
HAL Id: inria-00000742
https://hal.inria.fr/inria-00000742

Submitted on 16 Nov 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of real-time periodic control systems through
synchronization and fixed priorities

Daniel Simon, Fanny Benattar

To cite this version:
Daniel Simon, Fanny Benattar. Design of real-time periodic control systems through synchronization
and fixed priorities. International Journal of Systems Science, Taylor & Francis, 2005, 36 (2), pp.57-76.
�inria-00000742�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50477552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00000742
https://hal.archives-ouvertes.fr

Design of real-time periodic control systems through synchronisation
and fixed priorities

Daniel Simon and Fanny Benattar
INRIA Rhône-Alpes, Projet POP ART, 655 avenue de l’Europe, Montbonnot

38334 Saint-Ismier Cedex, FRANCE
phone : 33 4 76 61 53 28 fax : 33 4 76 61 54 77

Daniel.Simon@inrialpes.fr

February 20, 2004

Abstract

Control systems are often designed using a set of cooperating periodic modules running under control of a real-time
operating system. A correct behaviour of the closed-loop controller requires that the system meets timing constraints like
periods and latencies, which can be expressed as deadlines. The control system timing requirements are captured through
a partition in control paths which priorities are assigned according to their relative urgency. Latencies are managed
through precedence constraints and more or less tight synchronisation between modules. The implementation uses the
fixed-priority based preemption service of an off-the-shelf real-time operating system.Such a system can be modelled
with timed event graphs, and its temporal behaviour can be analysed using the underlying (max,plus) algebra. Examples
coming from a uni-processor robot controller are provided.

keywords : Periodic control systems, real-time scheduling, software architecture, timed event graphs, timing analysis

1 Introduction

Most feedback control systems are essentially periodic, where the inputs (reading on sensors) and the outputs (posting on
actuators) of the controller are sampled at a fixed rate. While basic digital control theory deals with systems sampled at a
single rate, it has been shown, e.g. (Arzén, Bernhardsson, Eker, Cervin, Persson, Nilsson and Sha 1999), that the control
performance of a closed-loop digital control system can be improved using a multi-rate and multi-tasks controller : some
parts of the control algorithm, e.g. updating parameters or controlling slow modes, can be executed at a pace slower than
the one used for fast modes. In fact, a complex system involves sub-systems with different dynamics which must be further
coordinated (Törngren 1998). Therefore the controller must run in parallel several control laws with different sampling
rates inside a hierarchy of more or less tightly synchronised layers. Among others, robot control gives an example of
systems with complex dynamics and interaction which deserves using such multi-rate layered controllers (Simon, Castillo
and Freedman 1998).

Digital control systems are often implemented as a set of tasks running on top of an off-the-shelf real-time operating
system (RTOS) using fixed-priority and preemption. The performance of the controller, e.g measured by the tracking
error, and even more importantly its stability, strongly relies on the respect of the specified sampling rates and computing
delays (latencies) (Aström and Wittenmark 1990). In particular it has been observed, e.g. by (Chen, Armstrong, Fearing
and Burdick n.d.) and (Wittenmark 2001), that sample-induced delays in synchronised multi-rate systems show complex
patterns and can be surprisingly long. Therefore it is essential to check off-line that the implementation of the controller
will respect the specified temporal behaviour.

Usually, real-time systems are modelled by a set of recurrent tasks assigned to one or several processors, as stated
in the seminal work of Liu and Layland (Liu and Layland 1973) and further work (Audsley, Burns, Davis, Tindell and
Wellings 1995). Each task τi is modelled by a tuple (Ci, Ti, Ri, ri) where Ci is the worst case execution time of task τi,
Ti is the period of τi, Ri is a deadline associated with the task and ri is the instant at which the task becomes runnable for
the first time.

Traditionally, a worst case response times technique is used to analyse fixed-priority real-time systems. The original
basic analysis method assumes that all the tasks are periodic, run on a single processor, have a common first release instant,
have a deadline equal to their period and that there are no precedence constraints between the tasks. These assumptions
have been progressively released (Audsley et al. 1995) to compute results for more general systems, e.g. with precedence

1

constraints, aperiodic tasks or release jitter. Among many papers, (Fidge 1998) gives a summary of schedulability tests
for such real-time systems.

However these analysis tools fail to take into account the control engineering requirements and thus do not fit well
with a ’system centric’ approach gathering control and computing requirements (Arzén et al. 1999). Many algorithms
rely on a particular scheduling policy, e.g. Rate Monotonic, or on a particular design language or framework, e.g. Ada
(Burns and Wellings 1995), and they are designed to optimise CPU’s related features rather than the control performance.
Also dependence relations between tasks are still difficult to take into account, and using release delays between tasks,
precedence based priority assignment or work arriving functions introduces some non trivial implementation constraints
(Spuri and Stankovic 1994). Additionally the temporal analysis of the system most often relies on a simulation over its
hyper-period which can be costly in time and memory since the complexity of such methods is exponential in the number
of components of the system.

Finally the timing requirements of control systems w.r.t. the desired control goal expressed as a performance index
do no fit well with purely computing-based scheduling methods. Reaching efficient control requires an adequate setting
of periods, latencies and gains according to the available computing resource, e.g. as done through control/scheduling
co-design in (Ryu, Hong and Saksena 1997) using off-line iterations. As computing-based scheduling theory basically
tends to maximise the number of schedulable tasks with no other concern about the application’s requirements, the blind
use of scheduling policies like the popular Rate Monotonic or Earliest Deadline First can lead to very poor performance
(Eker and Cervin 1999). The interest for control/implementation co-design is now increasing, e.g. (Nilsson, Wittenmark,
Törngren and Sanfridson 1998) and (Törngren 1998) states the effort of the control community to better model the control
related implementation constraints.

In this paper we introduce a model of periodic control systems where the control designer can arbitrarily assign priori-
ties and synchronisations in the set of control modules. Such a system can be analysed through algebraic techniques and
can be easily implemented using the basic features of an off-the-shelf RTOS.

Here each task is a synchronised endless loop, modelled by a Timed Event Graph, which execution time is the cross-
ing time of a particular transition of the net. The period of a task is not necessarily given a priori but can depend on
synchronisation with preceding tasks leading to period inheritance. Each task is triggered by events (e.g. a clock or a syn-
chronising task). Besides synchronisations, some tasks have high priority and preempt the low priority tasks : priorities
are set according to the relative importance of some control paths related to the control performance. The main scheduling
constraint is that each task must run to completion before the next activation period1.

This model naturally handles precedence constraints with respect to the control algorithm requirements, and is not
bound to a particular scheduling policy. Moreover, Timed Event Graphs have a linear model in the underlying (max,plus)
algebra (Baccelli, Gohen, Olsder and Quadrat 1992) : therefore this model can be used to compute relevant quantities
such as the response time of the tasks and the respect of deadlines during both the transient and steady state (periodic)
phases of the system’s execution. The computational complexity of the analysis is polynomial, and has been implemented
and experimented with real life robot controllers.

This paper is organised as follows : in the next section we present the model of real-time tasks used in the ORCCAD

software, starting with closed-loop control requirements. Thus the tasks model is formalised using timed event graphs. In
section 3.1 we recall a set of results using the (max,plus) algebra to compute the real-time behaviour of a timed event graph
under preemption. As these results have been formally derived in (Baccelli, Gaujal and Simon 2002), their presentation
here is very informal. Then section 4 shows how this model must be restricted to cope with a real-time system’s behaviour,
and the design and analysis of a robot controller running on a single processor is given as example. We finally summarise
the work done and conclude with perspectives and further development. The main features of the (max,plus) algebra are
recalled in appendix.

2 Design of a control system : the ORCCAD framework

ORCCAD2 is a software environment dedicated to the design, the verification and the implementation of robotic control
systems. It also allows for the specification and validation of robotic missions (Borrelly, Coste-Manière, Espiau, Kapellos,
Pissard, Simon and Turro 1998).

The structure of the periodic tasks, which are called module-tasks (MTs), is as follows : after initialisation, an infinite
loop is executed where all input ports are first read, calculations are performed on these inputs and finally results are

1Note that, conversely with a commonly shared idea, closed-loop control systems are not ´hard real-time´, since the timing constraints are assigned
according to the desired control performance and can be occasionally missed with no catastrophic failure (Cervin 2003). However, due to the lack of
underlying non-linear control theory, the assignment of adequate values for periods and deadlines in real-life systems is still a difficult problem mainly
based on case studies and tedious experiments.

2http://www.inrialpes.fr/iramr/pub/Orccad/

2

posted on all the output ports (figure 1). At run-time the MTs are scheduled using the basic features of the RTOS (priority
based preemption and synchronisation primitives) to meet the timing requirements of the control algorithm.

/* initialization code */ MA_ID

values

asyn−syn

asyn−asyn

asyn−asyn

Priority
Kind of synchro.
WCET
CPU_ID

asyn−syn

asyn−asyn

T2_exception

/* infinite loop */

/* Synchronization if any */

/* reading inputs */

/* writing outputs */

/* exception */

/* end code */

/* compute function */.............

RTC

X0

Xn

Y0

Yn

EOT

read_parameters();
X(0) = Xi;
malloc();

}

free();
close();

Local variables lx;

while(1) {

.............

Attributes

if(...) EOT = SET_EVENT

Write Yn;

Write Y0;

Compute(Y (t) = f(lx, ..., X(t));

Read Xn;

Read X0;

..........

..........

..........

..........

SemTake(Clock);

parameters

Figure 1: Structure of a Module-Task

2.1 Priority based preemption

Many robot controllers currently run on top of an off-the-shelf operating systems, where the basic way of interaction
between tasks is preemption based on fixed priorities.

A control system for a robot, and more generally for process control, can be split into several calculation paths (Arzén,
Cervin, Eker and Sha 2000) : the direct control path computes control set-points from tracking errors and must run with a
small period and a low latency to ensure the process´ stability. The respect of the above timing constraints is critical w.r.t.
the control performance, this part of the controller has a high relative urgency.

Other tasks are used to update slowly varying parameters of the non-linear plant model. These tasks are often data-
handling intensive, e.g. using trigonometric functions or matrix inversion. Their duration can be far longer than the period
assigned to the direct path, but delaying their ending instants has a weak effect on the controller performance, e.g. the
control jitter or the system’s stability. Thus they can be assigned a low priority so that their execution is preempted by
every execution of the direct path calculation.

The whole system is run over a limited number of CPUs with a static partition of the tasks. All the MTs running on a
same CPU are ordered according to their relative priorities. When a MT with high priority becomes runnable and starts
its calculation cycle, the lower priority running MT is preempted and its context is stored. The activity of the runnable
MT with the immediately lower priority resumes at the point where it was stopped as soon as the higher priority MT has
finished its computation or is blocked waiting for a synchronisation event or an unavailable computing resource.

3

However, using only preemption is not enough to accurately specify the robot controller, in particular it cannot effi-
ciently take into account the precedence constraints between subsets of the control algorithm.

2.2 Synchronisation

A partial synchronisation of tasks allows for the specification of precedence constraints and thus improves the control
performance by decreasing the control latency3. Several point-to-point protocols are used on input/output ports in order
to synchronise more or less tightly the set of MTs.

• ASYN-ASYN : Data id freely read and written, and communication block neither the reading nor the writing task.
It must implemented using a truly asynchronous communication mechanism, e.g. using lock free multiple buffers
(Simpson 1997), to avoid hidden and unwanted synchronisation4.

• SYN-SYN : a communication of this type is a rendez-vous; the first task to reach the rendez-vous (either the writer
or the reader) is blocked until the second one is ready for communication. Both tasks are unblocked after data
updating.

• ASYN-SYN : the writing task runs freely and posts messages on its output ports at each execution; when reaching
the input port, the reading task either reads the data if a new one is available or is blocked until the next data
production.

• SYN-ASYN : symmetrical to the previous case : the reader runs freely, the writer is blocked until the next reading
request except if a new one has been posted since the last reading.

Generally, the best data to be used in a closed-loop control algorithm is the last one produced, thus the buffers between
ports have one slot, and the incoming data overwrites the old one. The ASYN-ASYN communication must be used
between tasks with unrelated rates. The ASYN-SYN and SYN-ASYN ones are useful to specify dependencies between
modules and to enforce the execution order of a pipe-line of tasks. The SYN-SYN rendez-vous must be chosen only when
a very strong synchronisation is necessary, e.g. to merge data from a stereo vision pair of devices, as it can easily lead to a
dead-lock due to a dependency cycle (Simon et al. 1998). These synchronisation mechanisms can be easily implemented,
e.g. using a shared memory and synchronisation semaphores on a single processor, or through a session layer protocol on
a field-bus (Mejia, Simon, Belmans and Borrelly 1989).

2.3 Modelling with timed event graphs

We need modelling and analysis tools to automatically check for timing and synchronisation inconsistencies in the network
of synchronised MTs.

Modelling and analysis of discrete events systems are often done through Finite State Machines (FSM), timed process
algebra and model checking, e.g. (Ermont and Boniol 2002), (Bouajjani, Echahed and Sifakis 1993). Besides their gener-
ality and large modelling power these methods are difficult to handle and rapidly suffer from computational complexity.
Petri nets are other powerful tools which have been already used in the framework of real-time systems, e.g. in (Burns,
Wellings, Burns, Koelmans, Koutny, Romanovsky and Yakovlev 2000) for the analysis of Ada tasking; however using
general or coloured Petri nets leads to analyse the system’s behaviour via simulations over the reachability graph rather
than using algebraic techniques. In (Klaudel and Pommereau 2000) the semantics of Petri nets is extended to model
priorities, preemption and abortion : analysing such a model again falls in model-checking with a high computational
complexity.

Here, we adopt a particular modelling tool, timed event graphs (TEG), which provides a simple and efficient way to
carry out temporal consistency tests.

Event graphs are a particular case of Petri nets (Murata 1989), also called marked graph. Recall that a Petri net is a
bipartite graph, made of transitions and places connected by directed arcs. Places are marked by tokens, which represent
some conditions in the discrete event system while crossing transitions represent actions performed by the system.

When all of the input places of a transition become marked (have a token), the transition is crossed (’fires’). The firing
removes a token from each of the input places and deposits a token in each of the output places.

As shown in figure 2, the behaviour of the basic MT (reading an input port, computing, writing to an output port) can be
modelled by a Petri net with three transitions. Of course, one transition must be added for each additional input and output
port. Another transition is required to activate the MT subject to the periodic awakening provided by a real-time clock
(RTC), also modelled by a Petri net. Since we are concerned with temporal analysis, we associate time intervals (also

3the latency is the delay between the instant of a measure qn on a sensor and the instant when the control signal U(qn) is sent to the actuators
(Aström and Wittenmark 1990)

4shared data protection using some kind of priority inheritance must be avoided as these protocols dynamically jeopardise the initial schedule
(carefully designed w.r.t. automatic control requirements) with unpredictable and potentially disastrous consequences for the controlled system

4

called ’crossing times’) with some of the Petri net’s transitions. Such Petri nets are called timed Petri nets (Ramamoorthy
and Ho 1980). We have chosen to associate the duration [d] of the MT with the computation transition, and thereby
assume that reading and writing are instantaneous events, i.e. communication is atomic. A crossing time [τ] is also
assigned to the transition associated with the RTC (Transitions associated with non zero duration are drawn with thick
lines).

[τ]

[d]

T1

P2

P3

T3

P1T2

Write on

Ready to write

Compute

compute
Ready to

Ready to read

Waiting for
clock

Read input
port

output port

Real-time clock Module Task RTC MT1 MT2

Synchronization
semaphore

[τ]

[d1] [d2]

MT2 RTC MT1

Rendez−vous

[d2]

[τ]

[d1]

Figure 2: A Petri net model of : a periodic Module-Task, ASYN/SYN and SYN/SYN communications

Since each place have just one input transition and one output transition, the resulting Petri net is a so-called event
graph (EG) (Murata 1989). The synchronisation and communication mechanisms described in section 2.2 also have EG
models as depicted in figure 2. EGs can be used to model discrete event systems with synchronisation but with neither
conflicts nor asynchronous interaction. Some of their mathematical properties (Baccelli et al. 1992) is used in the sequel.

The execution scheme of the set of EGs defines the so-called synchronisation skeleton of the real-time periodic process.
Note that the MT model, where the whole module’s computation takes place between reading all inputs and before sending
all outputs, can still be used to describe more complex tasks, where synchronising I/O occur at intermediate points of the
computation. As depicted by figure 3, such a task can be easily split into a set of basic MTs connected with ASYN/SYN
links : such a conversion preserves the temporal behaviour of the tasks set and of their synchronisation skeleton while still
using the basic MT model and associated analysis tools.

Conversely several MTs synchronised with ASYN/SYN links, running in sequence on the same CPU, can be clustered
into a single thread of execution to avoid useless context switches at run time. Also note that, in any case, the execution
of a timed transition can be preempted by a higher priority one at any point of progress of its firing, i.e. at any point of the
modules’ calculation process.

Studying the structural properties of such an EG, e.g. dead-locks avoidance, can be easily done using classical theory
on Petri nets : every circuit of the EG must have at least one token in the initial marking (Murata 1989). Thus useless
synchronisation or I/O ports mis-ordering can be checked.

Studying the temporal behaviour of the set of MTs is far more complex : classically this can be done through a more or
less exhaustive exploration of the reachability graph of the TME, which is computed with an exponential complexity and
can be costly in time and memory (Esparza and Nielsen 1994). Moreover, as the processor is a shared resource involving
concurrency between the tasks, an event graph cannot model the priority based preemption provided by the scheduler.
Therefore this model is refined in the next section.

3 A model for event graphs and preemption

3.1 Assumptions

The model consists of a set of tasks Ti, i = 1, ..., N . Each task Ti is modelled by a strongly connected event graph
Gi = (Qi,Pi,Mi, τi) (as in figure 2), where Qi is the set of transitions, Pi is the set of places, τi = (τi1 , · · · , τiQ

) is
the set of firing times, τiq

being the firing duration of transition q (we assume that these numbers are all integers), and
Mi(r, q) is the initial marking in the place between r and q when it exists.

The whole system is described by a set of tasks and clocks connected by synchronisation relations; in the EG frame-
work, tasks and clocks are strongly connected components (SCC), which are partitioned in two sets :

• The set of initial components, denoted Ii. An initial component is called a clock. In most practical cases, this clock
is composed of a single recycled transition but nothing forbids to consider more elaborate clocks.

5

TickTick

Real−time clock Module Task

Waiting for
clock

Asynchronous input

Compute part 1

Synchronizing input

Compute part 2

Real−time clock Module Task

Waiting for
clock

Ready to read

Ready to
compute

Asynchronous input

Compute part 1

A/S link

Synchronizing input

Compute part 2

Modular design

Code generation

[τ]

=⇒

⇐=

[d1]

[d2]

[τ]

[d2]

[d1]

Figure 3: Splitting and gathering modules and executable threads

• All the other components, denoted Oi. They are often simple cycles for single task models but may be more
complicated.

Clocks cannot be preempted and always deliver their ticks at the specified rate. Also, as they only emit events (the clock
ticks), we consider that they do not load the computing resource. In consequence the timed transitions used to model the
clocks must are not taken into account to compute the CPU’s load.

In practise the clock generators are implemented either as high priority tasks in the system (running in kernel space) or
provided by the hardware, while the application’s modules run at low priority levels in user’s space.

tasksclocks

τ1

τ2

τ3

T1 T2

T3

T4

Figure 4: A graph with decomposition in its components I and O

6

The priority relation between tasks is given under the form of an order relation between the corresponding connected
graphs Gi. Gj Â Gi denotes that:

• all the timed transitions which belong to a given graph Gi have the same priority, which is the main restriction for
our current solver. However some qualitative results have been established for a more general preemption scheme
and are summarised in section 3.3.3 where the problem of arbitrary priority assignment is discussed;

• as soon as a transition in Oj fires, every timed transition in Oi being crossed is suspended and resumes its firing at
its suspension point as soon as all activities in Oj stop.

Note that at this point the model is still quite general, and nothing prevents transitions with equal priorities to be crossed at
the same time, as if there is enough computing resources to run all fire-able transitions in parallel. Additional restrictions
are added to the mathematical framework in section 4.1 to cope with available computing resources and implementation
constraints.

We first want to check that all tasks meet their time constraints, i.e. if each task is executed within the time slot given
by its clock. Thus we check on the EG model that for all event graphs Gi, the marking in the places that connect initial
components Ii to any component Oi, is bounded by one, i.e. no new clock tick arrives before the Oi cycle has finished.
This property is known as the stability of the discrete event system. Note that, as a strongly connected event graph is
always stable (Baccelli et al. 1992), unbounded marking can only arise in places which connect SCCs.

We also may want to check a weaker property, where violations of the time constraints may only happen a finite number
of time. In that case the marking in the places that connect initial components Ii to any component Oi may get larger than
one for a finite number of occurrences. As this may happen only during the transient phase before the system reaches its
steady state repetitive behaviour, we denote this property by steady state stability.

3.2 Modelling under contracted time

In this section, we introduce a representation of the system where we modify the time scale in the timed transitions
according to their priority. Thus, starting from the highest priority level and real-time, we are able to analyse the temporal
behaviour of event graphs which belong to the lower priority level with contracted time scale, and then recursively come
back to real time. We consider the case where N = 2 which can be iteratively extended for an arbitrary number of priority
levels.

For each SCC C, we denote {Xq(n)} the sequence of firing times of transition q ∈ C. The set of all these sequences is
called the behaviour of the system. By using the theory of timed event graphs (Baccelli et al. 1992), we get for all SCC C
in isolation, a cycle time λC ∈ R+, a cyclicity sC ∈ N+ and a transient period kC ∈ N, such that for all transitions q ∈ C
and all k > kC ,

Xq(k + sC) = Xq(k) + sCλC .

Note that the activity process of this SCC is therefore pseudo-periodic of period sCλC . This period is an integer under the
assumptions that we made on the firing durations. For each period there are sC firings and λC is the average time between
firings.

Let G1 Â G2. We denote by S1(t) the activity process of G1, defined by S1(t) = 1 if a transition in G1 is active at time
t and S1(t) = 0 otherwise. This function is assumed to be pseudo-periodic of period T1, where T1 is an integer.

We define the contraction function by F1(t) =
∫ t

0
[1−S1(τ)]dτ , such that F1 increases when G1 is inactive and constant

when G1 is active F1 is pseudo-periodic of period T1 and increment ∆1 = F1(T1). During each period T1, G1 is sleeping
for ∆1 units of time, thus leaving the computing resource free to execute the tasks with a lower priority.

As the clocks’ rate are fixed in real-time, they seems to be accelerated in contracted time by the contraction ratio
∆1/T1, and their cycle time λ′

C in contracted time are now λ′
C = λC∆1/T1 as illustrated in figure 6 (where (.)’ stands

for values computed in the contracted time scale).
On the other hand, tasks in G2 can be running at any instant of the remaining ∆1 units of real-time, i.e. at any instant

in the contracted time scale. Hence their cycle time is not modified (they just have less time to be active) and we have
λ′

T2
= λT2

for tasks. These quantities are the inverse of the firing rate of the transitions in contracted time.
Finally the system is stable if and only if for all the clocks and tasks in the preempted system G2:

min
clocks

λ′
C2

> max
tasks

λ′
T2

For a simple system like the one in figure 7, this statement meets intuition where the clock’s period must be larger than
the duration of the tasks path it triggers.

7

0

1

∆1

F1(t)

G1 active
G1 suspended

T1

S1(t)

Figure 5: The contraction function F1 associated with an activity S1.

��������������

���
���
���
���

�������������������������� ��

	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

���
���
���

���
���
���

����

���
���
���
���

����������
(real-time)

(contracted time)

F1(t)

T1

tickG1
tickG1

tickG1

∆1

G1 active G2 active idle

endG2

ticḱG1

ticḱG1

end́G2

ticḱG1

Figure 6: Contraction of clocks rate

8

In the stable case, the activity process becomes ultimately periodic both in contracted and in real-time : let min
clocks

λ′
C2

=

λ′
C02

. Then the periodic regime is given by

X ′
q(n + s′C2

) = X ′
q(n) + λC02

s′C2
∆1/T1

with cyclicity s′C2
= lcm(T1, sC2

λC2
)/λC2

.
By definition, such an event graph is stable iff the number of tokens is bounded in every place (Baccelli et al. 1992). In

the particular case of figure 7, this means that after reaching the periodic behaviour, exactly one token must be extracted
from the ’tick’ place by the activation of the pending tasks for one token produced by the clock. According to the task
model depicted in figure 2, where each task is modelled by a SCC, and where the first transition of a task is guarded by
the end of the last one of the task, this means that the system is stable iff each task is completely executed between two
activation ticks and thus meets its deadline.

When the number of priority levels N is larger than 2, contracted time scales are iteratively computed from the high-
est to the lowest priority levels. Real-time behaviours are then backward computed by applying the successive inverse
contraction functions from the lowest to the highest priority level.

3.3 Algebraic formulation of real-time properties

Using the properties of linear algebra in the (max,plus) semi-ring allows one to check the event graphs system’s stability
via the computation of the sign of eigenvalues of transition matrices. Other quantities, like the time needed to reach a
periodic steady state behaviour whatever is the initial phase between the system’s components, can be further computed.

The following arguments are done in contracted time. We focus on a system with one clock C and one task T . C
is connected to T through a place (called ’tick’ in figure 7). The output transition of place ’tick’ belongs to T and is
numbered q1. This system is preempted by another one, with activity process S1, period T1 and increment ∆1.

tick

increment Γ1

period T1

activity S1

preemptive process
low priority

preempted process
clock

[τ]

[d] qnq1

high priority

contraction function
preemption

⇐= F1

Figure 7: A clock and its synchronised circuit

Let us denote u(n) the epoch of the nth arrival of a token in place tick, in contracted time. We have u(n) = F1(tn),
where tn is the time of the n-th arrival in tick in real-time.

Note that, following section 3.2, u(n) is pseudo-periodic with period T = lcm(T1, sCλC)/λC and u(n + T) =
u(n) + τ∆ with τ = λC and ∆ = ∆1T/T1.

The firing of transition q1 is enabled by tokens arriving both from the clock and preceding transitions in the network,
e.g. qn, thus firing times for q1 are given by

X1(k) = max[Xn(k − 1), u(k)].
Using the (max,plus) notation where ⊕ and ⊗ stands respectively for the usual max and plus operations, this statement

can be rewritten as X1(k) = Xn(k − 1) ⊕ u(k)
And the whole system under contracted time can be represented as a (max,plus) system :

X(n) = A ⊗ X(n − 1) ⊕ B ⊗ u(n).

where A ⊗ X(n − 1) denotes tokens crossing transitions along paths of the TEG and B ⊗ u(n) denotes inputs coming
from the clocks.

We denote by n0, c, γ the coupling, cyclicity and maximal eigenvalue of matrix A which is built from the EG de-
scription matrices (see the appendix where (max,plus) notations and their relations with the dynamics of event graphs are
described).

9

Stability and steady-state stability properties can be respectively stated as

X1(n) − u(n + 1) < 0, ∀n > 1

and
X1(n) − u(n + 1) < 0, ∀n > n0

where X1(n) is the n-th firing time of transition q1 and n0 is the time when the periodic regime is reached.

3.3.1 Stability

We consider that X1(1) = u(1) which means that the system is ready to start as soon as the clock emits its first signal.
Using computation in the (max,plus) algebra framework, some algebraic formulae to check quantitative properties of

such models have been established in (Baccelli et al. 2002). A detailed exposition of these results is out of the scope of
this paper and they are only summarised here :

Under the assumption given in section 3.1, the system is steady state stable iff the two following conditions hold:
{

τ∆/T > γ (maximal eigenvalue of matrix A) (1)
coordinate 1 in M∗ ⊗ C(s) is non-positive ∀0 6 s 6 T − 1 (2)

(where M = AT ⊗ D(−τ∆), M∗ def
=

L

∞

i=0
M⊗i and C(s) =

L

T−1

i=0
Ai ⊗ D(−u(kT + s + 1) + u(kT + s − i)) ⊗ B)

As the eigenvalues of the (max,plus) system is related to the inverse of the firing rates of transitions, the first conditions
is similar to the one given in section 3.2 for cycle times, stating that ’clocks must be slower than tasks’. If this condition
does not hold the system can be neither stable nor steady-state stable.

The second condition is far more complex : it checks that during the periodic regime the number of tokens in the
connexion places between clocks and tasks is never larger than one, and thus that there is no dead-line miss. Unfortunately
no intuitive meaning can be given for this. The total complexity for this computation is O(T |Q|3 + T 2), using the max
and plus operators on vectors and matrices with integers.

3.3.2 Initial phase and transient issues

It is often the case that the different tasks of the operating systems may have different initial phases each time the system
is started anew. Although the preceding formula gives a simple test for steady-state stability for a fixed given phase,
however, a test to ensure that the time constraint is satisfied for all possible phases between the preemptive system and the
preempted one has been also derived.

It is useful to compute the length of the transient phase of the system before it reaches its periodic regime and begins
to produce inputs to the actuators of the process, e.g. it can be used to set the timeout value of a watchdog checking for
the good initialisation of a controller This value can be computed using a rather complex formulae, but still in polynomial
time. Once this value has been computed, the stability of the system can be checked by computing the marking of the
event graph during the transient phase.

Finally the activity process of each SCC, and therefore the sequence of control outputs times, can be computed whatever
is the number of priority/preemption levels in the system as detailed later in example 4.5.

All these properties are expressed by formulae in the (max,plus) algebra with a polynomial computational complexity.
Most of these algorithms are now efficiently implemented in the ERS software5 to automatically compute the temporal
behaviour of a real-time periodic system designed following the above synchronisation and preemption scheme.

3.3.3 Arbitrary priority assignment

Although this model allows the computing of the quantitative behaviour of the system, a main restriction is that tasks
linked using synchronising communication must have the same priority.

A less restrictive model has been studied in (Baccelli et al. 2002) : in this extended model two sets of synchronised
tasks are still ordered according to their relative priorities. However, only a subset of the preemptable set can be preempted
by a subset of the preemptive set. Therefore, more complex systems can be modelled, e.g. where the non-preemptable
subset of transitions in the low priority tasks set is located on a specific private computing resource. This model, which
can also be generalised to an arbitrary levels of priorities, does not allow for computing quantitatives properties of the
system, but two important qualitative properties have been established :

5http://www-sop.inria.fr/mistral/soft/ers.html

10

• if the system is stable it reaches a periodic regime which period does not depend on the initial phase of the system.
Thus the system’s stability can be checked via a simulation starting with an arbitrary set of initial firing instants up
to reaching a periodic behaviour;

• during the periodic regime all the transitions which belong to a given SCC have the same cycle time and period, be
they preemptable or not.

The later point is in fact not surprising since enabling the firing of transitions is propagated by the synchronising links.
Therefore, from the real-time computing point of view (periodicity and latency) it does not seem useful to assign different
priorities to tasks with synchronising communication links.

This statement can be further discussed for a fully general priority assignment, recalling that in our control framework
synchronisation is used to manage (minimise) the input/output latency of the data flow paths used to implement the control
algorithm. Assume now that T1 and T2 are successive computing activities in a synchronised data-flow, and that they are
assigned different priority values :

• if T1 ≺ T2, then T2 anyway cannot start before the end of T1 and the two values priority assignment is useless;
• if T1 Â T2, the firing of T2 can be preempted and delayed by an intermediary priority ready-to-run task T3 (figure

8); at least this delay increases the input/output latency for the {T1, T2} path and may lead to a control performance
loss or instability. Moreover the preempting task T3 may belong to another activity of the controlled plant, and the
useless latency rise can be uncorrelated the control law timing requirement. Finally, if no extra caution is taken in
the overall system design, this can lead to other kind of problems, e.g. an unprotected priority inversion, and finally
a system failure (Sha, Rajkumar and Lehoczky 1990).

?

prio=3
T1 A/S T2

prio=1

prio=2
T3

latency increase

T3

T1

T2

priority

1

2

3

T1 Â T3 Â T2

Figure 8: Latency increase by useless preemption

Although no results could be obtained for our model using a fully arbitrary priority assignment, the above remarks
suggest that assigning different priorities to tasks linked by synchronising communication is useless and potentially dan-
gerous, at least in the framework of periodic control systems.

4 Application to single processor designs

4.1 A model for implementation

In fact, all timed event graphs as described above do not represent the implementation of a multi-rate controller on a given
computing architecture. Event graphs represent discrete event systems with potential parallelism, where nothing prevents
timed transitions to be fired at the same time : the timed transitions of a TEG, which correspond with computing activities
in our model, begin to be crossed as soon as their marking is fully enabled.

The controller must be implemented on a set of computing resources, where a sub-set of tasks is statically assigned to
each processor. Thus the event graph model must be constrained so that, for each processor, only one timed transition can
be running at a given instant. In the sequel we focus on single-processor controllers which are still of prime interest for
embedded systems : therefore we now design models of sets of synchronised tasks, with additional modelling constraints
to enforce mutual exclusion between tasks inside each priority level.

4.2 Some basic rules

The modular design of the control algorithm is usually specified through the chaining of elementary functions. An often
used way of design consists in assigning a clock to the first module of the control path and synchronise the following
modules using ASYN/SYN synchronisation. Therefore, the period of the whole control path is given by the clock, and

11

the synchronisation enforces the execution order of the modules thus minimising the latency. As each module begins its
execution as soon as the preceding one is finished through synchronisation and not through a presumed end-of-computing
instant, it is expected that this method is more robust w.r.t. the execution time variations than releasing the execution time
of the modules according to their worst case execution time.

A desirable feature for a real-time system is predictability w.r.t. the control algorithms requirements (sampling rate,
latencies, relative urgency). The following design constraints are added to make the implementation deterministic and
analysable at design time :

• each module must have at least one synchronisation source, either a clock or a synchronising link. The only task in
the system allowed to run at its own pace is the idle task of the RTOS (the one which has the lowest priority in the
system6);

• multiple synchronisation and links, e.g. using the rendez-vous protocol are allowed, but their appropriateness must
be carefully considered w.r.t. the application requirements at design time.

• different priorities must be assigned to different clusters of synchronised tasks such that their scheduling does
not rely on a particular policy taken by the scheduler for tasks with equal priorities. Priorities must be assigned
according to the process and automatic control requirements.

In fact, in many practical cases more restrictive rules can be applied :

• each module must have exactly one synchronised i/o port 7;
• each set of synchronised tasks must have exactly one synchronisation source.

These latter rules ensure that the controller is dead-lock free and leads to simple schedulability analysis. They are used in
example 4.5.

Additionally, we also consider that reading and writing on the physical devices drivers can be performed at any time
and never block the controller.

4.3 Solving branching

Additional synchronisation must be added when the synchronisation flow forks as in figure 9, where TM2 and TM3 are
both synchronised on the output of TM1. As TM2 and TM3 have the same priority, their run-time behaviour rely on
the policy of the scheduler for tasks with equal priority and is not predictable at design time. To avoid this undesirable
behaviour the user is requested to choose what branch must be executed first : then a new synchronisation place PSY NC

(thick arc) is added to bind the starting of one synchronised flow to the end of the other one. Finally the initial useless
synchronisation (between TM1 and TM4 here) can be replaced by an asynchronous link to handle the data exchange
(dashed arc).

TM2

TM4

HTR

$tick$

ASYN/SYN

ASYN/SYN

TM3

TM5

TM1
TM2

TM4

HTR

$tick$

ASYN/SYN

TM1
TM3

TM5

ASYN/ASYN
added ASYN/SYN

PSY NC

[d1] [d1]

Figure 9: Synchronisation of a control fork : {T2, T3} are executed first

6a very interesting case is Linux/RTAI where the idle task of the real-time kernel is Linux itself which can be used for useful non real-time activities
like monitoring and display (http://www.aero.polimi.it/~rtai/)

7in particular this forbid using strong rendez-vous synchronisation on links

12

However synchronising the second path on the end of the first one is not always the right solution w.r.t. the control
requirements, as enlightened in figure 9. Here, the forking link ensures that the Q sensor data on which the two filters
work is measured at the same time. The filters output are then gathered in the fusion module so that the control flow must
join on its inputs : thus choosing the adequate synchronisation scheme, i.e. adding or removing synchronising links, must
be interactively done by the control designer.

Filter_1

Filter_2
Q_f2

Q_f1

Q_f

Sensor

clock

Asyn/Asyn

Asyn/Syn

Asyn/Syn

tick

Asyn/Asyn

Asyn/Syn

Asyn/Syn
Fusion Control

Q

Figure 10: Fork and join control flow

4.4 Modelling exclusive access to the CPU

After solving indeterminism due to concurrent branches of equal priority, assigning the same priority to synchronised
tasks is still not enough to model the behaviour of the tasks set on a given processor and to build a deterministic software :
at a given time every ready task in the currently running priority level can potentially be executed by the processor. While
mutual exclusion w.r.t. the processor between different priority levels is handled by the scheduler, the exclusive CPU
access by tasks inside a given priority level must be modelled and implemented through additional synchronisation.

When the controller is mapped on a single processor, synchronising places (denoted PSY NC) are added to loop between
the end of the last task of a synchronised path (i.e. a task which synchronises nothing) and the starting transition of the
first task of the path (which is fired by the clock), so that re-starting the first task is submitted to the ending of the last one
of the synchronised path. This place is initially marked as in figure 11 to make the event graph live (i.e. the corresponding
semaphore in the generated code must be initially free).

In fact, we create that way a new circuit which crosses all the synchronised tasks in the path. This circuit has only
one token in the initial marking and, following a basic property of event graphs, its marking remains one for every firing.
Therefore only one transition of the net can be enabled at a given time thus insuring the exclusive access to the computing
resource.

TM1 TM2

HTR

$tick$

TMn

PSY NC

[d2][d1] [dn]

Figure 11: ASYN/SYN loop with mutual exclusion between transitions

13

Sketch of statically distributed control Although simple processor implementations remain of prime interest for small
embedded systems a general more general case consists in using a static partition of the controller deployed over a set of
control units, e.g. ECUs (Electronic Control Units) connected through a CAN bus for the automotive domain. Hardware
and software redundancy is also s key feature for fault tolerance. We assume that most a the preceding ideas can be
extended to the case of controllers statically mapped on a distributed hardware architecture following the next steps :

• Modules are mapped on the architecture first according to functional constraints, e.g. dedicated I/O boards, fast
DSPs or low level vision processing embedded in cameras. Heuristics can be further used to optimise the imple-
mentation or take into account fault tolerance, e.g. (Girault, Lavarenne, Sighireanu and Sorel 2001).

• The control flow can fork along synchronised links between two tasks running on different processors as these two
tasks can be truly run in parallel.

• Synchronising links ensuring mutual exclusion inside a given priority level must be added according to every subset
of synchronised tasks assigned to a given processor.

4.5 Example 1: the computed-torque controller

The first example considers the computed-torque robot controller : its goal consists in position control of the robot tip
including compensation for gravity, centrifugal and Coriolis forces and inertia variations during the robot motion. It is
made of several modules (MT1 to MT7) specified using the ORCCAD GUI.

Partitioning The control algorithm can be partitioned in three groups of modules :

• MT3–MT6 is the direct control path; it computes the desired trajectory, the tracking error, the control theoretic
torque and the filtered controller’s output torque Uf ;

• the long duration MT7 module computes an explicit model of the robot arm dynamics, i.e. the inertia matrix M
and the vector of disturbing forces N from the robot’s joints positions and velocities measurements (Q);

• MT1 and MT2 are observers checking for safety conditions, thus they must react very fast to signal a joint_limit
exception.

Synchronisation and priority assignment It has been show using realistic simulations that MT7 can be computed at
a rate several times slower than MT3–MT6, and that its output can be delayed, e.g. by preemption from others control
modules, with a small effect on the control performance measured by the tracking error (Simon, Espiau, Castillo and
Kapellos 1993). As the latency of the {MT3–MT6} path is critical w.r.t. the robot’s stability, these tasks are synchronised
using asyn/syn links to minimise the latency between the Q measurement and the emission of the Uf control signal ; they
must run with a priority higher than MT7, so that this path cannot be preempted for a long time by MT7. As MT5 and
MT7 run with different and unrelated frequencies (and because the duration of MT7 may have large variations), the M
and N connexions must use asyn/asyn links (and the system automatically inserts a lock-free multiple buffer to ensure
data integrity and avoid synchronisation side effects which occur when using a mutex).

Checking for joint-limits must run with a high frequency and, as any delay or deadline miss for this exception can lead
to a mechanical failure of the robot MT1 and MT2 must be assigned with a high priority.

Thus the priorities are set according to the relative urgency of the tasks, such that

{MT1,MT2} Â {MT3,MT4,MT5,MT6} Â {MT7}

Recall that the automaton runs with a priority higher than any algorithmic module. Note that in this particular case it
appears the rate-monotonic scheduling policy meets the control requirement, but this is not the general case, e.g. (Eker
and Cervin 1999) because such general purpose priority assignment policies mainly try to optimise the CPU use and do
not care about the controlled process requirements. To be efficient the priority assignment must take into account the
characteristics of the controlled system and of the control goal : obviously it means that the designer must have a good
knowledge about the process, its control algorithm, its environment and its failure modes.

Two modules in the design do not represent periodic computations. The robot module represents the real robot, and
its input/output port provide gateways to the driver functions connected to the sensors and the actuators : it is assumed
that reading and writing on these drivers never block the calling module-task, and that they can be read or written at
any instant. The dyn_Atr block is a finite state machine in charge of the temporal management of the control law, i.e.
starting, stopping and exception handling. It is event-driven and it is not involved in the repetitive computation of the
control law. Therefore these two modules are not modelled in the synchronisation skeleton.

14

MT5

clk:5ms clk:10ms

clk:2.5ms

t:343ust:100us t:100us

t:100ust:10us

t:150us

t:6280us

A/S
A/A A/A

A/S

A/S

A/S

MT3 MT7

MT4 MT6

MT1MT2

Event

D
ri

ve
r

Driver

Figure 12: Computed-torque robot controller

The incidence matrix, initial marking vector and timing vector of the event graph model of this system, depicted by
figure 13 in graphical form, is actually generated by the Orccad verifier from the block-diagram oriented GUI. The result
in egl (event graph list) format feeds the corresponding solver in ERS (Benattar 2001).

The event graph is built from the elementary models of module-tasks and synchronisation links depicted by figure 2.
As there is only one processing unit then all tasks in {MT1, . . . ,MT7} must run in mutual exclusion. Thus the initially
event places Psync1 and Psync2, inside the S1 and S2 synchronised paths, have been added to serialise the activities inside
the clusters of tasks with equal priorities8. Exclusion between the different clusters of tasks is handled by the preemption.

• cycle times : the sub-system S1 made of clock 1, MT1 and MT2 is stable : (2500 > (100 + 10)).
Now, we consider the second connected component S2, made of Clock 2, MT3-. . . -MT6. This sub-system is
preempted by the first component, which have an activity of period 2500, with T = 2500 and ∆2 = 2390. Stability
of S2 holds since 5000 × 2390

2500
= 4780 > (150 + 100 + 343 + 100).

The last component S3 is preempted by both sub-systems S1 and S2. The whole preemption process have period
T = 5000, and a total non busy time of ∆3 = 5000 − ((100 + 10) × 2 + 150 + 100 + 343 + 100) = 4087.
The stability property holds : 10000 × 4087

5000
= 8174 > 6280, and the whole system is stable.

• Steady-state stability : Sub-system S2 is preempted by S1. However, it also have period one (in terms of number
of firings). The input under contracted time is : u(n) = u(n − 1) + 2∆2, with 2∆2 = 4780. Its structure can be
reduced to a scalar version of Equation (3.3): z2(k +1) = x21

(k)−u(k +1) = (a2 − 2∆2)⊗ z2(k)⊕−2∆2, with
a2 = 693. The solution is z2(k + 1) = (a2 − 2∆2)

∗ ⊗ −2∆2 = −2∆2 = −4780 < 0, once the periodic regime
of z2 is reached.
As for sub-system S3, we get similarly, a periodicity equal to 1, and a solution z3(k) = (a3 − 2∆3)

∗⊗−2∆3, with
a3 = 6280. and 2∆3 = −8174. The solution is z3(k) = −8174 < 0.

• Transient regime : all systems have period 1 (in terms of number of firings) as well as a transient regime of length
1. The periodic regime is reached immediately and the stability property is also satisfied immediately.

The whole computation process is performed by ERS in 0.09 sec. on a Pentium II 300 MHz. A sample of results is
displayed down below :

8In fact during code generation tasks {MT1, MT2} (resp. {MT3, MT4, MT5, MT6}) can be clustered in a single thread to avoid useless
context switches, while preserving the synchronisation skeleton and temporal behaviour of the modular design.

15

MT6
MT7

MT1

MT2

MT5

MT4

MT3

P_sync2

Clock2
Clock1

Clock3

P_sync1

Figure 13: Event graph of the computed-torque robot controller

activity of systems S1, S2 and S3 (1(n) means active for n time units, 0(n) means inactive and

[.] is a repetitive pattern):

S1 : 1(110)[0(2390)1(110)]

{S1 ∪ S2} : 1(803)[0(1697)1(110)0(2390)1(803)]

{S1 ∪ S2 ∪ S3} : 1(8106)[0(1894)1(8106)]

from which we can easily extract the activity diagram displayed by figure 14 for the first period of the system. As
expected we see that the start-up of S2 is delayed by S1, and that the low urgency S3 task is preempted by both S1 and
S2.

�
�
�
�

�
�
�
�

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
�����������������

���
���
���
���

�
�
�
�

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

���
���
���
���

���
���
���
���

Running Preempted

S3

S2

S1

2500 5000 7500 10000110 803 8106

idle

lcm(τi)

Figure 14: Activity of the computed torque controller

4.6 Example 2 : a stereo-vision based controller

A more complex controller using data coming from a stereo-vision sensor can be derived from the computed-torque
controller designed in the previous section. The new controller depicted in figure 15 needs additional modules and a more
complex synchronisation scheme : LeftFrame and RightFrame are frame grabbers and take snapshots of the scene;
Extract3L and Extract3D extract segments from the raw images and Stereo builds a 3D reconstruction from the
extracted features. The vision sub-system has the following temporal behaviour :

• to enhance the quality of 3D reconstruction the left and right images must be frozen at the same time, thus the two
frame grabbers are strongly synchronised using a syn/syn link between their synchro ports;

16

• the modules which extract features from the raw images are assumed to provide three segments during their activity
process, but the order at which they are available is not known in advance : the corresponding output ports of the
Extract modules trigger the Stereo module through multiple asyn/syn links. That way we avoid polling on the
Extract output and ensure that the Stereo module gets all its input data before performing its computation. This is
an example where multiple synchronisation can be useful and thus must be allowed.

A/S
A/S

A/S

A/S
A/S

A/S

A/S

A/S

A/S

A/S

S/S

A/A

clock
10ms

clock

clock

50ms

1500us

A/A

Event

DriverDriver

A/A

Driver Driver

A/A

A/S

A/A

A/S

A/S

A/S

6280 us

343 us

100 us10 us

100 us

150 us

10us

1ms 2.7ms

10us

clock
2ms

1ms

Figure 15: Stereo vision based controller

The rest of controller is the same as in example 4.5 and leads to the following partition, from high to low priority :

• {obs_jl, proc_jl} with a 1500 µs clock triggering {obs_jl};
• {tf_vis, cp_js, windup} with a 2 ms clock triggering {tf_vis};
• {LeftFrame,RightFrame,Extract3L,Extract3D,Stereo} with a 10 ms clock triggering {LeftFrame};
• {mod_dyn} with a 50 ms clock.

After a mixed automatic/interactive work to add and remove links to solve forks and mutual exclusion a possible synchro-
nisation scheme (among others possible schedulable schemes) is finally set as indicated in figure 15, where dashed links
are added to the initial design (but are hidden on the GUI). The analysis is performed as usual using the EG model and
the (max,plus) algebra solver. Due to the increased computing load the clock of the dynamic model computation must be
lowered to 50 ms to preserve the stability of the controller during the steady state phase. Also, due to the more complex
synchronisation scheme, and because the clocks are not harmonic leading to a 3 cyclicity, the temporal analysis shows a
rather complex activity pattern for the four synchronised task paths (times are in µs) :
S1 : 1(110)0(1390)1(110)[0(1390)1(110)]
{S1 ∪ S2} : 1(703)0(797)1(110)0(390)1(593)[0(407)1(110)0(890)1(703)

0(1297)1(703)0(797) 1(110)0(390)1(593)
{S1 ∪ S2 ∪ S3} : 1(7742)[0(258)1(593)0(407)1(110)0(890)1(7632)0(368)1(703)0(797)

1(110)0(390)1(7632)0(368)1(703)0(1297)1(7742)]
{S1 ∪ S2 ∪ S3 ∪ S4} :1(39950)[0(50)1(7632)0(368)1(703)0(797)1(110)0(390)

1(39840)0(160)1(7742)0(258)1(593)0(407)1(110)0(890)1(39950)

17

0(50)1(7632)0(368)1(703)0(1297)1(39950)]
Anyway iterative runs of the method and associated tools rapidly leads to find a dead-lock free, deterministic and

schedulable implementation of the controller on a single processor.

5 Summary and future research

In this paper we have shown how following some simple guidelines can lead to the implementation of a real-time software
which is efficient w.r.t. to a control goal. We assume that the tasks are scheduled using preemption and fixed priorities, and
that their deadline equals their period. The model also takes into account synchronisations between tasks enforcing prece-
dence constraints and thus can be used to manage the input/output latencies of the controller. Under these assumptions,
the set of tasks can be modelled by Timed Event Graphs and its temporal behaviour can be analysed with a polynomial
complexity using the underlying linear model in the (max,plus) algebra. Improvements in modelling will allow to handle
systems where deadlines are not equal to periods.

Using this model we derived tests to check temporal properties of the system such as periodicity, cycle time, response
time and respect of deadlines, both for the transient regime and for the steady state regime. The method is quite general
and is not limited to a particular scheduling policy, thus priorities can be assigned to tasks according to a controlled
process based relative urgency. Then the associated ORCCAD software automatically generates the run-time code for a
single processor and the method can be easily extended to implement controllers statically mapped on a multi-processor
computing resource. The controller only uses the basic features of off-the-shelf real-time operating systems, i.e. a fixed-
priority preemptive scheduler, periodic timers and semaphores. Note that anyway the design of an controller efficient
w.r.t. the end-user’s requirements needs some knowledge about the process, its control laws, its environment and its
failure modes and that using a schedulability design/analysis method must not be done blindly.

However, like other existing schedulability analysis tools for real-time systems, the temporal analysis assumes the
a priori knowledge of the worst case execution time of the tasks. This is always difficult to measure (Puschner and
Burns 2000) as tasks durations depends on both the software tools (programming language and compiler) and the target
hardware (processor speed), and may vary according to the run-time state (e.g. cache effects and network induced delays).
The computing load may also have large variations due to the algorithms themselves, e.g using vision processing or
recursive filters with unpredictable convergence rates. Hence the design of a strictly hard real-time systems may lead to
a severe under-use of the computing resources, while adding fault tolerance requires specialised and costly hardware and
software components (Chevochot and Puaut 2001).

Besides safety critical systems embedded computers are of growing interest and are forecast to be integrated in many
commonly used devices such as smart home, office or transport systems9. Many of these systems will be executed in
dynamic environments with timing uncertainties and unpredictability. Therefore the hard real-time assumption must be
carefully studied and should be relaxed when possible to provide adaption and cost-effective solutions.

In particular control systems are often claimed to be hard real-time systems where any violation of the timing con-
straints leads to a catastrophic failure. Setting adequate values to these timing constraints is a difficult task, mainly based
on rules of thumb, e.g. (Aström and Wittenmark 1990) or case studies, and in many cases the hard real-time assumption is
accepted as is with no further study : this may lead to unnecessarily over-constrained systems, however with the advantage
of quite simple schedulability tests and timing exception handling as the answers are binary.

This is even more the case for closed-loop control systems : in practise a closed-loop system must have a stability
margin to be robust against the parameters uncertainties of the controlled plant. It has been recently recognised that robust
closed-loop control also exhibits robustness against timing uncertainties, i.e. the controller performance and stability are
submit to graceful degradation rather than abrupt failure in case of sampling jitter and occasional deadlines miss (see for
example the examples in (Cervin 2003)).

Thus such control systems are robust w.r.t. timing constraints and may be subject to deviations from nominal timing
parameters, e.g. tasks durations and sampling rates. Besides the traditional strict real-time approach, alternative and
more flexible scheduling methods may be investigated to exploit this robustness : it is expected that rather than enforcing
timing predictability for a system which is naturally timely uncertain a better way consists in learning how to live with
uncertainty.

Based on the control/scheduling co-design structure of controlled explained in this paper a soft real-time and adaptive
fault-tolerant approach can be sketched as :

• starting from control algorithms requirements, the control laws structures are partitioned into subsets of synchro-
nised modules for which priorities are assigned w.r.t. to their relative urgency as shown in this paper. Timing con-

9see for example the proposals about embedded systems and hybrid control in the FP6-IST call for Expressions of Interest http://eoi.cordis.
lu/ and subsequent call for proposals FP6-2003-IST-2

18

straints (tasks periods, deadlines and latencies) are off-line identified for the controllers. The proposed method can
be used to check the structural correctness of the design and to evaluate the scheduling feasibility using the nominal
timing parameters. To take into account the imperfections of the implementation, allowed variations around nomi-
nal values should be ideally provided. However finding such bound remains difficult an deserves further theoretic
investigation (Nilsson et al. 1998);

• These constraints may be expresses in several ways, e.g. as a set of nominal values with associated gains to perform
gain scheduling, e.g. (Ryu et al. 1997), as weakly hard constraints combining allowed deadlines violations and
associated exception handling (faulty tasks can be delayed, skipped or aborted) as in (Bernat, Burns and Llamosí
2001) or as complex temporal attributes (e.g. nominal period variation) used by an heuristic procedure to assign
the scheduling parameters (Sandström and Norström 2002). A given control functionality can be also implemented
using more or less costly variants of the control algorithms, which can be weighted w.r.t. their respective computing
cost and control performance.

• as the controller is no longer considered as strongly hard real-time, timing constraints violations must not be con-
sidered as fatal but must be processed by a fault-tolerant layer. Control execution related exceptions are catch from
the control tasks and passed to a scheduling manager in the coordination layer (recall that it is the duty of the ’dy-
nAtr’ FSM module in Figure 12). According to incoming exceptions and events it manages the set of concurrent
control modes to optimise a global (application level) Quality of Service criterion (Sanfridson 2000). Indeed this
discrete-events based manager may act at different levels according to the received signals :

– occasional violations of timing constraints (data loss or deadlines miss) lead to scheduling decisions (e.g.
skipping or delaying the faulty task);

– more constant violations lead to either decrease the frequency of at least one of the controllers (and hence also
its gains and performance) or to switch for a variant with lower computing cost if available.

– in case of unresolved constant overload, the scheduling manager also may act as an ’admission controller’ to
cancel the lower weight activity and maintain the QoS level as high as possible;

• an even more adaptive approach consists in feedback scheduling where, as pioneered in (Arzén et al. 2000) and
(Lu, Stankovic, Abdelzaher, Tao, Son and Marley 2000), the scheduling parameters are continuously computed in
an outer closed loop (the scheduling controller) which goal is to control the global QoS criterion, e.g. minimising a
weighted sum of tracking errors under constraint of limited computing power.

It is expected that such flexible scheduling methods will be able to provide a cost effective use of the computing
resource w.r.t. closed-loop control requirements in presence of timing uncertainties and jitter. The control architecture
described in this paper is assumed to be a safe starting platform to implement such flexible control/real-time systems.

Appendix : (max,plus) algebra and event graphs

In this section we list several properties of the so-called (max,plus) algebra. All these results can be found in (Baccelli
et al. 1992), where they are presented in full details.

Rmax is the semi-ring (R ∪ {−∞},⊕,⊗), where ⊕ stands for the max operation and ⊗ stands for the + operator.
These operations are extended to vectorial operation in the canonical way.

To any event graph G with an initial marking bounded by one, one can associate matrices, A(k), k ∈ {0, 1}, of size
Q × Q, where the entry (i, j) in matrix A(k) is σj , the delay or lag time of transition j, if there exists a place between
transitions qj and qi with k initial tokens, and −∞ otherwise.

Let A(0)∗ =
⊕∞

i=0
A(0)⊗i, and A = A(0)∗ ⊗ A(1). Let Xq(k) be the epoch when the k-th firing starts in transition

q.
If there is an input transition with arrival process u, where u(n) gives the epoch of the nth release of a token by the

input, then
X(n) = A ⊗ X(n − 1) ⊕ B ⊗ u(n),

where Bi = 0 if there is a place between the input and transition q and −∞ otherwise.
By using the spectral theory with timed event graphs, we get the following result.

Lemma 1. For all SCC C in isolation, there exists a cycle time λC ∈ R+, a cyclicity sC ∈ N+ and a transient period
kC ∈ N, such that for all transitions q ∈ C and all k > kC ,

Vq(k + sC) = Vq(k) + sCλC .

19

As for the whole system G (all SCC considered together), in the case with no input, we have the following result : we
denote C → C′ if the SCC C precedes the SCC C ′ for the topological ordering. If

max{λC |C → C′} > λC′ , (1)

then the SCC C′ have the same cycle time as the preceding SCC achieving the maximum in Equation (1). If

max{λC |C → C′} < λC′ ,

then the SCC C′ (and hence the whole system) is said unstable (the marking in some places will grow to infinity).

A similar result holds for a event graph with a pseudo periodic input u. In particular, if the inverse of the input rate is
larger than or equal to the maximal cycle time of all SCCs in isolation, then the system is stable. Otherwise, it is unstable.

Acknowledgement The authors thanks A. Jean-Marie and B. Gaujal for the integration of the solver for preemptive
graphs in ERS.

References

Arzén, K.-E., Bernhardsson, B., Eker, J., Cervin, A., Persson, P., Nilsson, K. and Sha, L.: 1999, Integrated control
and scheduling, Technical Report ISRN LUFTD2/TFRT–7686–SE, Dept. of Automatic Control, Lund Institute of
Technology.

Arzén, K.-E., Cervin, A., Eker, J. and Sha, L.: 2000, An introduction to control and scheduling co-design, 39th IEEE
Conference on Decision and Control, Sydney, Australia.

Aström, K. and Wittenmark, B.: 1990, Computer-Controlled Systems - Theory and Design, Prentice Hall, Englewood
Cliffs, NJ.

Audsley, N., Burns, A., Davis, R., Tindell, K. and Wellings, A.: 1995, Fixed priority preemptive scheduling: An historical
perspective, Real-Time Systems 8, 173–198.

Baccelli, F., Gaujal, B. and Simon, D.: 2002, Analysis of preemptive periodic real time systems using the (max,plus)
algebra with applications in robotics, IEEE Trans. on Control Systems Technology 10(3), 368–380.

Baccelli, F., Gohen, G., Olsder, G. J. and Quadrat, J.-P.: 1992, SynchronizatioN and LinearitY : An Al-
gebra for Discrete Event Systems, Wiley Series in Probability and Mathematical Statistics. http://www-
rocq.inria.fr/scilab/cohen/documents/BCOQ-book.pdf.

Benattar, F.: 2001, Programmation et vérification de tâches robotiques multicadences, Master’s thesis, DEA Imagerie,
Vision et Robotique, INP Grenoble.

Bernat, G., Burns, A. and Llamosí, A.: 2001, Weakly hard real-time systems, IEEE Transactions on Computers
50(4), 308–321.

Borrelly, J., Coste-Manière, E., Espiau, B., Kapellos, K., Pissard, R., Simon, D. and Turro, N.: 1998, The ORCCAD

architecture, Int. Journal of Robotics Research 18(4), 338–359.

Bouajjani, A., Echahed, R. and Sifakis, J.: 1993, On model checking for real time properties with durations, 8th Sympo-
sium on Logic in Computer Science (LICS 93).

Burns, A. and Wellings, A.: 1995, HRT-HOOD: A Structured Design Method for Hard Real-Time Ada System, Elsevier.

Burns, A., Wellings, A., Burns, F., Koelmans, A., Koutny, M., Romanovsky, A. and Yakovlev, A.: 2000, Towards mod-
elling and verification of concurrent Ada programs using Petri-nets, Workshop on Software Engineering and Petri
Nets,21st Int. Conf. App. Theory of Petri Nets, Aarhus, Denmark, pp. 115–134.

Cervin, A.: 2003, Integrated Control and Real-Time Scheduling, PhD thesis, Department of Automatic Control, Lund
Institute of Technology, Sweden.

Chen, J., Armstrong, B., Fearing, R. and Burdick, J.: n.d., Satyr and the nymph: Software archetype for real time robotics,
IEEE-ACM Joint Computer Conference, Dallas, U.S.A.

20

Chevochot, P. and Puaut, I.: 2001, Experimental evaluation of the fail-silent behavior of a distributed real-time run-time
support built from cots components, Int. Conf. on Dependable Systems and Networks (DSN’01), Göteborg, Sweden,
pp. 304–313.

Eker, J. and Cervin, A.: 1999, A Matlab toolbox for real-time and control systems co-design, 6th Int. Conf. on Real-time
Computing Systems and Applications, Hong Kong, pp. 320–327.

Ermont, J. and Boniol, F.: 2002, TPAP: an algebra of preemptive processes for verifying real-time systems with shared
resources, Workshop on Theory and Pratice of Timed Systems, ETPAS’2002, Grenoble, France.

Esparza, J. and Nielsen, M.: 1994, Decibility issues for Petri nets - a survey, Journal of Informatik Processing and
Cybernetics 30(3), 143–160.

Fidge, C.: 1998, Real-time schedulability tests for preemptive multitasking, Real-Time Systems 14(1), pp 61–93.

Girault, A., Lavarenne, C., Sighireanu, M. and Sorel, Y.: 2001, Fault-tolerant static scheduling for real-time distributed
embedded systems, 21st International Conference on Distributed Computing Systems, ICDCS’01, Phoenix, USA.

Klaudel, H. and Pommereau, F.: 2000, A concurrent and compositional Petri net semantics of preemption, in T. S.
W. Grieskamp and B. Stoddart (eds), Integrated Formal Methods, Vol. 1945 of Lecture Notes in Computer Science,
Springer, pp. 318–337.

Liu, C. and Layland, J.: 1973, Scheduling algorithms for multiprogramming in hard real-time environment, Journal of
the ACM 20(1), 40–61.

Lu, C., Stankovic, J., Abdelzaher, T., Tao, G., Son, S. and Marley, M.: 2000, Performance specifications and metrics for
adaptive real-time systems, Real-Time Systems Symposium.

Mejia, M., Simon, D., Belmans, P. and Borrelly, J.: 1989, Mécanismes de synchronisation dans un système robotique
réparti, Séminaire franco-brésilien sur les systèmes informatiques répartis, Florianópolis, Brazil.

Murata, T.: 1989, Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77(4), pp 541–580.

Nilsson, J., Wittenmark, B., Törngren, M. and Sanfridson, M.: 1998, Timing problems in real-time control systems,
Technical Report DICOSMOS project ISRN KTH/MMK–98/20–SE, KTH, Stockholm.

Puschner, P. and Burns, A.: 2000, Guest editorial : A review of worst-case execution-time analysis, Real Time Systems
18(2-3), pp 115–128.

Ramamoorthy, C. and Ho, G.: 1980, Performance evaluation of asynchronous concurrent systems using Petri nets, IEEE
Trans. on Software Engineering 6(5), 440–449.

Ryu, M., Hong, S. and Saksena, M.: 1997, Streamlining real-time controller design: from performance specifications to
end-to-end timing constraints, IEEE Real Time Systems Symposium.

Sandström, K. and Norström, C.: 2002, Managing complex temporal requirements in real-time control systems, 9th IEEE
Int. Conf. and Workshop on the Engineering of Computer-Based Systems (ECBS’02), Lund, Sweden.

Sanfridson, M.: 2000, Problem formulations for qos management in automatic control, Technical Report TRITA-MMK
2000:3, ISSN 1400-1179, ISRN KTH/MMK–00/3–SE, KTH, Stockholm.

Sha, L., Rajkumar, R. and Lehoczky, J. P.: 1990, Priority inheritance protocols: An approach to real-time synchronization,
IEEE Transactions on Computers 39, pp. 1175–1185.

Simon, D., Castillo, E. and Freedman, P.: 1998, Design and analysis of synchronization for real-time closed-loop control
in robotics, IEEE Trans. on Control Systems Technology 6(4), 445–461.

Simon, D., Espiau, B., Castillo, E. and Kapellos, K.: 1993, Computer-aided design of a generic robot controller handling
reactivity and real-time control issues, IEEE Trans. on Control Systems Technology 1, 213–229.

Simpson, H.: 1997, Multireader and multiwriter asynchronous communication mechanisms, IEE Proceedings-Computer
and Digital Techniques 144(4), 241–244.

Spuri, M. and Stankovic, J.: 1994, How to integrate precedence constraints and shared resources in real-time scheduling,
IEEE Transactions on Computers 43(12), 1407–1412.

21

Törngren, M.: 1998, Fundamentals of implementing real-time control applications in distributed computer systems, Real
Time Systems 14(3), 219–250.

Wittenmark, B.: 2001, A sample-induced delays in synchronous multirate systems, European Control Conference, Porto,
Portugal, pp. 3276–3281.

22

