51 research outputs found

    A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed Length

    Get PDF
    We develop a pseudorandom generator that fools degree-dd polynomial threshold functions in nn variables with respect to the Gaussian distribution and has seed length Oc,d(log(n)ϵc)O_{c,d}(\log(n) \epsilon^{-c})

    A Polylogarithmic PRG for Degree 22 Threshold Functions in the Gaussian Setting

    Get PDF
    We devise a new pseudorandom generator against degree 2 polynomial threshold functions in the Gaussian setting. We manage to achieve ϵ\epsilon error with seed length polylogarithmic in ϵ\epsilon and the dimension, and exponential improvement over previous constructions

    Derandomized Graph Product Results using the Low Degree Long Code

    Get PDF
    In this paper, we address the question of whether the recent derandomization results obtained by the use of the low-degree long code can be extended to other product settings. We consider two settings: (1) the graph product results of Alon, Dinur, Friedgut and Sudakov [GAFA, 2004] and (2) the "majority is stablest" type of result obtained by Dinur, Mossel and Regev [SICOMP, 2009] and Dinur and Shinkar [In Proc. APPROX, 2010] while studying the hardness of approximate graph coloring. In our first result, we show that there exists a considerably smaller subgraph of K3RK_3^{\otimes R} which exhibits the following property (shown for K3RK_3^{\otimes R} by Alon et al.): independent sets close in size to the maximum independent set are well approximated by dictators. The "majority is stablest" type of result of Dinur et al. and Dinur and Shinkar shows that if there exist two sets of vertices AA and BB in K3RK_3^{\otimes R} with very few edges with one endpoint in AA and another in BB, then it must be the case that the two sets AA and BB share a single influential coordinate. In our second result, we show that a similar "majority is stablest" statement holds good for a considerably smaller subgraph of K3RK_3^{\otimes R}. Furthermore using this result, we give a more efficient reduction from Unique Games to the graph coloring problem, leading to improved hardness of approximation results for coloring

    A Small PRG for Polynomial Threshold Functions of Gaussians

    Full text link
    We develop a pseudo-random generator to fool degree-dd polynomial threshold functions with respect to the Gaussian distribution. For c>0c>0 any constant, we construct a pseudo-random generator that fools such functions to within ϵ\epsilon and has seed length log(n)2O(d)ϵ4c\log(n) 2^{O(d)} \epsilon^{-4-c}

    Bounded Independence vs. Moduli

    Get PDF
    Let k = k(n) be the largest integer such that there exists a k-wise uniform distribution over {0,1}^n that is supported on the set S_m := {x in {0,1}^n: sum_i x_i equiv 0 mod m}, where m is any integer. We show that Omega(n/m^2 log m) <= k <= 2n/m + 2. For k = O(n/m) we also show that any k-wise uniform distribution puts probability mass at most 1/m + 1/100 over S_m. For any fixed odd m there is k ge (1 - Omega(1))n such that any k-wise uniform distribution lands in S_m with probability exponentially close to |S_m|/2^n; and this result is false for any even m

    Almost Optimal Pseudorandom Generators for Spherical Caps

    Full text link
    Halfspaces or linear threshold functions are widely studied in complexity theory, learning theory and algorithm design. In this work we study the natural problem of constructing pseudorandom generators (PRGs) for halfspaces over the sphere, aka spherical caps, which besides being interesting and basic geometric objects, also arise frequently in the analysis of various randomized algorithms (e.g., randomized rounding). We give an explicit PRG which fools spherical caps within error ϵ\epsilon and has an almost optimal seed-length of O(logn+log(1/ϵ)loglog(1/ϵ))O(\log n + \log(1/\epsilon) \cdot \log\log(1/\epsilon)). For an inverse-polynomially growing error ϵ\epsilon, our generator has a seed-length optimal up to a factor of O(loglog(n))O( \log \log {(n)}). The most efficient PRG previously known (due to Kane, 2012) requires a seed-length of Ω(log3/2(n))\Omega(\log^{3/2}{(n)}) in this setting. We also obtain similar constructions to fool halfspaces with respect to the Gaussian distribution. Our construction and analysis are significantly different from previous works on PRGs for halfspaces and build on the iterative dimension reduction ideas of Kane et. al. (2011) and Celis et. al. (2013), the \emph{classical moment problem} from probability theory and explicit constructions of \emph{orthogonal designs} based on the seminal work of Bourgain and Gamburd (2011) on expansion in Lie groups.Comment: 28 Pages (including the title page

    Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

    Get PDF
    Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function. Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on Rn\mathbb{R}^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp(x0.99)\exp(-|x|^{0.99}). Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O(log(1/δ))O(\log(1/\delta))-wise independence, for a tail probability of δ\delta. We show that their results are tight up to constant factors. These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.Comment: 22 page
    corecore