2,122 research outputs found

    An Octree-based proxy for collision detection in large-scale particle systems

    Get PDF
    International audienceParticle systems are important building block for simulating vivid and detail-rich effects in virtual world. One of the most difficult aspects of particle systems has been detecting collisions between particlesand mesh surface. Due to the huge computation, a variety of proxy-based approaches have been proposed recently to perform visually correct simulation. However, all either limit the complexity of the scene, fail toguarantee non-penetration, or are too slow for real-time use with many particles. In this paper, we propose anew octree-based proxy for colliding particles with meshes on the GPU. Our approach works by subdividingthe scene mesh with an octree in which each leaf node associates with a representative normal correspondingto the normals of the triangles that intersect the node. We present a view-visible method, which is suitable forboth closed and non-closed models, to label the empty leaf nodes adjacent to nonempty ones with appropriateback/front property, allowing particles to collide with both sides of the scene mesh. We show how collisionscan be performed robustly on this proxy structure in place of the original mesh, and describe an extension thatallows for fast traversal of the octree structure on the GPU. The experiments show that the proposed methodis fast enough for real-time performance with millions of particles interacting with complex scenes

    Substitutional reality:using the physical environment to design virtual reality experiences

    Get PDF
    Experiencing Virtual Reality in domestic and other uncontrolled settings is challenging due to the presence of physical objects and furniture that are not usually defined in the Virtual Environment. To address this challenge, we explore the concept of Substitutional Reality in the context of Virtual Reality: a class of Virtual Environments where every physical object surrounding a user is paired, with some degree of discrepancy, to a virtual counterpart. We present a model of potential substitutions and validate it in two user studies. In the first study we investigated factors that affect participants' suspension of disbelief and ease of use. We systematically altered the virtual representation of a physical object and recorded responses from 20 participants. The second study investigated users' levels of engagement as the physical proxy for a virtual object varied. From the results, we derive a set of guidelines for the design of future Substitutional Reality experiences

    Finite element exterior calculus for parabolic problems

    Get PDF
    In this paper, we consider the extension of the finite element exterior calculus from elliptic problems, in which the Hodge Laplacian is an appropriate model problem, to parabolic problems, for which we take the Hodge heat equation as our model problem. The numerical method we study is a Galerkin method based on a mixed variational formulation and using as subspaces the same spaces of finite element differential forms which are used for elliptic problems. We analyze both the semidiscrete and a fully-discrete numerical scheme.Comment: 17 page

    Effective ANN Topologies for Use as Genotypes for Evaluating Design and Fabrication

    Get PDF
    There is promise in the field of Evolutionary Design for systems that evolve not only what to manufacture but also how to manufacture it. EvoFab is a system that uses Genetic Algorithms to evolve Artificial Neural Networks (ANNs) which control a modified 3d-printer with the goal of automating some level of invention. ANNs are an obvious choice for use with a system like this as they are canonically evolvable encodings, and have been successfully used as evolved control systems in Evolutionary Robotics. However, there is little known about how the structural characteristics of an ANN affect the shapes that can be produced when that ANN controls a system like a 3d-printer. We consider the relationship between certain structural characteristics of an ANN and the ability of that ANN to produce complex geometric shapes by controlling a 3d-printer. We develop an understanding of shape complexity for 2d shapes in a simulated 3d-printer in order to use Genetic Algorithms to optimize ANNs with fixed structures to produce complex outputs and assess the relationship between topologies of ANNs and the systems success in producing complex outputs under evolutionary optimization
    • …
    corecore