57 research outputs found

    Diagrammatic Languages and Formal Verification : A Tool-Based Approach

    Get PDF
    The importance of software correctness has been accentuated as a growing number of safety-critical systems have been developed relying on software operating these systems. One of the more prominent methods targeting the construction of a correct program is formal verification. Formal verification identifies a correct program as a program that satisfies its specification and is free of defects. While in theory formal verification guarantees a correct implementation with respect to the specification, applying formal verification techniques in practice has shown to be difficult and expensive. In response to these challenges, various support methods and tools have been suggested for all phases from program specification to proving the derived verification conditions. This thesis concerns practical verification methods applied to diagrammatic modeling languages. While diagrammatic languages are widely used in communicating system design (e.g., UML) and behavior (e.g., state charts), most formal verification platforms require the specification to be written in a textual specification language or in the mathematical language of an underlying logical framework. One exception is invariant-based programming, in which programs together with their specifications are drawn as invariant diagrams, a type of state transition diagram annotated with intermediate assertions (preconditions, postconditions, invariants). Even though the allowed program states—called situations—are described diagrammatically, the intermediate assertions defining a situation’s meaning in the domain of the program are still written in conventional textual form. To explore the use of diagrams in expressing the intermediate assertions of invariant diagrams, we designed a pictorial language for expressing array properties. We further developed this notation into a diagrammatic domain-specific language (DSL) and implemented it as an extension to the Why3 platform. The DSL supports expression of array properties. The language is based on Reynolds’s interval and partition diagrams and includes a construct for mapping array intervals to logic predicates. Automated verification of a program is attained by generating the verification conditions and proving that they are true. In practice, full proof automation is not possible except for trivial programs and verifying even simple properties can require significant effort both in specification and proof stages. An animation tool which supports run-time evaluation of the program statements and intermediate assertions given any user-defined input can support this process. In particular, an execution trace leading up to a failed assertion constitutes a refutation of a verification condition that requires immediate attention. As an extension to Socos, a verificion tool for invariant diagrams built on top of the PVS proof system, we have developed an execution model where program statements and assertions can be evaluated in a given program state. A program is represented by an abstract datatype encoding the program state, together with a small-step state transition function encoding the evaluation of a single statement. This allows the program’s runtime behavior to be formally inspected during verification. We also implement animation and interactive debugging support for Socos. The thesis also explores visualization of system development in the context of model decomposition in Event-B. Decomposing a software system becomes increasingly critical as the system grows larger, since the workload on the theorem provers must be distributed effectively. Decomposition techniques have been suggested in several verification platforms to split the models into smaller units, each having fewer verification conditions and therefore imposing a lighter load on automatic theorem provers. In this work, we have investigated a refinement-based decomposition technique that makes the development process more resilient to change in specification and allows parallel development of sub-models by a team. As part of the research, we evaluated the technique on a small case study, a simplified version of a landing gear system verification presented by Boniol and Wiels, within the Event-B specification language.Vikten av programvaras korrekthet har accentuerats dĂ„ ett vĂ€xande antal sĂ€kerhetskritiska system, vilka Ă€r beroende av programvaran som styr dessa, har utvecklas. En av de mer framtrĂ€dande metoderna som riktar in sig pĂ„ utveckling av korrekt programvara Ă€r formell verifiering. Inom formell verifiering avses med ett korrekt program ett program som uppfyller sina specifikationer och som Ă€r fritt frĂ„n defekter. Medan formell verifiering teoretiskt sett kan garantera ett korrekt program med avseende pĂ„ specifikationerna, har tillĂ€mpligheten av formella verifieringsmetod visat sig i praktiken vara svĂ„r och dyr. Till svar pĂ„ dessa utmaningar har ett stort antal olika stödmetoder och automatiseringsverktyg föreslagits för samtliga faser frĂ„n specifikationen till bevisningen av de hĂ€rledda korrekthetsvillkoren. Denna avhandling behandlar praktiska verifieringsmetoder applicerade pĂ„ diagrambaserade modelleringssprĂ„k. Medan diagrambaserade sprĂ„k ofta anvĂ€nds för kommunikation av programvarudesign (t.ex. UML) samt beteende (t.ex. tillstĂ„ndsdiagram), krĂ€ver de flesta verifieringsplattformar att specifikationen kodas medelst ett textuellt specifikationsspĂ„k eller i sprĂ„ket hos det underliggande logiska ramverket. Ett undantag Ă€r invariantbaserad programmering, inom vilken ett program tillsammans med dess specifikation ritas upp som sk. invariantdiagram, en typ av tillstĂ„ndstransitionsdiagram annoterade med mellanliggande logiska villkor (förvillkor, eftervillkor, invarianter). Även om de tillĂ„tna programtillstĂ„nden—sk. situationer—beskrivs diagrammatiskt Ă€r de logiska predikaten som beskriver en situations betydelse i programmets domĂ€n fortfarande skriven pĂ„ konventionell textuell form. För att vidare undersöka anvĂ€ndningen av diagram vid beskrivningen av mellanliggande villkor inom invariantbaserad programming, har vi konstruerat ett bildbaserat sprĂ„k för villkor över arrayer. Vi har dĂ€refter vidareutvecklat detta sprĂ„k till ett diagrambaserat domĂ€n-specifikt sprĂ„k (domain-specific language, DSL) och implementerat stöd för det i verifieringsplattformen Why3. SprĂ„ket lĂ„ter anvĂ€ndaren uttrycka egenskaper hos arrayer, och Ă€r baserat pĂ„ Reynolds intevall- och partitionsdiagram samt inbegriper en konstruktion för mappning av array-intervall till logiska predikat. Automatisk verifiering av ett program uppnĂ„s genom generering av korrekthetsvillkor och Ă„tföljande bevisning av dessa. I praktiken kan full automatisering av bevis inte uppnĂ„s utom för trivial program, och Ă€ven bevisning av enkla egenskaper kan krĂ€va betydande anstrĂ€ngningar bĂ„de vid specifikations- och bevisfaserna. Ett animeringsverktyg som stöder exekvering av sĂ„vĂ€l programmets satser som mellanliggande villkor för godtycklig anvĂ€ndarinput kan vara till hjĂ€lp i denna process. SĂ€rskilt ett exekveringspĂ„r som leder upp till ett falskt mellanliggande villkor utgör ett direkt vederlĂ€ggande (refutation) av ett bevisvillkor, vilket krĂ€ver omedelbar uppmĂ€rksamhet frĂ„n programmeraren. Som ett tillĂ€gg till Socos, ett verifieringsverktyg för invariantdiagram baserat pĂ„ bevissystemet PVS, har vi utvecklat en exekveringsmodell dĂ€r programmets satser och villkor kan evalueras i ett givet programtillstĂ„nd. Ett program representeras av en abstrakt datatyp för programmets tillstĂ„nd tillsammans med en small-step transitionsfunktion för evalueringen av en enskild programsats. Detta möjliggör att ett programs exekvering formellt kan analyseras under verifieringen. Vi har ocksĂ„ implementerat animation och interaktiv felsökning i Socos. Avhandlingen undersöker ocksĂ„ visualisering av systemutveckling i samband med modelluppdelning inom Event-B. Uppdelning av en systemmodell blir allt mer kritisk dĂ„ ett systemet vĂ€xer sig större, emedan belastningen pĂ„ underliggande teorembe visare mĂ„ste fördelas effektivt. Uppdelningstekniker har föreslagits inom mĂ„nga olika verifieringsplattformar för att dela in modellerna i mindre enheter, sĂ„ att varje enhet har fĂ€rre verifieringsvillkor och dĂ€rmed innebĂ€r en mindre belastning pĂ„ de automatiska teorembevisarna. I detta arbete har vi undersökt en refinement-baserad uppdelningsteknik som gör utvecklingsprocessen mer kapabel att hantera förĂ€ndringar hos specifikationen och som tillĂ„ter parallell utveckling av delmodellerna inom ett team. Som en del av forskningen har vi utvĂ€rderat tekniken pĂ„ en liten fallstudie: en förenklad modell av automationen hos ett landningsstĂ€ll av Boniol and Wiels, uttryckt i Event-B-specifikationsprĂ„ket

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Automated Validation of State-Based Client-Centric Isolation with TLA <sup>+</sup>

    Get PDF
    Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in, reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.</p

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Modeling and Analyzing Cyber-Physical Systems Using Hybrid Predicate Transition Nets

    Get PDF
    Cyber-Physical Systems (CPSs) are software controlled physical devices that are being used everywhere from utility features in household devices to safety-critical features in cars, trains, aircraft, robots, smart healthcare devices. CPSs have complex hybrid behaviors combining discrete states and continuous states capturing physical laws. Developing reliable CPSs are extremely difficult. Formal modeling methods are especially useful for abstracting and understanding complex systems and detecting and preventing early system design problems. To ensure the dependability of formal models, various analysis techniques, including simulation and reachability analysis, have been proposed in recent decades. This thesis aims to provide a unified formal modeling and analysis methodology for studying CPSs. Firstly, this thesis contributes to the modeling and analysis of discrete, continuous, and hybrid systems. This work enhances modeling of discrete systems using predicate transition nets (PrTNs) by fully realizing the underlying specification through incorporating the first-order logic with set theory, improving the type system, and providing incremental model composition. This work enhances the technique of analyzing discrete systems using PrTN by improving the simulation algorithm and its efficient implementation. This work also improves the analysis of discrete systems using SPIN by providing a more accurate and complete translation method. Secondly, this work contributes to the modeling and analysis of hybrid systems by proposing an extension of PrTNs, hybrid predicate transition nets (HPrTNs). The proposed method incorporates a novel concept of token evolution, which nicely addresses the continuous state evolution and the conflicts present in other related works. This work presents a powerful simulation capability that can handle linear, non-linear dynamics, transcendental functions through differential equations. This work also provides a complementary technique for reachability analysis through the translation of HPrTN models for analysis using SpaceEx

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Execution/Simulation of Context/Constraint-aware Composite Services using GIPSY

    Get PDF
    For fulfilling a complex requirement comprising of several sub-tasks, a composition of simple web services, each of which is dedicated to performing a specific sub-task involved, proves to be a more competent solution in comparison to an equivalent atomic web service. Owing to advantages such as re-usability of components, broader options for composition requesters and liberty to specialize for component providers, for over two decades now, composite services have been extensively researched to the point of being perfected in many aspects. Yet, most of the studies undertaken in this field fail to acknowledge that every web service has a limited context in which it can successfully perform its tasks, the boundaries of which are defined by the internal constraints placed on the service by its providers. When used as part of a composition, the restricted context-spaces of all such component services together define the contextual boundaries of the composite service as a unit, which makes internal constraints an influential factor for composite service functionality. However, due to the limited exposure received by them, no systems have yet been proposed to cater to the specific verification of internal constraints imposed on components of a composite service. In an attempt to address this gap in service composition research, in this thesis, we propose a multi-faceted solution capable of not only automatically constructing context-aware composite web services with their internal constraints positioned for optimum resource-utilization but also of validating the generated compositions using the General Intensional Programming SYstem (GIPSY) as a time- and cost-efficient simulation/execution environment

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    • 

    corecore