can represent each vji ∈ FqmkI with a vector

vji ∈ FkIqm and

vi = (v0i , . . . , v
no−1
i ) ∈ (FkIqm)no .

With this identification

v(D) = v0 + v1D + v2D
2 · · · ∈ FkIqm [D]no .

Finally, the codewords x(D) of the concatenated code C are obtained by concaten-

ating at each time instant vji with the rank metric code CI through GI in the following

way,

xji = vjiGI ∈ FnI
qm

which yields

xi = (x0i , . . . , x
no−1
i ) ∈ (FnI

qm)
no

and, therefore, the codewords are given by

x(D) = x0 + x1D + x2D
2 + · · · ∈ C ⊂ FnI

qm [D]no .

It is important to note that within this setting in each shot (time instant) we encode

vji ∈ FqmkI and send to the network xji = vjiGI ∈ FnI
qm . Again the vector xji can be seen

as a matrix Xj
i ∈ FnI×m

q . Then, the rows of Xj
i can be regarded as the packets that

are being introduced into the network at each shot.

Notice that in this scheme vji must have length multiple of m, considering vji over

Fq, which is restrictive, and to transmit each vi we need nO = kI shots. Hence, for

instance, we need 3nO shots instants to completely send v(D) = v0+v1D+v3D
2. This

is a bit counter-intuitive in the context of convolutional codes, because D is typically

used as a delay operator of one instant.

Next, we illustrate how this concatenated scheme processes the data with a simple

example.
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Example 4.1. Suppose we want to send a file with 18 elements of Fq. If we want to

apply the scheme of [32] we can divide the information as follows:

u(D) = u0 + u1D + u2D
2 ∈ Fq6 [D].

Then, we have m = 3 and kI = 2.

Suppose that to encode it we have a machine (the convolutional encoder) with the

capacity of storing 2 elements of Fq6, i.e., δ = 2. Then, we can consider the following

encoder

G(D) = G0 +G1D +G2D
2 ∈ F1×4

q6 [D].

In other words, we use an (no = 4, ko = 1, δ = 2) convolutional code Co over Fq6 as

outer code, and obtain:

v(D) = v0 + v1D + v2D
2 + v3D

3 + v4D
4 = u(D)GO(D) ∈ F4

q6 [D]

as a codeword of Co. We now apply the inner code in each vji ∈ Fq6 where vi =

(v0i , v
1
i , v

2
i , v

3
i ), for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 3. To this end, we regard vji as an element

of F2
q3. If we use an (nI = 3, kI = 2) rank metric block code over Fq3 with encoder

GI ∈ F2×3
q3 we obtain:

xji = vjiGI ∈ F3
q3 .

We identify (via an isomorphism between F3
q3 and F3×3

q ) these vectors to matrices

Xj
i ∈ F3×3

q ,

where each row represent a packet with 3 elements in Fq and we send 3 packets at each

shot. As we require 4 shots to send each vi and we have 5 v′is, we need 20 shots to send

the encoded file.

In the following subsection we propose a new framework in which we consider an

encoder machine which will operate over a smaller finite field and the concatenation is

performed via the vi instead of vji . Hence, for instance, we need i+ 1 instants (shots)

to completely send v(D) = v0+v1D+ · · ·+viDi ∈ CO and therefore, in this regard, one

can say that such concatenation scheme is very natural since D is now used as delay

operator of one time instant and vi has no restrictions on the length.
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4.2 Novel concatenation scheme over the base field

In this section we shall consider the general definition of rank metric block codes as

described in Subsection 2.2.1 and operate over the base field Fq instead of the extension

fields of Fq.

Let us now consider CO an (nO, kO, δ) Hamming metric convolutional code with

encoder GO, free distance dfree(CO), column distance dcj(CO) and CI an (nI × m, kI)

rank metric block code with rank distance drank(CI) and encoder GI .

As in the previous scheme, the concatenated code C is obtained by using the Ham-

ming metric convolutional code CO as an outer code and the rank metric block code CI
as an inner code.

Let u(D) = u0 + u1D + u2D
2 + · · · ∈ Fq[D]kO be the information vector. Then, we

encode it through GO(D) ∈ Fq[D]kO×nO in order to obtain v(D) ∈ CO as:

v(D) = v0 + v1D + v2D
2 + · · · = u(D)GO(D) ∈ CO ⊂ Fq[D]nO .

The codewords of the concatenated code C will be obtained through the composition

of an isomorphism ψ and a monomorphism γ (see Chapter 2) with GI ∈ FkI×nIm
q and

kI = nO in the following way:

xi = γ(vi) = viGI ∈ FnIm
q

which is transformed into a matrix by

Xi = ψ(xi) ∈ CI ∈ FnI×m
q .

Finally, the codewords of the concatenation code C are

X(D) = X0 +X1D + x2D
2 + ... ∈ C ⊂ Fq[D]nI×m.

Again, the rows of the matrix Xi can be seen as the packets that are injected into

the network at time instant i.

Of course, for a given basis of Fqm over Fq, we can identify each matrix Xi ∈ FnI×m
q

with a vector xi ∈ FnI
qm and X(D) ∈ Fq[D]nI×m with a polynomial x(D) in Fqm [D]nI .

Next we illustrate how this novel concatenated scheme processes the data.



4.3. Distance properties 71

Example 4.2. In Example 4.1 we have illustrated how to send a file of 18 elements in

Fq using the scheme in [32] with an (4, 1, 2) outer convolutional code Co over Fq6 and

a (3, 2) inner rank metric block code CI over Fq3.

We now show how can we use the concatenation scheme described in this section to

send the same file using now a (2, 1, 12) as outer convolutional code and a (3× 3, 2) as

inner rank metric block code both over Fq instead of over Fq6 and Fq3.

Note that both convolutional codes have the same memory, namely, the encoder can

store 2 elements of Fq6 or, equivalently, 12 elements of Fq which means that δ is, in

this case, equal to 12.

The data can be divided as

u(D) = u0 + u1D + u2D
2 + · · ·+ u17D

17 ∈ Fq[D].

An encoder of Co can be taken to be of the following form

G(D) = G0 +G1D +G2D
2 + · · ·+G12D

12 ∈ F1×2
q [D]

and then

v(D) = v0 + v1D + v2D
2 + · · ·+ v29D

29 = u(D)G(D) ∈ Co ⊂ F2
q[D].

In this setting we now encode each vi ∈ F2
q via an encoder of CI , GI ∈ F2×3.3

q , to obtain

xi = γ(vi) = viGI ∈ F9
q

and

Xi = ψ(xi) ∈ F3×3
q .

The rows of Xi represent the packets that are sent at each shot. Hence, again, each

packet has 3 elements of Fq and we send 3 packets at each shot.

Within this framework and this selection of parameters we need 29 shots to transmit

the file.

4.3 Distance properties

In this section we will present the distance properties of the proposed concatenated

code C described in the previous subsection. Without loss of generality we will assume

throughout the chapter that m > nI .



72 4. Concatenated code

Let X(D) ∈ C. Recall that

rwt(X(D)) =
∑
i∈N0

rank(Xi),

and the sum rank distance of C is defined as

dSR(C) = min{rwt(X(D)), X(D) ∈ C, X(D) ̸= 0}.

Theorem 4.3. The sum rank distance of the concatenated code C satisfies:

dSR(C) ≥
⌈
dfree(CO)
nO

⌉
× drank(CI).

Proof. The sum rank distance dSR(C) is the minimum sum rank of a nonzero codeword

X(D) of C. To take a nonzero codeword X(D) we should take a nonzero codeword

v(D) = v0+v1D+v2D
2+· · · of the outer code CO, which has a at least dfree(CO) nonzero

components vji . So there are at least
⌈
dfree(CO)

nO

⌉
nonzero vi’s. After inner encoding each

of these nonzero vi we obtain the corresponding Xi that have rank of at least drank(CI).
This concludes the proof.

Let X(D)|[0,j] = X0 + · · · + XjD
j be the j-th truncation of the codeword X(D),

then

rwt(X(D)|[0,j]) =
j∑
i=0

rank(Xi).

The column rank distance of C is defined as

dcrj (C) = min{rwt(X(D)|[0,j]), X(D) ∈ C ∧X0 ̸= 0}.

Theorem 4.4. The column sum rank distance of the concatenated code C satisfies:

dcrj (C) ≥
⌈
dcj(CO)
nO

⌉
× drank(CI).

Proof. For any v(D) ∈ CO, with v0 ̸= 0 we have that v(D)|[0,j] has at least dcj(CO)
nonzero components. Then, v(D)|[0,j] has at least

⌈
djc(CO)
nO

⌉
nonzero vi’s. Each vi dif-

ferent from zero results into a xi, or equivalently, into Xi that has rank of at least

drank(CI). Then, the theorem follows.

As explained before, Rosenthal and Smarandache [18] showed that the free distance
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of an (n, k, δ) convolutional code is upper bounded by the generalized Singleton bound,

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

and the column distance, see [11], is upper bounded by

dcj ≤ (n− k)(j + 1) + 1.

Note that the rank distance is upper bounded by the Hamming distance, i.e., for all

x ∈ Fnqm and a corresponding X ∈ Fn×mq we have that rwt(X) ≤ wt(x). Note that this

fact is independent of the basis chosen when identifying x to X. Using this obvious

fact, we derive the following results.

Theorem 4.5. The sum rank distance of the concatenated code C satisfies

dSR(C) ≤ nI

(⌊
δ

kO

⌋
+ 1

)
.

Proof. Let G(D) be a row reduced encoder of Co. Let us consider a row of Go(D) with

degree
⌊
δ
kO

⌋
, which is a codeword of Co.That means that exists a codeword v(D) =∑

i≥0 viD
i ∈ CO with maximum number of nonzero coefficients equal to

⌊
δ
kO

⌋
+1. Each

nonzero coefficient of v(D), vi, is encoded by the (nI , kI) inner code CI which obviously

yields a codeword with rank ≤ nI . Thus, dSR(C) ≤ nI

(⌊
δ
kO

⌋
+ 1
)
.

Analogously, we can derive an upper bound on the column rank distance of the

concatenated code as we show in the next result.

Theorem 4.6. The column sum rank distance of the concatenated code C satisfies

dcrj (C) ≤ nI (j + 1) .

Proof. Following the same reasoning as in the previous theorem, we know that the

maximun number of nonzero coefficients of a truncated codeword of Co is equal to j+1.

In other words, there are at most j + 1 nonzero v′is in v(D)|[0,j]. Since each nonzero vi

leads to a nonzero Xi with rank(Xi) ≤ nI , we can conclude that dcrj ≤ (j + 1)nI .
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4.4 Performance of the concatenated code

In this section we will evaluate the performance of the proposed concatenation scheme

and then compare it to the one presented in [32] in terms of performance during the

encoding and decoding process.

Consider packet loss only (no erroneous packets) in the network. As explained in

[21] the inner (nI , kI) code with rank distance dI = nI − kI + 1 is able to correct

up to dI − 1 lost packets. If the number ℓ of lost packets is more, then the inner

decoder gives to the outer code the symbol of erasure. Assume that we transmit via

network nI linearly independent packets, and each packet can be lost with probability

p independently on other packets. Then probability po of symbol erasure of the outer

code is

po =

nI∑
ℓ=dI

(
nI
ℓ

)
pℓ(1− p)nI−ℓ. (4.1)

After decoding sufficient inner codes, we decode outer convolutional code. Assume

that blocks of the outer convolutional code are correctly decoded up to instance t−1 and

there are erasures in the block t. At this stage we need to use the results of Napp, Pinto

and Sidorenko [32] on the decoding of convolutional codes over the erasure channel that

will help us to evaluate the performance of our code. This is presented next.

Let Co be an (no, ko, δ) convolutional code, d
c
T (CO) be its T -th column distance and

let H(D) = H0 +H1D +H2D
2 + · · ·+HγD

γ be a parity-check matrix of CO.

Assume that we have been able to correctly decode up to an instant t − 1. Then,

for each received codeword v(D) = v0 + v1D + v2D
2 + · · · ∈ CO ⊂ F[D]no consider the

system of linear equations


Hγ · · · · · · H1 H0

Hγ H1 H0

. . .
...

...
. . .

Hγ · · · HT HT−1 · · · H0





vt−γ
...

vt−1

vt
...

vt+T


= 0 (4.2)

︸ ︷︷ ︸
Hc

T

where vi, t ≤ i ≤ t + T may contain some erasures on it and vi, t − γ ≤ i < t are

assumed to be correct.

If we consider the columns of Hc
T that correspond to the coefficients of the erased
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elements to form a new matrix, which will be denoted by Ĥc
T , then the remaining

columns of Hc
T , denoted by H̃, can help us to compute the independent terms of a

system, i.e., if ṽ is the sub-vector of v[t,...,t+T ] corresponding to H̃, which are assumed to

be the known coefficients in (4.2), then we will be able to obtain the non-homogeneous

linear system with (T + 1)(n− k) equations,

Ĥc
TY = −H̃ṽ, (4.3)

where Y corresponds to the vector with the erasures in v[t,...,t+T ].

Note that this system has always a solution since v(D) ∈ kerH(D). Therefore, it will

be possible to recover all the existing erasures in v[t,...,t+T ] if and only if the system (4.3)

has a unique solution.

Lemma 4.7. [32, Lemma 2] Let Co be an (no, ko, δ) Hamming metric convolutional

code and let dcT (Co) be its T -th column distance, T ≤ L and L has defined in Definition

2.17. Assume that we have been able to correctly decode up to an instant t − 1. Let

E(t, t + T ) be the number of erasures occurring in the time interval [t, t + T ]. Then,

we can recover vt if

E(t, t+ T ) ≤ dTH(Co)− 1.

The authors in [32] presented a necessary conditions to recover all the erasures

within an interval in case we have information about the number of erasures per time

instant.

Lemma 4.8. [32, Lemma 3] Let dc0(Co), dc1(Co), . . . , dcL(Co) be the distance profile of an

(no, ko, δ) Hamming metric convolutional code Co. Let Ei be the number of erasures at

a time instant i. Assume that we have been able to correctly decode up to an instant

t− 1. Then, we can completely decode up to an instant t+ T where T ≤ L if

s∑
i=0

ET−i+t ≤ dcs(Co)− 1 for s = 0, 1, . . . , T.

Of course the best convolutional codes in this scenario is when they have the largest

possible column distances, i.e., is an MDP convolutional code, see Definition 2.17.

According to the authors, the conditions of the previous results become also sufficient

when considering MDP convolutional codes as we will show in the following theorem.

Theorem 4.9. [32, Theorem 6] Let Co be an MDP (no, ko, δ) convolutional code. As-

sume that we have been able to correctly decode up to an instant t − 1. Let Ei be the



76 4. Concatenated code

number of erasures at time instant i. Then, we can completely decode up to an instant

t+ T where T ≤ L if and only if

s∑
i=0

ET−i+t ≤ (no − ko)(s+ 1) for s = 0, 1, . . . , T.

We will now consider the concatenated codes proposed above and show the condi-

tions necessary, in both cases, to fully recover from the missing packets. The error-

correcting capabilities of the concatenated code will depend on how the packet losses

are distributed along (Xt, . . . , Xt+T ) and we will illustrate by showing some examples.

For the sake of simplicity, in order to measure the performance of the two concat-

enation schemes presented above we shall consider only lost packets over the network.

If the inner rank metric code fails to recover the packets at a time instant, then it will

deliver an erasure to the outer convolutional code. Then, using Lemma 4.7 and 4.8

and Theorem 4.9, the convolutional code will try to correct these erasures to recover

the lost packets that the inner code could not recover.

As explained above, after decoding sufficient inner codes, we decode outer convolu-

tional code. Assume that blocks of the outer convolutional code are correctly decoded

up to instance t − 1 and there are erasures in the block t. According to Lemma 4.7,

we can recover tth block vt using window of size T +1 of blocks vt, vt+1, ...vt+T if num-

ber of erasures in the window is less than d̂ = DT
H(Co), otherwise the decoder fails.

Hence, the failure probability Pf is the probability to have at least d̂ erasures in the

T + 1-window given by (4.4), where at least one erasure should be in the block vt (see

correction (4.5)). Since every symbol of the outer code can be independently erased

with probability po, we obtain the failure probability

Pf (p) =

no(T+1)∑
ℓ=d̂

(
no(T + 1)

ℓ

)
pℓo(1− po)

no(T+1)−ℓ (4.4)

−
noT∑
ℓ=d̂

(
noT

ℓ

)
pℓo(1− po)

noT−ℓ. (4.5)

In order to analyze the performance of the concatenation schemes, a model, such

as the one described by the Elliot channel, would help to understand better the error

correction capabilities of the code. This is left for future research. Next We illustrate

the decoding process of both schemes in the following semple example.
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Example 4.10. Let us consider Example 4.1 and 4.2 and see how these two different

concatenation schemes perform when we have lost packets during the transmission of

a file over a network.

Suppose that the lost packets pattern at each shot is the one represented in Figure

4.1. For the sake of simplicity we just analyze the situation after the first eight shots.

Suppose that both CI and CO are, respectively, MRD and MDP, in both examples.

Figure 4.1: Lost packets at each shot

The concatenated code in Example 4.1 using [32] can recover, with CI , at most

ni − ki = 3 − 2 = 1 lost packets at each shot whereas the inner rank metric code in

Example 4.2 can correct up to nI −
⌈
kI
m

⌉
= 3−

⌈
2
3

⌉
= 2 packets each shot.

Hence, the first scheme can fully recover X0
0 , X

1
0 , X

3
0 and fails to retrieve X2

0 , X
0
1 , X

1
1 , X

2
1

and X3
1 . Then, the outer code receives v0 with one erasure and v1 with 4 erasures, as

represented in the following figure,

Figure 4.2: Erasure pattern

Taking into account that dc0 = 3 and using Theorem 4.9 with t = 0 and T = 0

(consequently s = 0) we have that v0 can be fully recovered as

E0 = 1 < (nO − kO)(s+ 1) = (4− 1)(0 + 1) = 3.
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Next, using again Theorem 4.9 with t = 1 and T = 0 (again s = 0) we have that

E1 = 4 > (nO − kO)(s+ 1) = (4− 1)(0 + 1) = 3

and therefore v1 cannot be recovered at time instant 8 (4 shots to receive v0 and 4 shots

to receive v1).

In the other hand, for the scheme in Section 4.2 we have that X0, X1, X3, X4, X6

and X7 can be recovered and so v0, v1, v3, v4, v6 and v7 are received without erasures.

The vectors v2 and v5 are considered by the outer code as erasures, as we can see in

the Figure 4.3. Hence, E0 = E1 = E3 = E4 = E6 = E7 = 0 and E2 = E5 = 1.

Figure 4.3: Erasure pattern

So, we have received the first erasure at time t = 2. Now the conditions of Theorem

4.9 with t = 2 and T = 2 are verified:

For s = 0,

E4 = 0 ≤ (nO − kO)(s+ 1) = (2− 1)(0 + 1) = 1× 1 = 1,

for s = 1,

E3 + E4 = 0 + 0 = 0 ≤ (nO − kO)(s+ 1) = (2− 1)(1 + 1) = 1× 2 = 2,

and for s = 2,

E2 + E3 + E4 = 1 + 0 + 0 = 1 ≤ (nO − kO)(s+ 1) = (2− 1)(2 + 1) = 1× 3 = 3.

This means that we can correct v2.

So, we can now assume we have no erasures up to time instant t = 5. Finally,

sliding the correction window we now take t = 5 and T = 2 in Theorem 4.9 and verify
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that the conditions are satisfied:

For s = 0,

E7 = 0 ≤ (nO − kO)(s+ 1) = (2− 1)(0 + 1) = 1× 1 = 1,

for s = 1,

E7 + E6 = 0 + 0 = 0 ≤ (nO − kO)(s+ 1) = (2− 1)(1 + 1) = 2,

and for s = 2,

E7 + E6 + E5 = 0 + 0 + 1 = 1 ≤ (nO − kO)(s+ 1) = (2− 1)(1 + 2) = 3.

This implies that we can recover v5 and therefore we can decode everything in the first

eight instants of the transmission.





Chapter 5

Conclusions

A great part of the existing literature about network coding is concerned with the situ-

ation in which the network is used only once to propagate the information, i.e., a fixed

number of packets are encoded and sent via the network at one time instant (one-shot

network codes). In order to achieve a reliable communication over network channels,

one-shot matrix codes called rank metric codes were constructed. However, if one needs

to transmit a lot of information and needs to use the network several instants, then one

can improve the error-correction capability of the code by creating correlation among

the transmitted data in the different shots (Multi-shot network codes). This new class

of codes has recently attracted much attention due to their application streaming com-

munications.

In this thesis a number of problems regarding codes for multi-shot networks have

been investigated. In particular, the thesis focus is twofold. The first one has to do

with the rank metric analogues of Hamming metric convolutional codes. We first intro-

duce a novel definition of rank metric convolutional codes and then we study their rank

distance properties within this new setting. Several upper bounds are derived which

allowed us to define define Strongly Maximum Rank Distance (sMRD) and Maximum

Rank Distance Profile (MRP) convolutional codes.

Despite of the fact that the distance of a code is the most important single para-

meter of a code, very little was known about the rank distance properties of these

codes. In this dissertation we have focused on the two distances that are considered

the most relevant in the context of rank metric convolutional codes, namely, the free

sum rank distance and the column rank distance.

Once we have established the proper notions in Chapter 2, we aim to derive con-

81
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crete constructions of MRD convolutional codes in Chapter 3. Extending the previous

constructions of these codes, we present novel and more general constructions for a

wider set of parameters. More specifically, we intend to build codes with higher degree

and, consequently, better error-correcting capability.

The second part of this dissertation propose a new coding framework for multi-shot

networks as alternative to rank metric convolutional codes. The novel scheme presented

here consists on using concatenation and requires vectors over smaller finite fields which

reduce the complexity of the encoding and decoding process. This novel scheme is built

by concatenating of a rank metric code as an inner code to an outer convolutional code.

We showed that our new concatenation scheme have some advantages with respect

to previous coding solutions for sequential transmission over networks in multiple shots.

In fact, we showed that the inner code (the rank metric) is able to recover lost packets

that remain lost in other concatenation schemes.

The thesis raises several interesting follow-up questions. Is it possible to derive

MRD and MRP convolutional code over more general set of parameters and smaller

fields? This question remains widely open. Another challenging avenue of future re-

search is to analyze the distance properties of the proposed codes in terms of different

metrics, for instance, the injection metric [23]. Also it would be interesting to investig-

ate the performance of the proposed concatenation scheme considering not only rank

deficiencies but also other type of errors, such as the situation when injected error pack-

ets occur. For that a nontrivial decoding algorithm needs to be developed to deal with

such errors. Some preliminary ideas and results regarding fast decoding algorithms

have been presented in [29]. In this work the authors presented a new construction

of maximum rank distance systematic rank metric convolutional codes was presented

that allows to reduce the computational complexity of the decoding Viterbi algorithm.

This result is achieved by lowering the number of branch metrics to be calculated and

by setting to the highest value the metric of the remaining edges in the trellis.

Finally, another open issue that one can naturally raises is to investigate how would

be the performance of the concatenation scheme of Chapter 4 in more real situations.

For this purpose, one should develop a statistical model, e.g., one may consider the

Gilbert-Elliott channel, to simulate burst error patterns in transmission channels like

the Internet. As the proposed scheme is very general, we would expect that a statistical

analysis will allow us to derive more concrete parameters of the inner and outer codes
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in order to achieve a good performance in these channels. This is left as an interesting

open problem.
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