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Abstract

Embedded systems are utilized as a part of a wide range of spectrum extend-

ing from home apparatuses and cell phones to medical apparatus and transport

controllers. They are commonly portrayed by their real-time behavior and must

satisfy strict requirements on reliability and accuracy. The key challenge in real

time system analysis is that proper scheduling strategy needs to be assured. So,

the validation of requirements for these systems must be assured. Petri net is a

formal and executable modeling technique, most suitably used for analysis of any

concurrent system. There are a number of tools based on Petri net theory for

analysis of models that help the users to graphically analyze a model, simulate

them through an animated sequence and use them to validate the process.

In this thesis, the proposed approach makes an attempt to model and analyze a

case study on real time system i.e., Elevator Control System. First, the system

is modeled using Colored Petri nets which can acquire the essential properties of

the system and allow its illustration at different level of granularity. Second, after

modeling the system, performance analysis is carried out using Stochastic Petri

nets to analyze various aspects of the system. Third, verification and validation of

the model is conducted using TAPAAL tool of Petri nets to check the correctness

and to prove whether certain properties, demonstrated as computational tree logic

formulas, hold concerning the system model. The use of three Petri net tools for

analysis of any real time system helps to validate the workflow and subsequently,

proper design of software architecture.

Keywords: Colored Petri nets, Computational Tree Logic, Petri nets, Stochastic

Petri nets.
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Chapter 1

Introduction

1.1 Introduction

Embedded systems are utilized as a part of a wide range of spectrum extend-

ing from home apparatuses and cell phones to medical apparatus and transport

controllers. They are commonly portrayed by their real-time behavior and must

satisfy strict requirements on reliability and accuracy.

“An embedded system is a system that has embedded software and computer

hardware which makes it a system dedicated for an application or specific part of

an application or product or part of large system” [1].

embedded system consist of three main components:

1. It has hardware.

2. It has main application software which performs set of numerous tasks.

3. It has a real time operating system (RTOS) that manages the application

software and gives a mechanism to let the processor run a process accord-

ing to scheduling and do the context-switch between the multiple processes

(tasks).

Software systems are the complex system and the functional requirements of

software application are very much important. But, they are not the only con-

cern. Performance evaluation of the system is also a crucial task. Petri net is an

adequate formal method for modeling and analysis of various embedded system.

In the analysis of real time system, task completion time is the crucial part which
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1.2 Petri Nets

must be satisfied. The worst case and best case completion time of the system

must be guaranteed before putting the system into utilization. The lack of com-

plete knowledge of the system results in uncertainties which may lead to extend

the completion time of the system. In the analysis of concurrent system, Petri

net has been used widely and effectively. In the process of software development,

after completing requirements analysis and achieving a requirement specification

document, appropriate style of software architecture of the system is supposed

to be identified from the very inception phase. Identification of prominent ar-

chitectural style activity plays a significant role for proper implementation of the

system. Non-functional requirement such as performance, reliability, security and

so on are influenced by proper identification of an architecture style.

Petri nets represent the system behavior graphically as well as mathematically.

The modeling and analysis of the system is done by the theoretic aspect of the

Petri nets while picturization of designed system state changes is done by graph-

ical aspect. Consequently, various dynamic event-driven systems are modeled by

Petri nets.

Petri Net as a mathematical formalism acknowledges the performance of the be-

havior of real time systems and helps to design software architecture. There are

various Petri net tools like CPN, PIPE, SPNP, SNOPPY, TIMENET, TAPAAL

etc. for portraying and studying the behavior of the system.

1.2 Petri Nets

A Petri Nets is mathematical model used to describe any system. It is a directed

bipartite graph defined as a 6 tuple, (P,T,A,I(.),O(.),m0), where,

� P represents a set of places.

� T represents a set of transitions.

� A represents a set of arcs.

� I(.) represents the input functions, maps transitions to places.

3



1.4 Objective

� O(.) represents the output function, that maps places to transitions.

� m0 represents the initial marking of the net, where marking is the number

of tokens in each places.

Petri nets commonly represented in a graphical manner. Places are represents as

circle, transitions are illustrated as bars and arcs are represented as arrow. Tokens

are depicted as dots inside a place. Which describes the number of resources ac-

quired at a particular state. The transitions are said to be enabled when the input

places are having tokens. Petri Nets are used to acquire the behavior of lot of real

world circumstances. The main aspect of Petri Nets model is the representation

of concurrent execution of activities.

1.3 Motivation

Correctness performs a key part in numerous embedded systems. The failure of

such system results in a loss of both human lives and money as we get highly

dependent on them. So, reliability and safety are the most crucial benchmark for

the embedded system. The implementation of the system fulfill its requirement

is proved formally by analytical and mathematical techniques provided by formal

methods

1.4 Objective

Modeling of the system is the crucial part of a design flow stage. One of the

objectives of this thesis is to define a formal representation of the system proficient

of acquiring essential properties of the embedded systems. It must be, accurate

enough so that the interpret and deal it easily. Since correctness and reliability

are getting to be progressively essential for embedded systems, it is also aimed at

verifying such system by using formal methods.
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1.5 Organization of Thesis

1.5 Organization of Thesis

The thesis is structured as follows: Chapter 2 expresses the literature survey done

for this thesis. It includes the work done in the area of Petri nets. Chapter

3 illustrates the design representation of the embedded system using Petri net

tools.For this purpose, a case study of an Elevator Control System is taken and

modeled. Chapter 4 discussed the performance evaluation of the modeled system

using Stochastic Petri nets. Chapter 5 discusses the model verification using Com-

putation tree logic (CTL) to check the correctness of the model. Finally chapter

6 concludes the work done with the scope of future work.
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Chapter 2

Literature Review

The essential part in design methodology is the modeling of the system. Nu-

merous computation models have been developed in the literature to represent to

advanced systems. These models incorporate an expansive extent of styles, as-

pects, and provision areas. Especially in embedded system design, a mixed bag of

models have been produced and utilized as representation of the system.

This chapter exhibits related work done in the field of modeling, performance eval-

uation and verification of embedded system.

Petri net was developed by Carl Adam Petri in 1962 [2]. His work has been fur-

ther elaborated by T. Murata, in which he analyzed various structure of Petri

nets, their markings and executions [3].

Jensen proposed the basic concept of Colored Petri nets [4]. The tool used for

Colored Petri Net is CPN tool. It provides a graphical modeling of the system.

It verifies all the constraints or conditions which are necessary to be checked for

deployment of better software. CPN is a tool which provides edition, simulation

and analyzsis of timed and untimed hierarchical Colored Petri nets.

Huafeng Zhang proposed “Modeling a Heterogeneous Embedded System in Col-

ored Petri Nets” in 2014 [5]. In his paper, a heterogeneous system of Vehicle

protocol which is composed of two subsystems is introduced and pointed out a

potential defect in that system caused by an interface mismatch. Then, a state

based approach is applied to verify analysis of the system.

Nabil R. Adam proposed “ Modeling and Analysis of Workflows Using Petri Nets”

in which he has demonstrated the use of PN as an effective tool for modeling
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workflows at a conceptual level and then analyzing them [6]. He has developed a

PN-based approach that uses several structural properties such as the P-invariant,

siphon, min/max analysis, etc. for identification of inconsistent dependency spec-

ification in a work flow and testing for its safe execution.

Wil M.P. van der Aalst proposed Strategies for “Modeling Complex Processes us-

ing Colored Petri Nets” in 2013 in which he used a running example to explain

several design patterns for modeling in terms of CPNs [7]. These patterns guide

users in modeling complex processes that require interplay of control-flow and

data-flow.

Olivier and Roy introduced an approach to implement a distributed monitor of

real-time system properties, and then introduced a new formalism, adaptive Petri

nets, that allows to model such complex, distributed and real time systems [8].

The performance analysis of the model illustrates the behavior of the system. Falko

Bause proposed the concept of stochastic Petri nets with various examples [9].In

Stochastic Petri nets (SPN), random firing delays are attached to the transition.

The SPN is used for performance analysis of the system by Markovian techniques.

Michael K. Molloy proposed the performance analysis of the system using Stochas-

tic Petri nets [10]. They used Stochastic Petri net for performance analysis of

alternating bit protocol.

Bernardi proposed a structural performance evaluation methodology for Timed

Petri nets (TPNs) and their stochastic extensions [11].

Marcelo H. Cintra presented “A Simulation Technique for Performance Analysis

of Generic Petri Net Models of Computer Systems” in which he presented a sim-

ulation algorithm tp observe that the simulator performed reasonably well, even

on a modest machine [12].

Correctness plays an important role in many embedded systems. Model checking

is an approach used to decide whether the model of a system fulfill a list of essen-

tial properties. In the area of formal verification, many mechanism have also been

presented.

Xudong He proposed a methodology of associating time predicate transition nets

8



and flourished a real-time first order temporal logic for specification and verifica-

tion of real-time systems [13].

W.M.P. van der Aalst proposed a methodology to verify the business process using

Petri nets [14]. In which he verified the liveness and boundedness of work flow net

using petri nets.

Hanifa Boucheneb and Rachid Hadjidj proposed model verification techniques of

time Petri nets [15]. They used temporal logic model checking to represent the

behavior of a system.

9
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Chapter 3

The Design Representation

3.1 Colored Petri nets

3.1.1 Introduction

Since Petri nets support only one type of tokens, so, the graphical representation

of the system will become very complex for analysis. Hence Colored Petri nets

(CPNs) has been introduced in which a type called as color is connected to a

token. Colored Petri nets are graphical languages for developing models of real

time systems and analyzing their properties [4]. CPN is formally defined as 9

tuple, CPN = (
∑

, P, T, A, N, C, G, E, I) where,

�

∑
is a finite set of non-empty types, called color sets.

� P represents a finite set of places

� T represents a finite set of transitions

� A represents a finite set of arcs

� N represents a node function

� C represents a color function.

� G represents a guard function.

� E represents an arc expression function.

� I represents an initialization function.

11



3.2 Case Study: Elevator Control System

The tool used for Colored Petri Net is CPN. It provides a graphical modeling of

the system. It verifies all the constraints or conditions which are necessary in

the analysis phase. It helps in analyzing timed and un-timed hierarchical Colored

Petri nets.

3.2 Case Study: Elevator Control System

A case study of Elevator Control System is taken and modeled with Colored Petri

nets [16]. Elevator control system is a software that manages the multiple elevators

in a building in order to facilitate in transportation from one floor to another

floor. An elevator control system has many typical aspects of time and critical

safety requirements. The elevator control system contains certain components such

as request button, sensor and door which function according to the passenger’s

requirements. The problem in detail:

� There are F floors in a building.

� There is one elevator that we are concerned with.

� There are elevator service requests coming from people on each floor.

� The request comes at a particular time. The request is to go from one floor

(source) to another(destination).

Figure 3.1 shows the modeling of Elevator Control System using Colored petri

nets. To validate the constraints applied on Elevator Control System, functions

and guard condition have been used. initially, there are requested floor button

and current floor button. First, the passenger will request for the desired floor.

The request will be transmitted to the controller and it will be matches with the

current floor. if the requested floor and the current floor are different then only

the request will be processed. The time parameters are also associated with the

request number to show the timing of a particular request. The requests are served

in a First Come First Serve (FIFO) manner. The arguments which are passed to

the functions are as follows:

12



3.2 Case Study: Elevator Control System

Figure 3.1: Modeling of Elevator Control System using CPN

q- Requested floor button

s- Current floor button

x- Request number

y- Requested floor number

p- Requested floor

w- Current floor number

r- Current floor

13



3.2 Case Study: Elevator Control System

Algorithm 1: send request function

1. Request number: It represents the no. of requests.

2. requested floor: It represents the current request for floor.

3. current floor: It represents the current floor number.

Input: Requested number,requested floor, current floor.

4. if current floor ! = requested floor then

5. Call process request

6. else

7. Call send next request

8. end if

Algorithm 2: Process request function

1. Request number: It represents the no. of requests.

2. requested floor: It represents the current request for floor.

3. current floor: It represents the current floor number.

Input: Requested number,requested floor, current floor.

4. wait for elevator to arrive

5. elevator arrived

6. check the direction

7. if correct then

8. Call check the capacity

14



3.2 Case Study: Elevator Control System

9. else

10. Call wait

11. end if

12. if capacity = not full then

13. board elevator and Call start movement

14. else

15. Call wait

16. end if

Algorithm 3: start movement function

1. Request number: It represents the no. of requests.

2. requested floor: It represents the current request for floor.

3. current floor: It represents the current floor number.

Input: Requested number,requested floor, current floor.

4. Call check direction

5. if requested floor number > current floor number then

6. Call move upwards

7. else

8. Call move downwards

9. end if

15



3.2 Case Study: Elevator Control System

Figure 3.2: Hierarchical Representation of Elevator Control System

Figure 3.2 shows the Hierarchical representation of the Elevator Control sys-

tem. The sub models of the main page are “Controller” and “movement”.

Figure 3.1 shows the modeling of elevator Control System using Colored petri

nets. To validate the constraints applied on Elevator Control System, functions

and guard condition have been used. initially, there are requested floor button

and current floor button. First, the passenger will request for the desired floor.

The request will be transmitted to the controller and it will be matches with the

current floor. if the requested floor and the current floor are different then only

the request will be processed. The time parameters are also associated with the

request number to show the timing of a particular request. The requests are served

in a First Come First Serve (FIFO) manner. If the elevator is in moving state,

16



3.2 Case Study: Elevator Control System

Figure 3.3: Processing of Request

the next request can not be served it must be queued. When the elevator finishes

its current request then only the next request can be served.

When the controller receives the request, it goes into the “waiting” state. when the

elevator arrives, the controller checks the direction and capacity of the elevator. If

direction is correct and the elevator is not full, then the token moves to the “board

elevator” state, otherwise again the token moves to the “waiting” state. After

“board elevator” state, the token moves to the “moving state” and “send next

request”. The controller checks the direction of the request whether it is upward

or downward. If the requested floor number is less than current floor number, then

the token passes to the ”move downward” state and if the requested floor number

is greater than current floor number, then the token passes to the ”move upward”

state. while moving the elevator, there is a guard condition that checks whether

current floor number is equal to requested floor number. If the guard condition

17



3.2 Case Study: Elevator Control System

Figure 3.4: Moving elevator Upward and Downward Direction

is satisfied, the token will move to the “destination” state. After reaching the

destination, the door opens and the token moves to the “leave elevator” state.

Algorithm 4: moving upward and downward function

1. Request number: It represents the no. of requests.

2. requested floor: It represents the current request for floor.

3. current floor: It represents the current floor number.

Input: Requested number,requested floor, current floor.

4. Call check direction

5. if direction = upward then

18



3.2 Case Study: Elevator Control System

6. do current floor number + 1

7. while current floor number ! = requested floor number

8. end do while

9. else

10. if direction = downward then

11. do current floor number − 1

12. while current floor number ! = requested floor number

13. end do while

14. end if

15. end if

When the destination is reached, the door will be opened and passengers will

be delivered to the desired floor. After delivering the passengers, the door is closed

and the elevator will go in an idle state.

19



3.3 Petri net Markup Language (PNML)

3.3 Petri net Markup Language (PNML)

3.3.1 Introduction

The PNML is an XML-based interchangeable format for various kinds of Petri

nets, by which different tools can exchange Petri net models among each other [17].

Due to generic feature of PNML, a procedure for defining own type of Petri net

is supported by PNML. This feature of PNML is known as Petri net type defini-

tion(PNTD).

PNML manages the principle of flexibility, compatibility and unambiguity. Flex-

ibility means any type of Petri net with is its particular properties can be repre-

sented by PNML. PNML supports the labeling of graph where all the necessary

information are saved in the label and the label is then connected to the net by

an arc.

PNTD determines a valid label for a specific Petri net type which assigns a fixed

type to make the description unambiguous.

Compatibility feature of PNML states that a large number of information can be

interchange among several types of Petri nets. To attain compatibility, labels must

be defined with a particular meaning. All Petri net files support the specific type

i.e., Uniform Resource Identifier (URI) by which the syntax is uniquely identified.

Each PNTD has a prescribed semantics that is identified by other tools which use

it.

There are various tools of PNML which support xml based interchangeable format,

such as ePNK, Rnew, Design/CPN, PEP etc.

3.3.2 ePNK tool of PNML

ePNK is the eclipse based Petri net Kernel tool of PNML. ePNK constructs a

data framework for Petri nets which is synonymous to that of PNML. Based on

the Petri net type, several labels can be attached to place, arc, transition, or even

the net. An extension point is provided by the ePNK so that any new petri net

can be attached to it without interfering the code of ePNK. To define a new Petri

net type, the designer has to give a class diagram which describes the concept of

20



3.4 Case Study: Automatic Teller Machine (ATM)

the new Petri net type with a correspondence of xml syntax. This type can then

be attached into the ePNK tool.

3.4 Case Study: Automatic Teller Machine (ATM)

A case study of “Automatic Teller Machine ” is taken and modeled with ePNK tool

of PNML [18]. ATM is geographically distributed across all branches of the owner

bank and all are connected to a central server. ATM allows the customers to access

their account balance, transfer money between accounts, and withdraw money

after validating their identity by checking their entered personal identification

number(PIN) with the central bank server.

Figure 3.5 shows the modeling of ATM system using Petri net markup lan-

guage. The model validates all the constraints of specified requirements. when a

user wants to use his card on ATM, he must have the valid card which the bank

can recognize, then he has to enter the valid PIN. The used is allowed to enter

the PIN only three times in case of entering wrong PIN. If the PIN is right, he

can proceed the operations, otherwise his card will be rejected. After entering the

right PIN, the user is able to do the operations whichever he wants such as cash

withdrawal, balance inquiry, mini statements, money transfer an so on. After the

successful operation, the card is dispensed from the ATM.

After validating the model, an xml code is generated. The xml code can be

imported by other petri net tools which support PNML format.
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Figure 3.5: Modeling of ATM system using ePNK tool of PNML
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3.5 Summary

The modeling of Elevator Control System is illustrated using Colored Petri nets.

The model captures the essential features of the Elevator Control System. The

timing constraints are associated with the requests which are coming in random

order and the requests are served in First Come First Serve (FIFO) manner. The

algorithms are proposed to satisfy the necessary constraints of the Elevator Con-

trol System.

Another modeling representation of embedded system i.e., ATM system is illus-

trated using Petri net markup language (PNML). PNML is an xml based inter-

changeable language by which the model can be imported to other PN tools.
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Chapter 4

Performance Evaluation of the
System using Stochastic Petri
Nets

4.1 Introduction

Problems in a system which includes both hardware and software sub-system

which perform a specific task or mission during a specific time in a specific envi-

ronment are dealt by system reliability. Stochastic Petri nets (SPN) have great

power to analyze the performance of the model using Markov chain. The transi-

tions whose firing is an atomic operation, a random firing delay is associated with

those transitions. A stochastic methodology is a numerical model helpful for the

portrayal of phenomena of a probabilistic nature as a function of parameter which

is associated with time. The execution policy specify the firing of transition when

more than one transitions enabled at time in SPN model. The execution policies

are race policy and the pre-selection policy. In race policy the transitions whose

firing time elapse first, will fired first. In pre-selection policy, the probabilistic dis-

tribution function determines that which transition will fire first from the enabled

transitions . A SPN model operates on race policy.
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4.1.1 Generalised Stochastic Petri Nets

Ajmone Marsan et al proposed the concept of Generalized Stochastic Petri Nets

(GSPN) [19]. GSPN is an advancement of SPN. Two classification of transitions

are supported by GSPN i.e., immediate and timed transition. In immediate tran-

sition, the firing time of the transition is zero. In timed transition, the firing rate

of the transition is exponentially distributed. If both the timed transition and im-

mediate transition activated simultaneously, the transition which fire first is the

immediate transition. If the immediate transition becomes enable in any marking

then that marking is known as “vanishing marking” and if timed transition be-

comes enable in any marking then the marking is known as “tangible marking”.

The SPN model becomes markovian in nature when it has both the immediate

and timed transition. In markov process, the future state depends only on the

present state. After that the SPN model can generate the corresponding markov

chain [20]. The markov chain can then be used to measure various performance

parameters.

A standard example of a Stochastic Petri net (SPN) is depicted in Figure 4.1. In

Figure 4.1, at marking M0 = (1, 0, 0, 0, 0), transition t1 is activated . The firing

rate of t1 is λ1 i.e., exponentially distributed. The average time for firing t1 is

1/λ1. When t1 fires, the marking will result in M1 = (0, 1, 1, 0, 0). t2 and t3 are

both enabled at marking M1. If t2 fires first, the marking will change to M2 =

(0,0,1,1,0) and if t3 fires first, the marking will become M3 = (0,1,0,0,1). So, the

next marking will depends on which transition “win the race”.

The probability of firing t2 first is demonstrated as:

P [t2firesfirstatM1] = P [X2 < X3]

=
∫∞
0

(∫ x
0
λ2e

−λ2ydy
)
λ3e

−λ3xdx

=
∫∞
0

(
1− e−λ2x

)
λe−λ3xdx

= λ2/(λ2 + λ3) (4.1)
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Figure 4.1: Stochastic Petri net Figure 4.2: Reachability graph of SPN

and similarly, the probability of firings of t3 can be represented as:

P [t3firesfirstatM1] = λ3/(λ2 + λ3) (4.2)

The sojourn time in M1 is given by the minimum of the independent and expo-

nentially distributed firing times of both transitions,

P [min (X2, X3) ≤ x] = P [X2 ≤ x or X3 ≤ x]

=1− P [X2 > xandX3 > x]

=1− e−λ2xe−λ3x

= 1− e−(λ2+λ3) (4.3)

Thus the sojourn time in M1 is also exponentially distributed with parameter

(λ2 + λ3).

Figure 4.2 illustrates the reachability graph of Figure 4.1. Markov Chain can be

obtained by considering each marking in the reachability graph and attaching the

firing rate λi of transition i as an arc label to each transition.

The Markov chain of an SPN can be obtained from the reachability graph as

follows:

R(PN) represents the reachability set of MC state space and the transition rate

from state Mi to state Mj is given by qij = λk. If several transitions are connected

from Mi to Mj then qij represents the sum of the rates of those transitions.

Similarly qij = 0 if there is no transitions connected from Mi to Mj.
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The steady state distribution π of the MC is attained by solving the following

linear Equations

πQ = 0 (4.4)

s∑
i=1

Πj = 1 (4.5)

where,

Q is the square matrix Q = (qij) of order s = |R(PN)|. From the vector

π = (π1, π2, ..., πs) the following performance measures may be computed.

Probability of being in a subset of markings:

Let B ⊆ R(PN) comprises the markings in a specific SPN. Then the probability

of belonging in a state of the related subset of the Markov chain is given by:

P [B] =
∑
MiεB

πi (4.6)

Average number of tokens:

Let B(pi, n) is the subset of R(PN) for which the number of tokens in a place pi

is n, i.e., B(pi, n) = MεR(PN)|M(pi) = n. Then the mean number of tokens in

place pi is given by:

m̄i =
∞∑
n=1

(nP [B (Pi, n)]) (4.7)

Probability of firing transition tj :

Let ENj be the subset of R(PN) in which a given transition tj is enabled. Then,

the probability rj for transition tj firing next is given by:

rj =
∑

MiεENj

πi (λj \ (−qij)) (4.8)

where (−qii) is the sum of transition rates out of Mi.
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Throughput at a transition tj :

The throughput at a timed transition is given by it’s average number of firings at

steady state:

d̄j =
∑

MiεENj

πiλj (4.9)

The performance of the model can be investigated on the basis of the values

of these parameters.

4.2 Platform Independent Petri net Editor (PIPE)

PIPE is platform independent tool for modeling and analyzing Petri nets using

Stochastic Petri nets [21]. It is developed thoroughly in Java which provides secu-

rity of platform independence feature and presents a standard, adaptable graphical

user interface for analyzing Petri net model. PIPE also provides a convenient work

space for analyzing module to check behavioral assets and produce performance

demography.

4.3 Implementation and Result

In this work, a case study of Elevator Control System is taken and modeled with

PIPE tool. After modeling the system, performance analysis is carried out to

check the stochasticity of the model.

Figure 4.3 shows the modeling of Elevator Control System using PIPE tool.

The initial state in the model is “idle” state. when user arrives at a floor and

presses the button, the token in the model moves to “wait” state. When the el-

evator arrives, user checks whether the elevator is moving in correct direction or

not. If the elevator is moving in right direction then the token moves to the next

state otherwise the token goes back to the “press button” state. If the elevator

is moving in correct direction then it checks the capacity of the elevator. If the

elevator is full then the token goes back to the “wait” state otherwise it goes to

29



4.3 Implementation and Result

Figure 4.3: Modeling of Elevator Control System using PIPE

the next state “board elevator”. After this the token gets passed to the “elevator

moving” state. At this state, The controller checks the direction and move the

elevator upward or downward according to the request. If the elevator reaches the

desired floor then token gets passes to the “leave elevator” state, otherwise token

again moves to the “moving elevator” state. When user leaves the elevator the

token again moves to the idle state.

After the modeling of Elevator Control System, the performance evaluation has

been carried out using PIPE tool. The PIPE tool analyzes steady state distribu-

tion of tangible states, mean number of tokens in each place, token probability
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density, throughput of timed transition and sojourn time of tangible states.

4.3.1 Result

The performance analysis of the Elevator Control System ara as follows:

Table 4.1: Steady State Distri-
bution of Tangible States

Marking value

M0 0.04445

M1 0.08889

M2 0.17778

M3 0.17778

M4 0.08889

M5 0.04444

M6 0.04444

M7 0.02222

M8 0.02222

M9 0.02222

M10 0.08889

M11 0.08889

M12 0.04444

M12 0.04444

Table 4.2: Average Number of Token on a Place

Place Number of
Tokens

idle 0.04444
press button 0.08889
wait 0.17778
elevator arrive 0.17778
check elevator moving
correct direction

0.08889

check elevator full 0.04444
board elevator 0.04444
elevator moving 0.02222
upward 0.02222
downward 0.02222
elevator stop 0.08889
desired direction 0.04444
leave elevator 0.04444
keep moving 0.04444

Table 4.1 shows the steady state distribution of tangible states. Tangible states

are those states which are associated with the timed transition. Table 4.2 shows

the average number of tokens present in a place. It can be calculated by the

Equation 4.7 such as:

m̄i =
∑∞

n=1 (nP [B (Pi, n)])

Table 4.3 specifies the token probability density.

Table 4.4 shows the throughput of timed transition. The throughput at a

timed transition is expressed by it’s average number of firings at steady state. It

can be measured by the Equation 4.9 i.e.,

d̄j =
∑

MiεENj
πiλj

Figure 4.4 shows the reachability graph of the model. The firing of enabled

transition is responsible for changing the state of the model. The sequence of
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Table 4.3: Token Probability
Density

Place µ = 0 µ = 1
idle 0.95556 0.04444
press button 0.91111 0.08889
wait 0.82222 0.17778
elevator arrive 0.82222 0.17778
check elevator moving
correct direction

0.91111 0.08889

check elevator full 0.95556 0.04444
board elevator 0.95556 0.04444
elevator moving 0.97778 0.02222
upward 0.97778 0.02222
downward 0.97778 0.02222
elevator stop 0.91111 0.08889
desired direction 0.0.95556 0.04444
leave elevator 0.95556 0.04444
keep moving 0.91111 0.04445

Table 4.4: Throughput of Timed Transition

Transition Throughput
T0 0.04445
T1 0.08889
T2 0.17778
T3 0.17778
T4 0.08889
T5 0.08889
T6 0.04445
T7 0.04445
T8 0.04445
T9 0.02222
T10 0.02222
T11 0.02222
T12 0.0.02222
T14 0.08889
T15 0.04445
T16 0.04445
T17 0.04445
T24 0.08889

Table 4.5: Sojourn Time for Tan-
gible States

Marking value
M0 1
M1 1
M2 1
M3 1
M4 0.5
M5 0.5
M6 1
M7 0.5
M8 1
M9 1
M10 1
M11 1
M12 0.5
M13 1

Figure 4.4: Reachability graph of SPN’s Underlying

firing results in getting a sequence of marking. This sequence of marking can be

portrayed as reachability graph.
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Table 4.6: Petri net State Space Analysis Result

Bounded True
Safe True

Deadlock False

Table 4.6 illustrates the state space analysis of the model. By the analyzing

the model, it is observed that the model is bounded, safe and deadlock free. A

model is called as bounded if the number of token in each place does not cross a

finite number k, where k is the natural number.

The performance of the model can be investigated on the basis of the values of

these parameters.
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4.4 Summary

The modeling of Elevator Control System is illustrated using PIPE tool. The

performance analysis is carried out to evaluate the model based on some perfor-

mance parameter such as token probability density, average number of token in

each place, throughput of timed transition and so on. By analyzing the model it

is observed that the model is bounded, safe and deadlock free.
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Chapter 5

Model Verification using
TAPAAL tool of Petri nets

5.1 Introduction

Model checking and verification is the essential part of developing any system to

check whether the desired behavioral properties of the system are met or not.

Ensuring the correctness of the system and design validation of the system is the

very challenging task. For the verification purpose of models, temporal logics are

used to check the correctness of the models.

5.1.1 Temporal Logic

Temporal logics are used to check how the truth of the arguments change over the

period of time. Temporal logics are mounted with the temporal operators. They

are used to determine the supposed behavior of the systems.Depending upon the

model of time, there exist divergent types of temporal logics. In this part, the work

is focused on computation tree logic (CTL). CTL is a representative of temporal

logic and used to verify different models.

Computational Tree Logic

Computational Tree logic (CTL) is based on propositional logic of forking time.

Forking time states that time may divided into more than one future state using

separate model of time. CTL supports temporal operators such as G,F,X,U,A,E

where,
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G represents globally

F represents in future

X represents next time

U represents until

A represents all computation path

E represents some computation path.

The temporal operator G,F,X, and U preceded by A or E.

An unfolded state graph is pictured by CTL. The nodes of the state graph rep-

resents the possible state where the system may reach. In the state graph, there

are some shaded nodes also exist which represents that certain property p holds

in the system or not. The root node in the graph represents the initial state of

the system. For example, AF p occupied in the initial state if for every possible

path property p is satisfied by at least one state starting from the initial state.

The other temporal operator can be explained in the same way.

5.1.2 TAPAAL Tool

TAPAAL tool is used for model verification to check the properties of the system

to be satisfied by the model [22]. TAPAAL tool provides an editor, a simulator and

a verifier for Timed-Arc Petri Nets (TAPN) [23]. In TAPAAL tool, an age (a real

number) is joint to each token. there is a procedure to add the time interval to limit

the ages of the tokens which is responsible for the firing of the transitions. The

eminence of using this model is decide whether the particular model is bounded

and coverable or not. TAPAAL also provide a mechanism to verify the model to

check whether certain properties are satisfied by the model or not. TAPAAL use

UPAAL engine at the back end to verify the model using queries in the constructed

net [24]. A graphical query dialogue is provided by TAPAAL tool to write the

queries. The queries are written with the help of computation tree logic which

consist of EF, AG, EG, and AF temporal operators where E represents “there

exist an execution”, A represents “for all execution”, F represents “finally” and G

represents “globally”. The combination of these operators can be elaborated as:

EF = There exist some reachable marking that satisfies the given condition.
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Figure 5.1: CTL Temporal Operators

EG = There exist a trace on which every marking satisfies the given condition.

AF = On all trace there is eventually a marking that satisfies the given condition.

AG = All reachable marking satisfy the given condition.

5.2 Implementation and Result

Figure 5.2 shows the model of Elevator control system using TAPAAL tool.

The TAPAAL tool provides a graphical editor for drawing Timed-Arc Petri Net

(TAPN) models. It also offers simulator for examining the modeled nets and a

verification domain that accordingly answers logical queries [23]. With the help of

TAPAAL tool, boundedness of the model can also be checked. The boundedness

of the system can be described as that the number of tokens present in each place

must not be greater than a finite number k.
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Figure 5.2: Modeling of Elevator Control System using TAPAAL

Figure 5.3 shows the query editor to evaluate the query and to check whether

the model is correct or not. The query written in the query editor is :

EF(TAPN.board elevator=1 and TAPN.press button=0)

The query checks that whether there exist some path for which board elevator

sate is enabled and press button state is disabled.

TAPAAL’s verification module allows the user to verify safety and liveness queries

in the designed net.

Figure 5.4 illustrates the result of the query. If the query is correct and the

properties are satisfied, it means that the model is correct.
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Figure 5.3: Query Editor of TAPAAL tool to verify Elevator Control System

Figure 5.4: Query result of Elevator Control System

Thus, with the formal analysis and model verification it can be observed that the

model for Elevator Control System is correct and can be considered for the next

phase i.e., system design.
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5.3 Summary

The modeling of Elevator control System is illustrated using TAPAAL tool. The

model verification is done by wring queries with the help of computation Tree

logic (CTL) operators. The queries satisfied all the features of the model. Hence,

the model for Elevator Control System is correct.
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Chapter 6

Conclusion and Future Work

6.1 Analysis of the Tools used

Advantages and Disadvantages of CPN:

� Advantages

– Provides concept of color.

– Hierarchical in manner.

– Provides state space analysis of the model.

� Disadvantages

– performance analysis in the form of transformation to markovian pro-

cess is not supported.

– In state space analysis, there is a problem of state explosion.

Advantages and Disadvantages of PIPE:

� Advantages

– Stochastic in nature.

– Provides GSPN analysis of the model.

� Disadvantages

– only one type of token is supported.
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– no hierarchical feature supported.

Advantages and Disadvantages of TAPAAL:

� Advantages

– provides the timed arc concept.

– use the concept of temporal logic to verify the model.

� Disadvantages

– only one type of token is supported.

– no hierarchical feature supported.

– does not provide performance analysis feature.

Advantages of PNML:

� provides the xml based interchangeable format.

� The model generated xml code can be imported by other tools which support

PNML format.

� There is no need of modeling the system again and again on different tool

for different task.

So, from the above analysis, it is cleared that PNML is the better tool in the

field of modeling, analysis and verification of the system as compared to other

tools. Since, PNML provides the interchangeable format, it becomes easier to

import the designed model of PNML to other tool for further process.
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6.2 Conclusion

Embedded system are playing a crucial role in our day to day life. Designing

system with parameter related to quality and having high level of complexity is a

very difficult task. The model of the system must be unambiguous and portrayed

crucial characteristics of the system.

This thesis presents a formal model for embedded system. The performance anal-

ysis of the model is carried out using Stochastic Petri nets to analyze the model.

The model verification methodology is used to prove whether certain properties,

expressed as Computational tree logic formulas, fulfilled by the model.

A brief comparison among various tools used in this thesis is presented and stated

that which tool perform better according to the system requirements.

6.3 Future Work

In this thesis, the proposed approach makes an attempt to model, analyze and

verify the embedded system using different Petri net tools. The work can be ex-

tended to model and evaluate the performance of embedded system using Colored

Stochastic Petri nets (CSPN) [25]. CSPN combines the applications of both the

Colored Petri nets and Stochastic Petri nets. Thus, this approach can overcome

the drawbacks of CPNs and SPNs as Stochastic Petri net does not support type

of the tokens and textual representation of the model. Colored Petri net does

not support stochasticity of the model. So, CSPN methodology is an approach

which can decrease the effort of modeling the system on different Petri net tools

to analyze the performance.
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