10 research outputs found

    Human-agent collectives

    No full text
    We live in a world where a host of computer systems, distributed throughout our physical and information environments, are increasingly implicated in our everyday actions. Computer technologies impact all aspects of our lives and our relationship with the digital has fundamentally altered as computers have moved out of the workplace and away from the desktop. Networked computers, tablets, phones and personal devices are now commonplace, as are an increasingly diverse set of digital devices built into the world around us. Data and information is generated at unprecedented speeds and volumes from an increasingly diverse range of sources. It is then combined in unforeseen ways, limited only by human imagination. People’s activities and collaborations are becoming ever more dependent upon and intertwined with this ubiquitous information substrate. As these trends continue apace, it is becoming apparent that many endeavours involve the symbiotic interleaving of humans and computers. Moreover, the emergence of these close-knit partnerships is inducing profound change. Rather than issuing instructions to passive machines that wait until they are asked before doing anything, we will work in tandem with highly inter-connected computational components that act autonomously and intelligently (aka agents). As a consequence, greater attention needs to be given to the balance of control between people and machines. In many situations, humans will be in charge and agents will predominantly act in a supporting role. In other cases, however, the agents will be in control and humans will play the supporting role. We term this emerging class of systems human-agent collectives (HACs) to reflect the close partnership and the flexible social interactions between the humans and the computers. As well as exhibiting increased autonomy, such systems will be inherently open and social. This means the participants will need to continually and flexibly establish and manage a range of social relationships. Thus, depending on the task at hand, different constellations of people, resources, and information will need to come together, operate in a coordinated fashion, and then disband. The openness and presence of many distinct stakeholders means participation will be motivated by a broad range of incentives rather than diktat. This article outlines the key research challenges involved in developing a comprehensive understanding of HACs. To illuminate this agenda, a nascent application in the domain of disaster response is presented

    Solving DCOPs with Distributed Large Neighborhood Search

    Full text link
    The field of Distributed Constraint Optimization has gained momentum in recent years, thanks to its ability to address various applications related to multi-agent cooperation. Nevertheless, solving Distributed Constraint Optimization Problems (DCOPs) optimally is NP-hard. Therefore, in large-scale, complex applications, incomplete DCOP algorithms are necessary. Current incomplete DCOP algorithms suffer of one or more of the following limitations: they (a) find local minima without providing quality guarantees; (b) provide loose quality assessment; or (c) are unable to benefit from the structure of the problem, such as domain-dependent knowledge and hard constraints. Therefore, capitalizing on strategies from the centralized constraint solving community, we propose a Distributed Large Neighborhood Search (D-LNS) framework to solve DCOPs. The proposed framework (with its novel repair phase) provides guarantees on solution quality, refining upper and lower bounds during the iterative process, and can exploit domain-dependent structures. Our experimental results show that D-LNS outperforms other incomplete DCOP algorithms on both structured and unstructured problem instances

    Decentralized Task and Path Planning for Multi-Robot Systems

    Get PDF
    We consider a multi-robot system with a team of collaborative robots and multiple tasks that emerges over time. We propose a fully decentralized task and path planning (DTPP) framework consisting of a task allocation module and a localized path planning module. Each task is modeled as a Markov Decision Process (MDP) or a Mixed Observed Markov Decision Process (MOMDP) depending on whether full states or partial states are observable. The task allocation module then aims at maximizing the expected pure reward (reward minus cost) of the robotic team. We fuse the Markov model into a factor graph formulation so that the task allocation can be decentrally solved using the max-sum algorithm. Each robot agent follows the optimal policy synthesized for the Markov model and we propose a localized forward dynamic programming scheme that resolves conflicts between agents and avoids collisions. The proposed framework is demonstrated with high fidelity ROS simulations and experiments with multiple ground robots

    Bounded Approximate Decentralised Coordination via the Max-Sum Algorithm

    Get PDF
    In this paper we propose a novel approach to decentralised coordination, that is able to efficiently compute solutions with a guaranteed approximation ratio. Our approach is based on a factor graph representation of the constraint network. It builds a tree structure by eliminating dependencies between the functions and variables within the factor graph that have the least impact on solution quality. It then uses the max-sum algorithm to optimally solve the resulting tree structured constraint network, and provides a bounded approximation specific to the particular problem instance. In addition, we present two generic pruning techniques to reduce the amount of computation that agents must perform when using the max-sum algorithm. When this is combined with the above mentioned approximation algorithm, the agents are able to solve decentralised coordination problems that have very large action spaces with a low computation and communication overhead. We empirically evaluate our approach in a mobile sensor domain, where mobile agents are used to monitor and predict the state of spatial phenomena (e.g., temperature or gas concentration). Such sensors need to coordinate their movements with their direct neighbours to maximise the collective information gain, while predicting measurements at unobserved locations. When applied in this domain, our approach is able to provide solutions which are guaranteed to be within 2% of the optimal solution. Moreover, the two pruning techniques are extremely effective in decreasing the computational effort of each agent by reducing the size of the search space by up to 92%

    Instantaneous multi-sensor task allocation in static and dynamic environments

    Get PDF
    A sensor network often consists of a large number of sensing devices of different types. Upon deployment in the field, these sensing devices form an ad hoc network using wireless links or cables to communicate with each other. Sensor networks are increasingly used to support emergency responders in the field usually requiring many sensing tasks to be supported at the same time. By a sensing task we mean any job that requires some amount of sensing resources to be accomplished such as localizing persons in need of help or detecting an event. Tasks might share the usage of a sensor, but more often compete to exclusively control it because of the limited number of sensors and overlapping needs with other tasks. Sensors are in fact scarce and in high demand. In such cases, it might not be possible to satisfy the requirements of all tasks using available sensors. Therefore, the fundamental question to answer is: “Which sensor should be allocated to which task?", which summarizes the Multi-Sensor Task Allocation (MSTA) problem. We focus on a particular MSTA instance where the environment does not provide enough information to plan for future allocations constraining us to perform instantaneous allocation. We look at this problem in both static setting, where all task requests from emergency responders arrive at once, and dynamic setting, where tasks arrive and depart over time. We provide novel solutions based on centralized and distributed approaches. We evaluate their performance using mainly simulations on randomly generated problem instances; moreover, for the dynamic setting, we consider also feasibility of deploying part of the distributed allocation system on user mobile devices. Our solutions scale well with different number of task requests and manage to improve the utility of the network, prioritizing the most important tasks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Risk Assessment and Collaborative Information Awareness for Plan Execution

    Get PDF
    Joint organizational planning and plan execution in risk-prone environment, has seen renewed research interest given its potential for agility and cost reduction. The participants are often asked to quickly plan and execute tasks in partially known or hostile environments. This requires advanced decision support systems for situational response whereby state-of-the-art technologies can be used to handle issues such as plan risk assessment, appropriate information exchange, asset localization and adaptive planning with risk mitigation. Toward this end, this thesis contributes innovative approaches to address these issues, focusing on logistic support over risk-prone transport network as many organizational plans have key logistic components. Plan risk assessment involves property evaluation for vehicle risk exposure, cost bounds and contingency options assessment. Appropriate information exchange involves participant specific shared information awareness under unreliable communication. Asset localization mandates efficient sensor network management. Adaptive planning with risk mitigation entails limited risk exposure replanning, factoring potential vehicle and cargo loss. In this pursuit, this thesis first investigates risk assessment for asset movement and contingency valuation using probabilistic model-checking and decision trees, followed by elaborating a gossip based protocol for hierarchy-aware shared information awareness, also assessed via probabilistic model-checking. Then, the thesis proposes an evolutionary learning heuristic for efficiently managing sensor networks constrained in terms of sensor range, capacity and energy use. Finally, the thesis presents a learning based heuristic for cost effective adaptive logistic planning with risk mitigation. Instructive case studies are also provided for each contribution along with benchmark results evaluating the performance of the proposed heuristic techniques
    corecore