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Abstract
We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold
functions with respect to the Gaussian measure. In particular, we obtain one whose seed length
is polylogarithmic in both the dimension and the desired error, a substantial improvement over
existing constructions.

Our generator is obtained as an appropriate weighted average of pseudorandom generators
against read once branching programs. The analysis requires a number of ideas including a
hybrid argument and a structural result that allows us to treat our degree 2 threshold function
as a function of a number of linear polynomials and one approximately linear polynomial.
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1 Introduction

We say that a function f : Rn → {+1,−1} is a (degree-d) polynomial threshold function
(PTF) if it is of the form f(x) = sgn(p(x)) for p some (degree-d) polynomial in n vari-
ables. Polynomial threshold functions make up a natural class of Boolean functions and
have applications to a number of fields of computer science such as circuit complexity [1],
communication complexity [14] and learning theory [11].

In this paper, we study the question of pseudorandom generators (PRGs) for polynomial
threshold functions of Gaussians (and in particular for d = 2). In other words, we wish
to find explicit functions F : {0, 1}s → Rn so that for any degree-2 polynomial threshold
function f ∣∣Ex∼u{0,1}s [f(F (x))]− EX∼Gn [f(X)]

∣∣ < ε.

We say that such an F is a pseudorandom generator of seed length s that fools degree-d
polynomial threshold functions with respect to the Gaussian distribution to within ε. In this
paper, we develop a generator with s polylogarithmic in n and ε in the case when d = 2.

1.1 Previous Work
There have been a number of papers dealing with the question of finding pseudorandom
generators for polynomial threshold functions with respect to the Gaussian distribution or
the Bernoulli distribution (i.e. uniform over {−1, 1}n). Several early works in this area
showed that polynomial threshold functions of various degrees could be fooled by arbitrary
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Table 1 Generators Based on Limited Independence.

Paper Bernoulli/Gaussian d k
Diakonikolas, Gopalan, Jaiswal, Bernoulli 1 O(ε−2 log2(ε−1))
Servedio, Viola [3]
Diakonikolas, Kane, Nelson [4] Gaussian 1 O(ε−2)
Diakonikolas, Kane, Nelson [4] Both 2 O(ε−8)1

Kane [7] Both d Od

(
ε−2O(d)

)

k-wise independent families of Gaussian or Bernoulli random variables. It should be noted
that a k-wise independent family of Bernoulli random variables can be generated from a seed
of length O(k log(n)). Although, any k-wise independent family of Gaussians will necessarily
have infinite entropy, it is not hard to show that a simple discretization of these random
variables leads to a generator of comparable seed length. These results on fooling polynomial
threshold functions with k-independence are summarized in Table 1.

Unfortunately, it is not hard to exhibit k-wise independent families of Bernoulli or Gaussian
random variables that fail to ε-fool the class of degree-d polynomial threshold functions for
k = Ω(d2ε−2), putting a limit on what can be obtained through mere k-independence.

There have also been a number of attempts to produce pseudorandom generators by using
more structure than limited independence. In [12], Meka and Zuckerman develop a couple of
such generators in the Bernoulli case. Firstly, they make use of pseudorandom generators
against space bounded computation to produce a generator of seed length O(log(n)+log2(ε−1))
in the special case where d = 1. By piecing together several k-wise independent families,
they produce a generator for arbitrary degree PTFs of seed length 2O(d) log(n)ε−8d−3. In
[10], the author develops an improved analysis of this generator allowing for a seed length
as small as Oc,d(log(n)ε−11−c). For the Gaussian case, the author developed a generator
of seed length 2Oc(d) log(n)ε−4−c in [9]. This generator was given essentially as an average
several random variables each picked independently from a k-wise independent family of
Gaussians. The analysis of this generator was also improved in [10], obtaining a seed length
of Oc,d(log(n)ε−2−c). Finally, in [8] it was shown that this could be improved further by
taking an average with unequal weights, given seed length Oc,d(ε−c) for arbitrary degree and
log(n) exp(O(log(1/ε)2/3 log log(1/ε)1/3)) for degree 2. For a summary of these results, see
Table 2.

The bound in [8] came from showing that for Y a weak pseudorandom generator (and in
particular one that fools low degree moments) that∣∣∣E[f(X)]− E[f(

√
1− ε2X + εY )]

∣∣∣� εk (1)

for any k. This followed from an important structure theorem that said that any polynomial
p could be decomposed in terms of other polynomials, qi so that when the qi were localized
near a random location then with high probability they would all be approximately linear
polynomials. It was then shown that a moment matching random variable could fool such
functions of approximately linear polynomials with high fidelity.

The bottleneck in this analysis comes in the size of the decomposition described above.
On the one hand, for d > 2 the size of the decomposition described above could potentially

1 The bound in [4] for the Bernoulli case is actually Õ(ε−9), but this can be easily improved to O(ε−8)
using technology from [10].
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Table 2 Other Generators.

Paper Bernoulli/Gaussian d s
Meka, Zuckerman [12] Bernoulli 1 O(log(n) + log2(1/ε))
Kane [8] Gaussian 1 O(log(n) + log3/2(1/ε))
Meka, Zuckerman [12] Bernoulli d log(n)2O(d)ε−8d−3

Kane [9] Gaussian d log(n)2O(d)ε−4.1

Kane [10] Gaussian d log(n)Od(ε−2.1)
Kane [10] Bernoulli d log(n)Od(ε−11.1)
Kane [8] Gaussian 2 log(n) exp(O(log(1/ε)2/3 log log(1/ε)1/3))
Kane [8] Gaussian d log(n)Oc,d(ε−c)
Kane, this paper Gaussian 2 O(log6(ε) log(n) log log(n/ε))

be quite large, though for d = 2, it can be handled explicitly. On the other hand, the implied
constant in the approximation above depends exponentially on the size of this decomposition.
While, we still do not know how to solve the former problem when d > 2, we can solve the
latter in the case of degree-2 polynomial threshold functions.

In the special case of degree 2 functions, we end up with a decomposition of our quadratic
polynomial as a function of a single approximately linear quadratic and several other linear
polynomials. Fortunately, as discovered by Meka and Zuckerman, pseudorandom generators
against read once branching programs are excellent at fooling linear polynomials (or even small
numbers of them). As such generators also approximately fool the expectation of low degree
polynomials (which is required for dealing with the approximately linear quadratic), they
will actually be much better suited as our Y above. In fact, we can produce a pseudorandom
generator for degree 2 polynomial threshold functions with polylogarithmic seed length. In
particular, given an appropriate notion of a discretized Gaussian (the δ-approximate Gaussian
defined in Section 3), we have the following Theorem:

I Theorem 1.1. Let ε > 0 and n a positive integer. For sufficiently large constant C, let
δ = log(ε)/C and ` an integer at least δ−3 log(ε). For 1 ≤ i ≤ ` let Yi be a family of n
exp(−δ−1 log(n/δ))-approximate Gaussians seeded by a pseudorandom generator that fools
read once branching programs of width δ−2 log(n/δ) to within error exp(−δ−1 log(n/δ)). Let

Y =
∑`

i=1(1− δ3)(`−1)/2Yi√∑`
i=1(1− δ3)`−1

,

and let X be an n dimensional standard Gaussian. Then for any degree 2 polynomial threshold
function f in n variables,

|E[f(X)]− E[f(Y )]| ≤ ε.

Furthermore, such Y can be constructed from generators of seed length of at most
O(log(ε)6 log(n) log log(n/ε)).

In Section 2, we will go over some basic notation and results. In Section 3, we introduce
the concept of an approximate Gaussian, and show that families of them seeded by a PRG
for read once branching programs will fool certain functions depending on a finite numbers
of linear threshold functions and polynomials of low degree. In Section 4, we will prove our
generalization of Equation (1). Finally, in Section 5, we will use this result to finish up our
analysis and prove Theorem 1.1.

CCC 2015
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2 Background Information

2.1 Conventions
Throughout the paper we will use X,Xi, . . . as standard Gaussian random variables. We
will usually use Y, Yi, . . . to denote some sort of pseudorandom Gaussian.

2.2 Distribution of Values of Polynomials
Given a polynomial, p, we will need to know some basic information about how its values at
random Gaussian inputs are distributed. Perhaps the most basic measure of such distribution
is the average size of p(X). In order to keep track this, we will make use of the Lt (and
especially L2) norms. In particular, recall:

I Definition 2.1. If p : Rn → R and t ≥ 1 then

|p|t :=
(
E[|p(X)|t]

)1/t

where X is a standard Gaussian.

We will also need an anticoncentration result. That is a result telling us that the value of
p(X) is unlikely to lie in any small neighborhood. In particular, we have:

I Lemma 2.2 (Carbery and Wright, [2]). If p is a degree-d polynomial then

Pr(|p(X)| ≤ ε|p|2) = O(dε1/d).

Where the probability is over X, a standard n-dimensional Gaussian.

We will also need a concentration result for the values. To obtain one, we make use of
the hypercontractive inequality below. The proof follows from Theorem 2 of [13].

I Lemma 2.3. If p is a degree-d polynomial and t > 2, then

|p|t ≤
√
t− 1d|p|2.

This bound on higher moments allows us to prove a concentration bound on the distri-
bution of p(X). The following result is a well-known consequence that can be found, for
example, in [6].

I Corollary 2.4. If p is a degree-d polynomial and N > 0, then

PrX(|p(X)| > N |p|2) = O
(

2−(N/2)2/d
)
.

Proof. Apply the Markov inequality and Lemma 2.3 with t = (N/2)2/d. J

2.3 Hermite Polynomials
Recall that the Hermite polynomials ha are an orthogonal set of polynomials with respect to
the Gaussian distribution obtained by taking products of univariate Hermite polynomials in
different coordinates. In particular,

E[ha(X)hb(X)] = δa,b.

We will need to make use of a few standard facts about the Hermite polynomials:
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Any degree-d polynomial, p, can be written as a linear combination of Hermite polynomials
of degree at most d so that the sum of the squares of the coefficients is |p|22 (and thus,
the sum of the absolute values of the coefficients is at most nd|p|2).
A Hermite polynomial of degree d depends on at most d coordinates of its input. In fact
it can be written as a product of one variable polynomials on these inputs.
The sum of the absolute values of the coefficients of a Hermite polynomial of degree d is
O(1)d.

These properties are all easy to verify given basic facts about univariate Hermite polynomials.

3 Approximate Gaussians and Read Once Branching Programs

In order to produce a pseudorandom generator supported on a discrete set, we will first need
to come up with a discrete version of the single variable Gaussian distribution. We will make
use of the following notation:

I Definition 3.1. We say that a random variable Y is a δ-approximate Gaussian, if there is
a (correlated) standard (1-dimensional) Gaussian variable X so that

Pr(|X − Y | > δ) < δ,

and |Y | = O(log(δ)) with probability 1.

In particular, it is not difficult to generate a random variable with this property.

I Lemma 3.2. There exists an explicit δ-approximate Gaussian random variable that can be
generated from a seed of length O(log(δ)).

Proof. We assume that δ is sufficiently small since otherwise there is nothing to prove. Let
N = bδ−3c. Note that the random variable

X :=
√
−2 log(z) cos(2πθ)

is a random Gaussian if z and θ independent uniform (0, 1) random variables. Let z′ and θ′
be the roundings of z and θ to the nearest half-integer multiple of 1/N , and let

Y :=
√
−2 log(z′) cos(2πθ′).

Note that |z − z′|, |θ − θ′| ≤ N−1. From this it follows that

|X − Y | = O

(
1

N min(z, z′, 1− z, 1− z′)

)
.

Thus, |X − Y | < δ with probability at least 1− δ.
On the other hand, z′ and θ′ are discrete uniform variables with O(log(N)) = O(log(δ))

bits of entropy each. Thus, Y can be generated from a seed of length O(log(δ)). J

We will also need to recall the concept of a read once branching program. An (M,D, n)-
branching program is a program that is allowed to take only a single pass over an input
consisting of n D-bit blocks that is only allowed to save M -bits of memory between blocks.
We will sometimes refer to this as a read once branching program of memory M (with n
and D usually implicit). We note that there are small seed-length generators to fool such
programs. In particular, we note the following theorem of [5]:

CCC 2015
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I Theorem 3.3. There exists an explicit pseudorandom generator G with seed length O(M +
d+ log(n/ε) log(n)) so that if f is any Boolean function computed by an (M,D, n)-branching
program, then

|EX∼u{{0,1}D}n [f(X)]− E[f(G)]| ≤ ε.

As shown in [12], using pseudorandom generators for read once branching programs is a
good way to fool linear threshold functions, or by extension, things that depend on a small
number of linear functions of the input. They will also fool the expectations of polynomials of
low degree. An important building block for our construction will be families of approximate
Gaussians seeded with a pseudorandom generator which fools read once branching programs.
These, it turns out will simultaneously fool functions of a small number of linear functions
and expectations of low degree polynomials in the following sense:

I Proposition 3.4. Let s be a quadratic polynomial in n variables whose value depends on
at most r linear polynomials. Let g(x) be the indicator function of the event that s(x) lies in
I for some interval I. Let q(x) be a degree d polynomial in n variables. Let X be a standard
Gaussian and let Y be a family on n δ1-approximate Gaussians seeded by a PRG that fools
read once branching programs of length n and memory M = O((d+ r) log(n/δ1)) to error at
most δ2. Then

|E[g(X)q(X)]− E[g(Y )q(Y )]| ≤ O(log(δ1))d+1(δ2 + nδ
1/4
1 )nd|q|2.

First, we will need the following Lemma:

I Lemma 3.5. Let s be a quadratic polynomial in n variables whose value depends on at
most r linear polynomials. Let g(x) be the indicator function of the event that s(x) lies in I
for some interval I. Let h(x) be a Hermite polynomial of degree d. Let X and Y be as given
in Proposition 3.4. Then

|E[g(X)h(X)]− E[g(Y )h(Y )]| ≤ O(log(δ1))d+1(δ2 + nδ
1/4
1 ).

Proof. We prove this in two steps. First, show that for Y ′ a family of n independent
approximate Gaussians that E[g(X)h(X)] ≈ E[g(Y ′)h(Y ′)]. This is because by correlating X
and Y ′ appropriately, we can guarantee that X and Y ′ are close with high probability. This
will mean that g(X) = g(Y ′) with high probability that h(X) ≈ h(Y ′) with high probability.
Next, we will need to show that E[g(Y ′)h(Y ′)] ≈ E[g(Y )h(Y )]. This will hold because we can
construct a read once branching program of small memory that computes approximations
to the linear functions upon which s depends and the values of the (at most d) coordinates
upon which h depends.

We may assume that |s|2 = 1. We begin by letting Y ′ be a family of independent δ1-
approximate Gaussians. We can pick correlated copies of X and Y ′ so that with probability
at least 1 − nδ1 each coordinate of X is within δ1 of the corresponding coordinate of
Y ′. If this is the case, then |s(X) − s(Y ′)| = O(n log(δ1)δ1). By Lemma 2.2, s(X) is
only within this distance of an endpoint of I with probability O(n1/2δ

1/2
1 logd(δ1)). Thus,

neglecting an event with this probability, g(X) = g(Y ′). Let E be the event that g(X) 6=
g(Y ′), or that some coordinate of X and Y ′ differs by more than δ1. The contribution to
E[|g(X)h(X)− g(Y ′)h(Y ′)|] coming from times when E holds is at most

E[1E(|h(X)|+ |h(Y ′)|)],

which by Cauchy-Schwartz is at most

O((n1/4δ
1/4
1 logd/2(δ1))

√
E[h(X)2 + h(Y ′)2]) = O(n1/4δ

1/4
1 logd+1(δ1)).
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On the other hand E[|h(X)− h(Y ′)|] when X and Y ′ agree to within δ1 in each coordinate
is O(n logd(δ1)δ1). Thus,

|E[g(X)h(X)]− E[g(Y ′)h(Y ′)]| ≤ O(logd+1(δ1)nδ1/4
1 ).

We now need to show that seeding Y ′ by a read once branching programs withM memory
fools this expectation to within small error. Notice that a read once branching program
with O((d+ r) log(n/δ1)) memory can keep track of an approximation to within n−1δ3

1 of
each of the r normalized linear functions that s depends on, and compute h to precision
δ1. The latter is accomplished by writing h as

∏n
i=1 hai

(xi) and keeping track of a running
product

∏m
i=1 hai

(xi) to relative precision δ1O(log(δ1))−d(m/n). This allows the program to
compute the values of s and h to within an error of at most δ1.

Thus, Pr(h(Y ′)g(Y ′) ≥ c) is at most

Pr(h(Y )g(Y ) ≥ c− δ1) + Pr(s(Y ′) is within δ1 of an endpoint of I) + δ2.

Note that except for an event of probability nδ1, the difference between s(X) and s(Y ′) is at
most O(n log(δ1)δ1) and the former is this close to an endpoint of I with probability at most
O(log(δ1)

√
nδ1). Thus, with probability 1−O(log(δ1)

√
nδ1 + nδ1), s(Y ′) is not within δ1 of

a boundary of I. Thus for any c,

Pr(h(Y )g(Y ) ≥ c) ≤ Pr(h(Y ′)g(Y ′) ≥ c− δ1) +O(δ2 + log(δ1)n1/2δ
1/2
1 + nδ1).

Integrating this over all |c| ≤ O(log(δ1))d (which is the full range of values of h(Y ′) and
h(Y )), we find that

E[g(Y )h(Y )] ≤ E[g(Y ′)h(Y ′)] + δ1 +O(log(δ1))d+1(δ2 + nδ
1/2
1 ).

The lower bound follows similarly, and this completes the proof. J

Proof of Proposition 3.4. Note that we can write q as a linear combination of degree d
hermite polynomials, where the sum of the absolute values of the coefficients is at most
O(nd|q|2). Our result follows from applying Lemma 3.5 to each term separately. J

We also note the following corollary when r = 0:

I Corollary 3.6. Let X and Y be as in Proposition 3.4. Let q be a polynomial of degree at
most d then

|E[q(X)]− E[q(Y )]| ≤ O(log(δ1))d+1(δ2 + nδ
1/4
1 )nd|q|2.

4 The Key Result

Our analysis will depend heavily upon the following Proposition:

I Proposition 4.1. Let δ > 0 and n a positive integer. Let C be a sufficiently large
constant, and let Y be a family of n exp(−Cδ−1 log(n/δ))-approximate Gaussians seeded by
a pseudorandom generator that fools read once branching programs of memory Cδ−2 log(n/δ)
to within error exp(−Cδ−1 log(n/δ)). Let X be an n dimensional standard Gaussian. Then
for any degree-2 polynomial threshold function f in n variables, we have that∣∣∣E[f(X)]− E[f(

√
1− δ3X + δ3/2Y )]

∣∣∣ = exp(−Ω(δ−1)).

CCC 2015
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We first will need to show that this result holds for a certain class of quadratic polynomials.
In particular, we define:

I Definition 4.2. A degree 2 polynomial p : Rn → R is called (r, δ)-approximately linear if
it can be written in the form

p(x) = p0(x · v1, . . . , x · vr) + x · v + q(x)

for some vectors v1, . . . , vk, v with v orthogonal to vi, and some degree-2 polynomials p0 and
q so that |q|2 < δ|v|2.

We now show an analogue of Proposition 4.1 for approximately linear polynomials:

I Lemma 4.3. Let k, r > 0 be integers and δ, δ1, δ2 > 0 real numbers. Let p be an (r,
√
δ)-

approximately linear polynomial in n variables with f the corresponding threshold function.
Let X be an n-dimensional standard Gaussian, and Y a family on n δ1-approximate Gaussians
seeded by a PRG that fools read once branching programs of length n and memory M =
C(k + r) log(n/(δδ1δ2)), for sufficiently large C, to error at most δ2. Then∣∣∣E[f(X)]− E[f(

√
1− δ2X + δY )]

∣∣∣
is at most

≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k +O(2−k/2).

The basic idea of the proof is as follows. First, we bin based on the approximate value of
p0. We are reduced to considering the expectation of the threshold function of a polynomial
C + x · v + q(x) times the indicator function of the event that p0 (a polynomial depending
on a bounded number of linear functions) lies in a small interval. To deal with the threshold
function, we note that averaging over possible values of X · v smooths it out, and we may
approximate it by its Taylor polynomial. Thus, we only need Y to fool the expectation of an
indicator function of p0 lying in a small interval, times a low degree polynomial. This should
hold by Proposition 3.4. The proof is as follows.

Proof. Since p is (r,
√
δ)-approximately linear, after rescaling we may assume that for some

orthonormal set of vectors v, v1, . . . , vk that

p(x) = p0(x · v1, . . . , x · vr) + x · v + q(x)

for some quadratic polynomials p0 and q with |q|2 <
√
δ. We may assume that δ � 1, for

otherwise there is nothing to prove.
Let N = 2k/|p|2. Let In(x) := 1p0(x)∈[n/N,(n+1)/N) and let fn(x) := In(x)f(x). Let

f+
n (x) = In(x)sgn(x · v + q(x) + (n+ 1)/N), and f−n (x) = In(x)sgn(x · v + q(x) + (n)/N).

Note that f(x) =
∑

n∈Z fn(x). Note also that f+
n (x) ≥ fn(x) ≥ f−n (x) for all x, n. We note

that f±n (x) is actually a very close approximation to fn(x). In particular, by Lemma 2.2 if
X is a random Gaussian then∑

n∈Z
E[f+

n (X)− f−n (X)] ≤ Pr(|p(X)| ≤ 1/N) = O(2−k/2).



D.M. Kane 575

Thus, it suffices to show that f±n (X) and f±n (
√

1− δ2X + δY ) have similar expectations
for each n. To analyze this, let Xv be the component of X in the v direction, and X ′ be the
component in the orthogonal directions. Let

g±n (X ′, Y )

: = EXv
[f±n (

√
1− δ2X + δY )]

= In(X ′, Y )EXv
[sgn(C(X ′) + q0(X ′, Y ) +Xv(1 + q′1(X ′) + q′′1 (Y ))) +X2

vq2)] (2)

where C(X ′) is a polynomial in X ′ and q0, q
′
1, q
′′
1 and q2 are polynomials (of degree at most

2,1,1 and 0 respectively) of L2 norms at most |q0|2 = O(δ) , |q′1|2 = O(
√
δ), |q′′1 |2 = O(δ),

and |q2|2 = O(
√
δ). We may also assume that q0 is at most linear in the variables of X ′, and

that if we write q0(X ′, Y ) = δv · Y + q′0(X ′, Y ), then |q′0(X ′, Y )|2 = O(δ3/2). We claim that
with probability 1− exp(−Ω(δ−1)) over the choice of X ′ that the following hold:
1. EY [q0(X ′, Y )2] = O(δ2).
2. |q′1(X ′)| < 1/3.
The first holds by Corollary 2.4 since EY [q′0(X ′, Y )2] is a degree 2 polynomial in X ′ with L2

norm O(δ3). Thus, with the desired probability EY [q′0(X ′, Y )2] = O(δ2), which implies the
desired bound. The second holds by Corollary 2.4 since q′1 is a degree 1 polynomial with L2

norm O(
√
δ). For the next part of the argument we will assume that we have fixed a value

of X ′ so that the above holds.
Let q1(X ′, Y ) := q′1(X ′) + q′′1 (Y ). Note that if |q0(X ′, Y )|, |q1(X ′, Y )| < 2/3, then the

polynomial C+ q0 +x(1 + q1) +x2q2 cannot have more than one root with absolute value less
than Ω(δ−1/2). Since Xv cannot be larger than this except with probability exp(−Ω(δ−1)),
the expectation above is erf(R)+exp(−Ω(δ−1)), where R is the smaller root of that quadratic.
Furthermore, there will be no such root R unless |C| � δ−1/2. In such a case, by the quadratic
formula, this root is

R = −1− q1 +
√

1 + 2q1 + q2
1 − 4q2(C + q0)

2q2

= (1 + q1)
√

1− 4q2(C + q0)/(1 + q1)2 − 1
2q2

= C + q0

1 + q1
+O(1). (3)

Thus, in the range |q0|, |q1| < 2/3 and |C| � δ−1/2 we have that the expectation in (2) is

erf(R) + exp(−Ω(δ−1)).

Note that even for complex values of q0 and q1 with absolute value at most 2/3, the erf(R)
(with R given by Equation (3)) is complex analytic with absolute value uniformly bounded.
Therefore, by Taylor expanding about q0 = 0 and q1 = q′1, we can find a polynomial P of
degree at most 2k (depending on q, C and X ′) so that erf(R) is

P (q0(X ′, Y ), q1(X ′, Y )− q′1(X ′)) +O(q0(X ′, Y ))2k +O(q1(X ′, Y )− q′1(Y ))2k

= P (q0(X ′, Y ), q′′1 (Y )) +O(q0(X ′, Y ))2k +O(q′′1 (Y ))2k.

Furthermore, the coefficients of P are all O(1)k. The above must hold when |q0|, |q′′1 | are not
at most 1/3. On the other hand, this means that even when |q0|, |q′′1 | are larger than 1/3, we
have that P (q0(X ′, Y ), q′′1 (X ′, Y ))± 1 = O(q0(X ′, Y ))2k +O(q1(X ′, Y ))2k. This means that
the above formula holds for all values of q0 and q′′1 . Thus, g±n (X ′, Y ) is

G(X ′, Y ) := 1s(X′,Y )∈I(P (q0(X ′, Y ), q′′1 (Y ))+O(q0(X ′, Y ))2k+O(q′′1 (Y ))2k)+exp(−Ω(δ−1))
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where s is some quadratic that depends on at most r linear functions, I is an interval.
Thus, g(X ′, Y ) will be approximately the product of an indicator function of something that
depends on only a limited number linear functions of Y and a polynomial of bounded degree.
Our proposition will hold essentially because PRGs for read once branching programs fool
such functions as show in Proposition 3.4.

Note that P (q0(Y ), q′′1 (Y )) can be written as a polynomial of degree at most 4k and L2

norm at most O(k)4k. Letting G0(y) be

G0(y) := EX

[
1s(X,y)∈IP (q0(X, y), q′′1 (y))

]
we have by Proposition 3.4 that

|E[G0(X)]− E[G0(Y )]| ≤ O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k.

Similarly, if
G1(y) := EX

[
1s(X,y)∈I(q0(X, y)2k + q′′1 (X, y)2k)

]
then

|E[G1(X)]− E[G1(Y )]| ≤ O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k.

Also,
E[G1(X)] ≤ O(δk)2k

by Lemma 2.3. Therefore, we have that the difference in expectations between g±n (X ′, Y )
and g±n (X ′, Z) where Z is an independent standard Gaussian, is at most

exp(−Ω(δ−1)) +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k.

Thus,∣∣∣E[f±n (X)]− E[f±n (
√

1− δ2X + δY )]
∣∣∣

≤ exp(−Ω(δ−1)) +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k.

Therefore, we have that∑
|n|≤4k

∣∣∣E[fn(X)]− E[fn(
√

1− δ2X + δY )]
∣∣∣

≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4kδ−k +O(δk)k

+
∑

n

∣∣E[f+
n (X)− f−n (X)]

∣∣
≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ

1/4
1 ))O(nk)4kδ−k +O(δk)k +O(2−k/2).

On the other hand, ∑
|n|≥4k

∣∣∣E[fn(X)]− E[fn(
√

1− δ2X + δY )]
∣∣∣

is at most the probability that either |p0(X)| or |p0(
√

1− δ2X + δY )| is more than 2k times
the L2 norm of p, which is O(2−k) by the Markov bound and Corollary 3.6. Thus,∣∣∣E[f(X)]− E[f(

√
1− δ2X + δY )]

∣∣∣
≤
∑
|n|∈Z

∣∣∣E[fn(X)]− E[fn(
√

1− δ2X + δY )]
∣∣∣

≤ exp(−Ω(δ−1))4k +O(log5k(δ1)(δ2 + nδ
1/4
1 ))O(nk)4k +O(δk)2k +O(2−k/2).

As desired. J
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We would like to reduce Proposition 4.1 to this case. Fortunately, it can be shown that
after an appropriate random restriction that any quadratic polynomial can be made to be
approximately linear with high probability.

I Lemma 4.4. Let p be a degree 2 polynomial, δ > 0 and r a non-negative integer. Let X
be a Gaussian random variable and p(X) be the polynomial

p(X)(x) := p(
√

1− δ2X + δx).

Then with probability at least 1 − exp(−Ω(r)) over the choice of X, p(X) is (r,O(δ))-
approximately linear.

Proof. For any polynomial q, let q(X) be the polynomial

q(X)(x) := q(
√

1− δ2X + δx).

After diagonalizing the quadratic part of p and making an orthonormal change of variables
we may write

p(x) =
n∑

i=1
pi(xi)

where pi is a quadratic polynomial in one variable. Furthermore, we may assume that the
quadratic term of pi(x) is aix

2 with |ai| decreasing in i. Note that

p(X)(x) =
n∑

i=1
p

(Xi)
i (xi).

We may write p(Xi)
i (x) as δ2√2aih2(x) +Ci,1(Xi)x+Ci,0(Xi) where h2(x) = (x2 − 1)/

√
2 is

the second Hermite polynomial, and Ci,1 and Ci,0 are appropriate constants depending on
Xi. Note furthermore, that unless Xi lies within a small constant of the global maximum or
minimum of pi that |Ci,1(Xi)| = Ω(δ|ai|). Thus, with probability at least 2/3, independently
for each i, we have that |Ci,1(Xi)| = Ω(δ|ai|). Let Ii be the indicator random variable for
the event that this happens.

From this it is easy to show that with probability 1− exp(−Ω(r)) we have that
∑m

i=1 Ii ≥
m/2 − r for all m (in fact the expected number of m for which this fails is exponentially
small). We claim that if this occurs, then p(X) is (r,O(δ))-approximately linear. To show
this, let S be the set of the r smallest indices i for which Ii = 0. We may write

p(X)(x) =

∑
i∈S

p
(Xi)
i (xi) +

∑
i6∈S

Ci,0(Xi)

+

∑
i 6∈S

Ci,1(Xi)ei

 ·X +

∑
i 6∈S

δ2√2aih2(xi)

 .

We claim that letting

p0(x) =
∑
i∈S

p
(Xi)
i (xi) +

∑
i 6∈S

Ci,0(Xi), v =
∑
i 6∈S

Ci,1(Xi)ei, q(x) =
∑
i6∈S

δ2√2aih2(xi)

shows that p(X) is (r,O(δ))-approximately linear.
It is clear that p0 depends on only the r linear functions x · ei for i ∈ S, that v is

orthogonal to these ei, and that p(X) is the sum of p0, x · v and q. We have only to verify
that |q|2 = O(δ)|v|. It is clear that |q|2 = O(δ2)

√∑
i6∈S a

2
i . On the other hand, we have that

|v|2 =
√∑

i 6∈S

C2
i,1(Xi) ≥ Ω

δ√∑
i6∈S

Iia2
i

 .
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Thus, it suffices to show that ∑
i 6∈S

Iia
2
i ≥

1
2
∑
i 6∈S

a2
i .

We can show this by Abel summation. In particular, for i 6∈ S let i′ be the value of the next
smallest integer not in S and let an+1 = 0. We have that

∑
i 6∈S

a2
i =

∑
i 6∈S

∑
j 6∈S,j≥i

a2
j − a2

j′ =
∑
j 6∈S

(a2
j − a2

j′)

 ∑
i 6∈S,i≤j

1

 .

Similarly,

∑
i6∈S

Iia
2
i =

∑
i6∈S

Ii

∑
j 6∈S,j≥i

Ii(a2
j − a2

j′) =
∑
j 6∈S

(a2
j − a2

j′)

 ∑
i 6∈S,i≤j

Ii

 .

On the other hand, for any j we have that∑
i6∈S,i≤j

Ii ≥
1
2
∑

i6∈S,i≤j

1.

Substituting into the above we find that∑
i 6∈S

Iia
2
i ≥

1
2
∑
i 6∈S

a2
i

and our result follows. J

Proposition 4.1 now follows easily by using Lemma 4.4 to reduce us to the case handled
by Lemma 4.3.

Proof. Let f(x) = sgn(p(x)) for some degree 2 polynomial p.
Let X1 and X2 be independent standard Gaussians. Note that

E[f(
√

1− δ3X + δ3/2Y )] = E[f(
√

1− δX1 +
√
δ(
√

1− δ2X2 + δY ))].

Let p(X1) be the polynomial given by

p(X1)(x) := p(
√

1− δX1 +
√
δx)

and let f (X1)(x) := sgn(p(X1))(x). Note that

E[f(
√

1− δ3X + δ3/2Y )] = EX1 [EX2,Y [f (X1)(
√

1− δ2X2 + δY )]].

By Lemma 4.4, we have with probability 1− exp(−Ω(δ−1)) over the choice of X1 that p(X1)

is (δ−1, O(
√
δ))-approximately linear. If this is the case, then by applying Lemma 4.3 with k

a sufficiently small multiple of δ−1, we find that

EX2,Y [f (X1)(
√

1− δ2X2 + δY )] = E[f (X1)(X)] + exp(−Ω(δ−1)).

Putting these together, we find that

E[f(
√

1− δ3X + δ3/2Y )] = EX1 [E[f (X1)(X)]] + exp(−Ω(δ−1))

= E[f(
√

1− δX1 +
√
δX)] + exp(−Ω(δ−1))

= E[f(X)] + exp(−Ω(δ−1)).

J
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5 Cleanup

It is not difficult to complete the analysis of our generator given Proposition 4.1. We begin
by applying Proposition 4.1 iteratively to obtain:

I Lemma 5.1. Let δ > 0 and n, ` be positive integers. Let C be a sufficiently large constant.
For 1 ≤ i ≤ ` let Yi be an independent copy of a family of n exp(−Cδ−1 log(n/δ))-approximate
Gaussians seeded by a pseudorandom generator that fools read once branching programs of
memory Cδ−2 log(n/δ) to within error exp(−Cδ−1 log(n/δ)). Let X be an n dimensional
standard Gaussian. Then for any degree 2 polynomial threshold function f in n variables, we
have that∣∣∣∣∣E[f(X)]− E

[
f

(
(1− δ3)`/2X + δ3/2

∑̀
i=1

(1− δ3)(`−1)/2Yi

)]∣∣∣∣∣ ≤ ` exp(−Ω(δ−1)).

Proof. The proof is by induction on `. The case of ` = 0 is trivial. Assuming that our
Lemma holds for `, applying Proposition 4.1 to the threshold function

g(x) := f

(
(1− δ3)`/2x+ δ3/2

∑̀
i=1

(1− δ3)(`−1)/2Yi

)
,

we find that

E

[
f

(
(1− δ3)(`+1)/2X + δ3/2

`+1∑
i=1

(1− δ4)(`−1)/2Yi

)]

= E

[
f

(
(1− δ3)`/2X + δ3/2

∑̀
i=1

(1− δ4)(`−1)/2Yi

)]
+ exp(−Ω(δ−1))

= E[f(X)] + (`+ 1) exp(−Ω(δ−1)).

This completes the proof. J

Next, we note that when ` is large, the coefficient of X above is small enough that it
should have negligible probability of affecting the sign of the polynomial in question.

I Lemma 5.2. Let δ > 0 and n, ` be positive integers. Let C be a sufficiently large constant.
For 1 ≤ i ≤ ` let Yi be an independent copy of a family of n exp(−Cδ−1 log(n/δ))-approximate
Gaussians seeded by a pseudorandom generator that fools read once branching programs of
memory Cδ−2 log(n/δ) to within error exp(−Cδ−1 log(n/δ)). Let X be an n dimensional
standard Gaussian. Then for any degree 2 polynomial threshold function f in n variables, we
have that∣∣∣∣∣∣E[f(X)]− E

f
∑`

i=1(1− δ3)(`−1)/2Yi√∑`
i=1(1− δ3)`−1

∣∣∣∣∣∣ ≤ ` exp(−Ω(δ−1)) +O((1− δ3)`/18).

Proof. Let

Y :=
∑`

i=1(1− δ3)(`−1)/2Yi√∑`
i=1(1− δ3)`−1

,

and
Y ′ = (1− δ3)`/2X +

√
1− (1− δ3)`Y.
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By Lemma 5.1, it suffices to compare E[f(Y )] with E[f(Y ′)]. To do this, let p be the degree-2
polynomial defining the threshold function f . Consider

E
[
(p(Y )− p(Y ′))2

]
.

We may write this as E[q(X,Y1, . . . , Y`)2] for an appropriate quadratic polynomial q. Letting
X1, . . . , X` be independent standard Gaussians, we have by repeated use of Corollary 3.6
that

E[q(X,Y1, . . . , Y`)2] ≤ (1 + δ5)E[q(X,X1, Y2, . . . , Y`)2]
≤ (1 + δ5)2E[q(X,X1, X2, Y3, . . . , Y`)2]
≤ . . .
≤ (1 + δ5)`E[q(X,X1, . . . , X`)2]

= (1 + δ5)`E

[(
p(X)− p

(
(1− δ3)`/2X1 +

√
1− (1− δ3)`X

))2
]

= O((1− δ3)`/3)|p|22.

The factors of (1 + δ5) are showing up as a very loose approximation to the truth, and are
obtained by noting that∣∣E[q(X,X1, . . . , Xi, Yi+1, . . . , Y`)2]− E[q(X,X1, . . . , Xi−1, Yi, . . . , Y`)2]

∣∣
≤ exp(−Ω(δ−1))EX,Xj ,Yj ,j 6=i[E[q(X,X1, . . . , Xi, Yi+1, . . . , Y`)4]1/2]
≤ δ5E[q(X,X1, . . . , Xi, Yi+1, . . . , Y`)2].

Let K = (1− δ3)`/9|p|2. By Markov’s inequality we have that |q(X,Yi)| ≤ K except with
probability at most O((1−δ3)`/18). Let f±(x) = sgn(p(x)±K). By Lemma 2.2, we have that
|E[f+(X)]−E[f−(X)]| ≤ O(K1/2) = O((1−δ3)`/18). By Lemma 5.1, |E[f±(X)]−E[f±(Y ′)]| ≤
` exp(−Ω(δ−1)). On the other hand, with high probability |p(Y )− p(Y ′)| ≤ K and thus with
high probability

f+(Y ′) ≥ f(Y ) ≥ f−(Y ′).

Therefore,

E[f(Y )] ≤ E[f+(Y ′)] +O((1− δ3)`/18)

≤ E[f+(X)] +O((1− δ3)`/18) + ` exp(−Ω(δ−1))

≤ E[f(X)] +O((1− δ3)`/18) + ` exp(−Ω(δ−1)).

The lower bound follows similarly, and this completes the proof. J

Theorem 1.1 now follows immediately.

Proof. The result follows immediately from Lemma 5.2. We can obtain the stated seed
length by using the generators from Lemma 3.2 and Theorem 3.3. J
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