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Abstract
In this paper, we address the question of whether the recent derandomization results obtained by
the use of the low-degree long code can be extended to other product settings. We consider two
settings: (1) the graph product results of Alon, Dinur, Friedgut and Sudakov [GAFA, 2004] and
(2) the “majority is stablest” type of result obtained by Dinur, Mossel and Regev [SICOMP, 2009]
and Dinur and Shinkar [In Proc. APPROX, 2010] while studying the hardness of approximate
graph coloring.

In our first result, we show that there exists a considerably smaller subgraph of K⊗R3 which
exhibits the following property (shown for K⊗R3 by Alon et al.): independent sets close in size to
the maximum independent set are well approximated by dictators.

The “majority is stablest” type of result of Dinur et al. and Dinur and Shinkar shows that
if there exist two sets of vertices A and B in K⊗R3 with very few edges with one endpoint in A
and another in B, then it must be the case that the two sets A and B share a single influential
coordinate. In our second result, we show that a similar “majority is stablest” statement holds
good for a considerably smaller subgraph of K⊗R3 . Furthermore using this result, we give a
more efficient reduction from Unique Games to the graph coloring problem, leading to improved
hardness of approximation results for coloring.
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1 Introduction

The discovery of the low-degree long code (aka short code) by Barak et al. [2] has over the
last year led to several more efficient inapproximability reductions [2, 5, 9, 13, 15]. The
low-degree long code is a derandomization of the long code in the following sense. Given a
finite field F, the long code of a string x ∈ Fn is the evaluation of every F-valued function on
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Fn at the point x while the degree d long code of of x is the evaluation of every n-variate
polynomial of total degree at most d at the point x. The crucial observation of Barak et al. [2]
was that the optimal testing results for Reed-Muller codes [3, 10] proved that the low-degree
long code could be used as a surrogate for the long code in several inapproximability results.
In this paper, we ask if we can extend this application of low-degree long code to other
product settings. In particular, we prove the following two results. (1) We show that result
due to Alon et al. [1] on the size of maximum independent sets in product graphs can be
derandomized (Theorem 1.2). (2) We show that the “majority is stablest” type of result
obtained by Dinur et al. [7] and Dinur and Shinkar [8] can be derandomized (Theorem 1.4).

1.1 Derandomized graph products
As a first application, we consider the following graph product result due to Alon et al. [1].
Consider the undirected weighted graph K3 on the three vertices V = {0, 1, 2} and edges
weighted as follows: W (f, f ′) = 1/2 iff f ′ 6= f ∈ {0, 1, 2}. Let K⊗R3 be the graph with vertex
set V ⊗R and weights-matrix the R-wise tensor of the matrix W . Clearly, for any i ∈ [R] and
a ∈ {0, 1, 2}, the set Vi,a := {v ∈ V ⊗R : vi = a} is an independent set in K⊗R3 of fractional
size 1/3 since K3 does not have any self loops. We call such an independent set a dictator
for obvious reasons. Alon et al. [1] showed that these are the maximal independent sets in
K⊗R3 and in fact any independent set of size close to the maximum is close to a dictator.

I Theorem 1.1 ([1]). Let A be an independent set in K⊗R3 of size δ3R. Then,
1. δ ≤ 1/3.
2. δ = 1/3 iff A is a dictator.
3. If δ ≥ 1/3 − ε, then A is O(ε)-close to a dictator. That is, there is a dictator A′ such

that |A∆A′| = O(ε3R).

Note that the above graph has 3R vertices. Our first result (Theorem 1.2) shows that
there exists a considerably smaller subgraph G = (V, E) of K⊗R with only 3poly(logR) vertices
that has the same properties. In order to describe the subgraph, it will be convenient to
think of K3 as having vertex set F3 and

W (f, f ′) = Pr
p∈F3,a∈{1,2}

[f ′ = f + a(p2 + 1)].

Let Pr,d be the set of polynomials on r variables over F3 of total degree at most d and
individual degrees of the variables at most 2. Let r and d be two parameters and let R = 3r.
Note that V ⊗R can be identified with Pr,2r, since Pr,2r is the set of all functions from Fr3
to F3. The subgraph G = (V, E) is as follows : V := Pr,2d and the edges are given by the
weights-matrix defined below

W(f, f ′) = Pr
p∈Pr,d,a∈{1,2}

[f ′ = f + a(p2 + 1)].

Note that since Pr,2d is a subspace of dimension rO(d), the size of the vertex set is 3rO(d) ,
which is considerably smaller than 3R for constant d.

I Theorem 1.2. There is a constant d for which the following holds. If A is an independent
set of size δ|V| in G then
1. δ ≤ 1/3.
2. δ = 1/3 iff A is a dictator.
3. If δ ≥ 1/3− ε then A is O(ε)-close to a dictator.
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A crucial element in the proof of Theorem 1.1 is a hypercontractivity theorem for functions
which do not have any heavy Fourier coefficients. Theorem 1.2 is proved by observing that a
similar hypercontractivity theorem also holds good in the low-degree long code setting (see
Lemma 3.4).

1.2 Derandomized “majority is stablest” result
While studying the hardness of approximate graph coloring, Dinur, Mossel and Regev [7]
proved the following “majority is stablest” type of result: if there is a pair of subsets of
vertices in K⊗R3 of sufficiently large size such that the average weight of edges between
them is small, then their indicator functions must have a common influential coordinate.
Subsequently, Dinur and Shinkar [8] obtained the following quantitative improvement to the
above theorem.

I Theorem 1.3 ([8, Theorem 1.3]). For all µ > 0 there exists δ = µO(1) and k = O(log 1/µ)
such that the following holds: For any two functions A,B : {0, 1, 2}R → [0, 1] if

EA > µ, EB > µ, and E
f,f ′

A(f)B(f ′) ≤ δ1

where f is chosen randomly from V ⊗R and f ′ is chosen with probability W⊗R(f, f ′) then

∃x ∈ [R] such that Inf≤kx (A) ≥ δ and Inf≤kx (B) ≥ δ.

Our second result (Theorem 1.4) shows that the above theorem can be derandomized to
obtain a similar result for the subgraph G. For defining influence for real valued functions on
Pr,2d, we note that the characters of Pr,2d are restrictions of characters of FR3 ≡ Pr,2r. So the
definition of influence for functions on FR3 also extends naturally to functions on Pr,2d.

I Theorem 1.4. For all µ > 0 there exists δ = µO(1), k = O(log 1/µ), d = O(log 1/µ) such
that the following holds: For any two functions A,B : Pr,2d → [0, 1] if

EA > µ, EB > µ, and E
f,f ′

A(f)B(f ′) ≤ δ

where f is chosen randomly from Pr,2d, f ′ = f + a(p2 + 1), p are chosen randomly from Pr,d
and a ∈R {1, 2} then

∃x ∈ Fr3 such that Inf≤kx (A) ≥ δ and Inf≤kx (B) ≥ δ.

A similar derandomized “majority is stablest” result in the case of the noisy hypercube was
proved by Barak et al. [2, Theorem 5.6] and they used the Meka-Zuckerman pseudorandom
generators (PRGs) for polynomial threshold functions [14]. Kane and Meka [11] obtained a
quantitative improvement over this derandomization by constructing an improved PRG for
Lipschitz functions. Our setting is slightly more involved, (1) we have a two function version
(ie., A and B) and (2) the underlying graph in K3 and the corresponding noise operator
in the derandomized setting has not necessarily positive eigenvalues. Yet, we manage to
show that a derandomization still holds in this case too (using the Kane-Meka PRG). We
conjecture that our derandomization can be further improved to obtain d = O(log log 1/µ).

1 The hypothesis in the theorem statement of Dinur-Shinkar [8] requires Ef,f ′ A(f)B(f ′) = 0, however it
is easy to check that their theorem also holds good under the weaker hypothesis Ef,f ′ A(f)B(f ′) ≤ δ.
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1.2.1 Application to graph coloring
Using a version of Theorem 1.3 for another base graph on 4 vertices, Dinur and Shinkar
proved a hardness result for graph coloring.

I Definition 1.5 (Label Cover). An instance G = (U, V,E, L,R, {πe}e∈E) of a Label Cover
consists of a bipartite graph (U, V,E) that is right regular along with a projection map
πe : R→ L for every edge e ∈ E. Label Cover is a constraint satisfaction problem where the
vertices in U are the variables taking values in L and vertices in V taking values in R. The
instance is a Unique Games instance if R = L and πe is a permutation for all e ∈ E. Given
a labeling ` : U ∪ V → L ∪R, an edge e = (u, v) is said to be satisfied if πe(`(v)) = `(u).

Dinur and Shinkar gave a reduction from an instance of Label Cover with n vertices,
2-to-1 constraints and label set of size R to a graph of size n4R. Perfectly satisfiable instances
were mapped to 4-colorable graphs. Instances for which any labeling can satisfy only an
s(n) fraction of edges where mapped to graphs which did not have any independent sets of
size poly(s(n)). Since the size of the graph produced by the reduction is exponential in R,
they needed to assume that R = O(logn), to get hardness results. We give a more efficient
reduction using Theorem 1.4 from Label Cover instances for which the projection constraints
have special form. Our reduction is simpler to describe for the case 3-colorable graphs and
starts with Unique Games instances. Hence for getting hardness result, we need to assume a
conjecture similar to the Unique Games Conjecture with specific parameters.

I Conjecture 1.1 ((c(n), s(n), r(n))-UG Conjecture). It is NP-Hard to distinguish between
unique games instances (U, V,E,R,Π) on n vertices and R = Fr(n)

3 from the following cases:
YES Case : There is a labeling and a set S ⊆ V of size (1− c(n))|V | such that all edges
between vertices in S are satisfied.
NO Case : For any labeling, at most s(n) fraction of edges are satisfied.

Khot and Regev [12] proved that the Unique Games Conjecture implies that for any
constants c, s ∈ (0, 1/2) there is a constant r such that (c, s, r)-UG Conjecture is true. We
also require that the constraints of the Unique Games instance are full rank linear maps.

I Definition 1.6 (Linear constraint). A constraint π : R → L is a linear constraint of iff
R = L = Fr3, and π is a linear map of rank r.

The theorem below is obtained by replacing the long code by the low degree long code
of degree d = O(log 1/µ) in the reduction of Dinur and Shinkar. For want of space, the
description of this reduction is deferred to the full version [6, Appendix A].

I Theorem 1.7. There is a reduction from (c, s, r)-Unique Games instances G with n vertices,
label set Fr3 and linear constraints to graphs G of size n3rO(log 1/µ) where µ = poly(s) such that

If G belongs to the YES case of (c, s, r)-UG Conjecture then there is a subgraph of G with
fractional size 1− c that is 3-colorable.
If G belongs to the NO case of (c, s, r)-UG Conjecture then G does not have any independent
sets of fractional size µ.

Due to the improved efficiency of the reduction, we are able to get hardness results
even if the label cover instances have super-polylogarithmic sized label sets of size at most

22O(√log logn) , while the reduction due to Dinur and Shinkar only works if the label set is of
size at most O(logc n) for some constant c. More precisely, suppose the UG conjecture were
true for soundness s(n) and alphabet size R = 3r that satisfy log3R = r = s(n)O(1). Then,
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the result of Dinur and Shinkar rules out polynomial time algorithms that find an independent
set of relative size 1/ poly(log logN). On the other hand, under the same assumption, our
reduction rules out polynomial time algorithms that find an independent set of relative size
1/2poly(log logN).

I Corollary 1.8. Let c, s, r be functions such that r(n) = poly(1/s(n)). Assuming (c, s, r)-UG
Conjecture on instances with linear constraints, given a graph on N vertices which has an
induced subgraph of relative size 1− c that is 3-colorable, no polynomial time algorithm can
find an independent set of fractional size 2− poly(log logN).

We remark that we can improve the conclusion if Theorem 1.4 can be proved even when
d = O(log log 1/µ).

2 Preliminaries

2.1 Low degree polynomials
We will be working over the field F3. Let Pr,d be the set of degree d polynomials on r variables
over F3, with individual variable degrees at most 2. Let Fr := Pr,2r. Note that Fr is the set
of all functions from Fr3 to F3. Fr is a F3-vector space of dimension 3r and Pr,d is a subspace
of dimension rO(d). The Hamming distance between f and g ∈ Fr, denoted by ∆(f, g), is the
number of inputs on which f and g differ. For S ⊆ Fr, define ∆(f, S) := ming∈S ∆(f, g). We
say that f is δ-far from S if ∆(f, S) ≥ δ and f is δ-close to S otherwise. Given f, g,∈ Fr, the
dot product between them is defined as 〈f, g〉 :=

∑
x∈Fr f(x)g(x). For a subspace S ⊆ Fr,

the dual subspace is defined as S⊥ := {g ∈ Fr : ∀f ∈ S, 〈g, f〉 = 0}. The following theorem
relating dual spaces is well known.

I Lemma 2.1. P⊥r,d = Pr,2r−d−1.

We need the following Schwartz-Zippel-like Lemma for degree d polynomials over F3.

I Lemma 2.2 (Schwartz-Zippel lemma [10, Lemma 3.2]). Let f ∈ F3[x1, · · · , xr] be a non-zero
polynomial of degree at most d with individual degrees at most 2. Then Pra∈Fr3 [f(a) 6= 0] ≥
3−d/2.

The following lemma is an easy consequence of Lemma 2.2.

I Lemma 2.3. If p is a uniformly random polynomial from Pr,d then as a string of length
3r over the alphabet F3, p is 3 lfloor(d+1)/2c-wise independent.

2.2 Fourier analysis of functions on subspace of low degree polynomials
I Definition 2.4 (Characters). A character of Pr,d is a function χ : Pr,d → C such that

χ(0) = 1 and ∀f, g ∈ Pr,d, χ(f + g) = χ(f)χ(g).

The following lemma lists the basic properties of characters.

I Lemma 2.5. Let {1, ω, ω2} be the cube roots of unity and for β ∈ Fr, f ∈ Pr,d, χβ(f) :=
ω〈β,f〉, where 〈β, f〉 :=

∑
x∈Fr3

β(x)f(x).
The characters of Pr,d are {χβ : β ∈ Fr}.
For β ∈ P⊥r,d, χβ is the constant 1 function.
For any β, β′ ∈ Fr, χβ = χ′β if and only if β − β′ ∈ P⊥r,d.

STACS 2015
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For any β, let |β| be the size of the set of inputs on which β is non-zero. For any distinct
β, β′ ∈ Fr with |β|, |β′| < 3b(d+1)/2c/2, χβ 6= χ′β since β + β′ /∈ P⊥r,d.
∀β,∃β′ such that β− β′ ∈ P⊥r,d and |β′| = ∆(β,P⊥r,d) (i.e., the constant 0 function is (one
of) the closest function to β′ in P⊥r,d). We call such a β′ a minimum support function for
the coset β + P⊥r,d.
Characters forms an orthonormal basis for the vector space of functions from Pr,d to C,
under the inner product 〈A,B〉 := Ef∈Pr,d

[
A(f)B(f)

]
Any function A : Pr,d → C can be uniquely decomposed as

A(f) =
∑

β∈Λr,d

Â(β)χβ(f) where Â(β) := E
g∈Pr,d

[
A(g)χβ(g)

]
, (2.1)

and Λr,d is the set of minimum support functions, one for each of the cosets in Fr/P⊥r,d,
with ties broken arbitrarily.
Parseval’s identity: For any function A : Pr,d → C,∑

β∈Λr,d

|Â(β)|2 = E
f∈Pr,d

[|A(f)|2]. (2.2)

In particular, if A : Pr,d → {1, ω, ω2},∑
β∈Λr,d

|Â(β)|2 = 1. (2.3)

I Definition 2.6 (Influence). For a function A : Pr,d → C and a number k < 3b(d+1)/2c/2,
the degree k influence of a ∈ Fr3 is defined as

Inf≤ka (A) =
∑

β∈Λr,d:β(a) 6=0 and |β|≤k

|Â(β)|2.

I Definition 2.7 (Dictator). A function A : Pr,d → C is a dictator if there exists x ∈ Fr3 and
Â0, Â1, Â2 ∈ C such that A can be written as A = Â0 + Â1χex + Â2χ2ex where ex : Fr3 → F3
the indicator function for x.

The following lemma which follows from the results of Guruswami et al. [9], will be crucial
for our proofs.

I Lemma 2.8. If α : Fr3 → F3 such that ∆(α,P⊥r,2d) > 3d/2 then∣∣∣∣ E
p∈Pr,d

χα(p2)
∣∣∣∣ ≤ 3−Ω(3d/9).

Proof. By definition,
∣∣Ep∈Pr,d χα(p2)

∣∣ =
∣∣∣Ep∈Pr,d ω

〈α,p2〉
∣∣∣. If α : Fr3 → F3 is such that

∆(α,P⊥r,2d) > 3d/2 then for a random p ∈ Pr,d, 〈α, p2〉 is 3−Ω(3d/9)-close to the uniform
distribution on F3 according to [9, Lemma 3.1 and 3.4]. J
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3 Derandomized K⊗R
3

Alon et al. [1] proved Theorem 1.1 by using the following lemma.

I Lemma 3.1. There is constant K such that the following holds: If A : FR3 → {0, 1} satisfies∑
|α|>1

|Âα|2 ≤ ε and Â0 = δ

then there exists a dictator B : FR3 → {0, 1} such that

‖A−B‖2 ≤
Kε

δ − δ2 − ε
.

The above lemma was proved using the following hypercontractive inequality.

I Lemma 3.2. There is a constant C such that for any function A : FR3 → C with Âα = 0
when |α| > t,

‖A‖4 ≤ Ct‖A‖2.

Our proof of Theorem 1.2 will use a similar lemma for functions on the subspace Pr,2d.

I Lemma 3.3. There is a constant K such that the following holds: If A : Pr,2d → {0, 1}
satisfies ∑

|α|>1

|Âα|2 ≤ ε and Â0 = δ

then there exists a dictator B : Pr,2d → {0, 1} such that

‖A−B‖2 ≤
Kε

δ − δ2 − ε
.

The above lemma follows from hypercontractive inequalities over Pr,2d stated below, in
exactly the same way as Alon et al. proves Lemma 3.1 from Lemma 3.2.

I Lemma 3.4. There is a constant C such that for 4t ≤ 3d−1 and any function A : Pr,2d → C
with Âα = 0 when |α| > t,

‖A‖4 ≤ Ct‖A‖2.

Proof. Follows from Lemma 3.6 and Lemma 3.2. J

I Definition 3.5 (Lift). For a function B : Pr,2d → C with the Fourier decomposition
B =

∑
α∈Λr,d B̂αχα, the lift of B denoted by B′ is a function B′ : Fr → C with the Fourier

decomposition B′ =
∑
α∈Λr,d B̂αχα. In the decomposition of B′, χα’s are functions with

domain Fr.

I Lemma 3.6. If 2kt ≤ 3d−1 and B : Pr,2d → C be a function such that B̂α = 0 when |α| > t

then
‖B‖2k = ‖B′‖2k.

Proof. From the Lemma 2.2 and Lemma 2.1, we have that ∀α ∈ P⊥r,2d \ {0}, |α| > 3d−1. So
if ∃{αi, βi}i∈[k] with |αi|, |βi| ≤ t, then∑

i∈[k]

αi − βi ∈ P⊥r,2d ⇒
∑
i∈[k]

αi − βi = 0. (3.1)

STACS 2015
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This is because
∑
i∈[t] αi − βi has support size at most 2kt < 3d−1. We use this fact to prove

the theorem as follows:

‖B‖2k2k = E
f∈Pr,2d

|B(f)|2k = E
f∈Pr,2d

∏
i∈[k]

B(f)B(f)

=
∑

α1,β1,··· ,αk,βk∈Λn,2d

∏
i∈[k]

B̂αiB̂βi

 E
f∈Pr,2d

∏
i∈[k]

χαi(f)χβi(f) ( from (2.1) )

=
∑

α1,β1,··· ,αk,βk∈Λr,2d∑
i
αi−βi∈P⊥

r,2d

∏
i∈[k]

B̂αiB̂βi

=
∑

α1,β1,··· ,αk,βk∈Λr,2d∑
i
αi−βi=0

∏
i∈[k]

B̂αiB̂βi ( from (3.1) )

=
∑

α1,β1,··· ,αk,βk∈Λr,2d

∏
i∈[k]

B̂αiB̂βi

 E
f∈Fr

∏
i∈[k]

χαi(f)χβi(f)

= E
f∈Fr

∏
i∈[k]

B′(f)B′(f) = E
f∈Fr

|B′(f)|2k = ‖B′‖2k2k

J

3.1 Proof of Theorem 1.2
Proof of 1. For f ∈ V , consider the set {f, f + 1, f + 2} ⊆ V . These sets form a partition
of V and are triangles in the graph. Hence δ ≤ 1/3. J

Proof of 2. Let A : Pr,2d → {0, 1} be the indicator set of the independent set of size δ|V |.
By Parseval’s equation (2.2) and the fact that Â0 = δ, we have that∑

α∈Λr,2d\{0}

|Âα|2 = δ − δ2. (3.2)

Since A is an independent set,

E
p∈Pr,d,a∈F3,f∈Pr,2d

A(f)A(f + a(p2 + 1)) =
∑

α∈Λr,2d

|Âα|2 E
p∈Pr,d,a∈F3

χα(a(p2 + 1)) = 0.

Taking the real parts of the equation on both sides and rearranging, we get

∑
α∈Λr,2d\{0}

|Âα|2Re
(

E
p∈Pr,d

χα(p2 + 1)
)

= −δ2. (3.3)

Let T be a random variable such that Pr[T = α] = |Âα|2/(δ − δ2) and X be the random
variable X(T ) = Re

(
Ep∈Pr,d,a∈F3 χα(a(p2 + 1))

)
. From (3.2) and (3.3), we have that

EX = −δ
1− δ .

Since p is a random degree d polynomial, it is 3d/2-wise independent from Lemma 2.3. So if
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|T | ≤ 3d/2 then∣∣∣∣Re
(

E
p∈Pr,d,a∈F3

χα(a(p2 + 1))
)∣∣∣∣

=

∣∣∣∣∣12Re
((

ω2 − 1
3

)|α|1 (ω − 1
3

)|α|2
+
(
ω − 1

3

)|α|1 (ω2 − 1
3

)|α|2)∣∣∣∣∣ ≤
(

1√
3

)|α|
where |α|a = {x ∈ Fr3 : α(x) = a}.

If |T | > 3d/2, we know from Lemma 2.8 that |X(T )| ≤ 3−Ω(3d/9).
Note that for T with |T | = 1, X(T ) = −1/2. For T with |T | = 2, X(T ) ≥ 0. For T with

|T | ≥ 3, X(T ) ≥ −1
3
√

3 . So if EX = −1/2 then Pr[|T | = 1] = 1. So A is a Boolean valued
function with non zero Fourier coefficients of supports only 0 and 1. Using arguments similar
to Proof of [1, Lemma 2.3], it can be shown that there is an x ∈ Fr3 such that A(f) only
depends on f(x) .

J

Proof of 3. Suppose δ = 1/3−ε. First we show that most of Fourier weights are concentrated
in the first two levels

I Lemma 3.7. ∑
α∈Λr,2d:|α|>1

|Âα|2 ≤ 2ε

Proof. Consider the random variables X and T defined in the Proof of 2. Since δ = 1/3− ε
and since ε < 1/3, EX = −1/2 + ε. Let Y be the random variable X + 1/2. Note that
Y ≥ 0 and when Y > 0, Y ≥ 1/6. Therefore by Markov, Pr [Y > 0] ≤ 6ε and∑

α∈Λr,2d:|α|>1

|Âα|2 ≤ (δ − δ2) Pr [Y > 0] ≤ 2ε.

J

Then we use Lemma 3.3 to obtain the result.
J

4 Derandomized Majority is Stablest

In this section, we prove Theorem 1.4. The graphs described in Theorem 1.4 and Theorem 1.3
can be viewed as Cayley graphs on a suitable group. For the proof, we will need bounds on
the eigenvalues of these Cayley graphs. For a group G, RG denotes the vector space of real
valued functions on G.

I Definition 4.1 (Cayley Operator). For a group G with operation +, an operator M :
RG → RG is a Cayley operator if there is a distribution µ on G such that for any function
A : G→ R,

(MA)(f) = E
η∈µ

A(f + η).

It is easy to see that a character χ : G→ C is an eigenvector of M with eigenvalue Eη∈µ χ(η).

I Definition 4.2. We define the following Cayley operators:
1. For the group F3, let T : RF3 → RF3 be the Cayley operator corresponding to the

distribution µ that is uniform on F3 \ {0}. Let λ be the second largest eigenvalue in
absolute value of T .
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2. For the group Fr, let Tr : RFr → RFr be the Cayley operator corresponding to the
distribution µr that is uniform on {f ∈ Fr : f−1(0) = ∅}. Let λr(α) be the eigenvalue of
Tr corresponding to the eigenvector χα, for α ∈ Fr.

3. For the group Pr,2d, let Tr,d : RPr,2d → RPr,2d be the Cayley operator corresponding
to the distribution µr,2d of choosing a uniformly random element in {p2 + 1,−p2 − 1}
where p ∈ Pr,2d is chosen uniformly at random. Let λr,d(α) be the eigenvalue of Tr,d
corresponding to χα, for α ∈ Fr.

4. For the group Pr,2d, let Sr,d : RPr,2d → RPr,2d be the Cayley operator corresponding to
the distribution of a ·

∏d
i=1(`i−1)(`i−2) where `1, · · · , `d are linearly independent degree

1 polynomials chosen uniformly at random and a is randomly chosen from F3. Let ρr,d(α)
be the eigenvalue of Sr,d corresponding to χα, for α ∈ Fr.

Now we will list some known bounds of the eigenvalues of the above operators. It is easy
to see that λ is a constant < 1. Since FR3 can be identified with Fr, T⊗R can be identified
with Tr. Hence we have the following lemma.

I Lemma 4.3.
|λr(α)| ≤ |λ||α|.

I Lemma 4.4. For α ∈ Λr,2d,

|λr,d(α)|
{

= |λr(α)| if |α| ≤ 3d/2

≤ 3−3C1d otherwise.
(4.1)

Proof. The first case follows from the fact that a random element η according to µr,2d (the
distribution that defines Tr,d) is 3d/2-wise independent (see Lemma 2.3) as a string of length
3r over alphabet F3. The latter case follows from Lemma 2.8. J

We will derive bounds on the eigenvalues of Sr,d using the results of Haramaty et al. [10].
Haramaty et al. analyses the following test for checking whether a polynomial is of degree
2r−2d−1: Choose a random affine subspace S of dimension r−d and check if the polynomial
is of degree 2r− 2d− 1 on S. Note that for any α ∈ Pr,2r−2d−1 and subspace S of dimension
r − d,

∑
x∈S α(x) = 0. Hence this test is equivalent to choosing `1, · · · `d ∈ Pr,1 that are

linearly independent and checking whether 〈α,
∏d
i=1(`i − 1)(`i − 2)〉 6= 0. Haramaty et al.

proved the following lemma.

I Lemma 4.5. There exists constants C1, C2 such that

Pr
`i

[
〈α,

d∏
i=1

(`i − 1)(`i − 2)〉 = 0
]
≤ max

{
1− C1∆(α,Pr,2r−2d−1)

3d , C2

}
where `1, · · · , `i ∈ Pr,1 are random linearly independent polynomials.

I Lemma 4.6. There exists constants C ′1, C ′2 such that, for α ∈ Λr,2d,

1− 2|α|
3d ≤ |ρr,d(α)| ≤ max

{
1− C ′1∆(α,Pr,2r−2d−1)

3d , C ′2

}
(4.2)

Proof. First we will prove the lower bound. By definition

ρr,d(α) = E
`i,a

ωa·
∑

x
α(x)

∏d

i=1
(`i(x)−1)(`i(x)−2).
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For any x in support of α, the probability that
∏d
i=1(`i(x)− 1)(`i(x)− 2) 6= 0 is 1/3d. Hence

by union bound,
∏d
i=1(`i(x)− 1)(`i(x)− 2) = 0 for every x in support of α with probability

1− |α|/3d and when this happens the expectation is 1. Also note that the quantity inside
the expectation has absolute value 1.

For proving the upper bound we will use Lemma 4.5. Let pacc be the probability mentioned
in Lemma 4.5. Then

ρr,d(α) = E
`i,a

ωa〈α,
∏d

i=1
(`i−1)(`i−2)〉 = pacc + 1− pacc

2 (ω + ω2) = 3
2pacc −

1
2 .

From the above equation and Lemma 4.5, the constants C ′1, C ′2 can be obtained. J

I Lemma 4.7. For A,B : Pr,2d → [0, 1], let A′ := Str,dA and similarly define B′. Then

|〈A, Tr,dB〉 − 〈A′, Tr,dB′〉| ≤ 2dt/3d

Proof.

|〈A, Tr,dB〉 − 〈A′, Tr,dB′〉| ≤ |〈A, Tr,dB〉 − 〈A, Tr,dB′〉|
+ |〈A, Tr,dB′〉 − 〈A′, Tr,dB′〉|
=
∣∣〈A− EA, Tr,d(1− Str,d)(B − EB)〉

∣∣
+
∣∣〈Tr,d(1− Str,d)(A− EA), B′ − EB′〉

∣∣
≤ ‖Tr,d(1− Str,d)(B − EB)‖+ ‖Tr,d(1− Str,d)(A− EA)‖
≤ 2td/3d

The last step follows from the fact that the operators Tr,d, (1− Str,d) have the same set
of eigenvectors and the largest eigenvalue in absolute value of Tr,d(1− Str,d) is 2td/3d from
Lemma 4.4 and Lemma 4.6. J

Theorem 1.4 will follow from the following lemma.

I Lemma 4.8. ∀ε > 0,∃k = O(1/ε2), d = O(log(1/ε)) such that the following holds: if
A,B : Pr,2d → [0, 1] then ∃A,B : Fr → [0, 1] such that
1. |EA− EA| , |EB − EB| ≤ ε,
2. For all x ∈ Fr3, k′ ≤ k,

Inf≤k
′

x (A) ≤ Inf≤k
′

x (A) + ε

Inf≤k
′

x (B) ≤ Inf≤k
′

x (B) + ε

3. |〈A, Tr,dB〉 − 〈A, TrB〉| ≤ ε.

Proof of Theorem 1.4. We will show that if Theorem 1.4 is false then Theorem 1.3 is also
false. First using Lemma 4.8 with parameter ε = µO(1), we obtain functions A,B : Fr → [0, 1]
such that
1. EA,EB ≥ µ− ε ,
2. For all x ∈ Fr2, k′ ≤ k,

Inf≤k
′

x (A) ≤ δ + ε and Inf≤k
′

x (B) ≤ δ + ε

3. |〈A, TrB〉| ≤ |〈A, Tr,dB〉|+ ε.

Now applying Theorem 1.3 to the functions A,B, we obtain that |〈A, TrB〉| ≥ δ′, where
δ′ = µO(1). Hence |〈A, Tr,dB〉| ≥ δ′− ε, and we set the parameters δ = δ′− ε, d = O(log 1/µ)
and k = O(log 1/µ).

J
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4.1 Proof of Lemma 4.8
For proving Lemma 4.8, crucially use the following lemma by Kane and Meka [11].

I Lemma 4.9. Let ξ : R → R+ be the function ξ(x) := (max{−x, x− 1, 0})2. For any
parameters k ∈ N and ε ∈ (0, 1), there is a d = O(log(k/ε)) such that the following holds: If
the polynomial P : Fr → R satisfies ‖P‖ ≤ 1 and P̂ (α) = 0 for α ∈ Λr,d such that |α| > k,
then ∣∣∣∣ E

f∈Fr
ξ(P (f))− E

f∈Pr,d
ξ(P (f))

∣∣∣∣ ≤ ε.
I Remark. For proving Lemma 4.9, a generalization of [11, Lemma 4.1] to polynomials of
the form P : {1, ω, ω2}R → R is required. However, we observe that the polynomials we
consider are real-valued P : Fr → R and hence satisfy P̂ (α) = P (−α).

Using this observation, the proof of [11, Lemma 4.1] generalizes to our setting (the
above property is preserved throughout the proof). The result of [11] also requires an
earlier result of Diakonikolas, Gopalana, Jaiswal, Servedio, and Viola [4] on fooling Linear
Threshold functions (LTFs) with sample spaces of bounded independence. This proof also
goes through for Thresholds of real-valued linear functions defined on variables that are
uniformly distributed in {1, ω, ω2}. 2

Proof of Lemma 4.8. Let t = 3d log(10/ε)
2k , and A1 = Str,dA,B1 = Str,dB. Then from

Lemma 4.7

|〈A, Tr,dB〉 − 〈A1, Tr,dB1〉| ≤ 2dt/3d (4.3)

and similarly for B1. Let k be a number < 3d/2 and A2 = Re(A≤k1 ). Using the fact that A1
is real valued,

‖A1 −A2‖ ≤ ‖A1 −A≤k1 ‖ ≤ (1− 2k/3d)t ≤ e−2tk/3d = ε/10 (4.4)

Let A3 : Fr → R be defined as A3 := Re((A≤k1 )′) where (A≤k1 )′ is the lift of A≤k1 . Since a
random degree d polynomial is 3d/2-wise independent,

〈A2, Tr,dB2〉 = 〈A3, TrB3〉 (4.5)

Note that A3 may not be a [0, 1]-valued function. But since A is [0, 1]-valued, so is A1.
Let ξ : R→ R+ be the function ξ(x) := (max{−x, x− 1, 0})2. Notice that Ef ξ ◦A(f) gives
the `22 distance of A from [0, 1]-valued functions. Using Lemma 4.9, for d = O(log(k/ε)),∣∣∣∣ E

f∈Pr,2d
ξ(A2(f))− E

f∈Fr
ξ(A3(f))

∣∣∣∣ ≤ ε/10 (4.6)

and similarly for B2. Hence there exists functions A,B : Fr → [0, 1] such that
1. |EA− EA| ≤ ||A′1 −A|| ≤ ε (similarly for B),
2. For all x ∈ Fr3, k′ ≤ k, Inf≤k

′

x (A) ≤ Inf≤k
′

x (A) + ε (similarly for B),
3. |〈A, Tr,dB〉 − 〈A, TrB〉| ≤ ε.

J

2 Such a function is the sign of a “linear polynomial” of the form
(∑R

i=1 αixi + αixi

)
− θ for θ ∈ R.



I. Dinur, P. Harsha, S. Srinivasan, and G. Varma 287

References
1 Noga Alon, Irit Dinur, Ehud Friedgut, and Benny Sudakov. Graph products, fourier ana-

lysis and spectral techniques. Geometric and Functional Analysis GAFA, 14(5):913–940,
2004.

2 Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and
David Steurer. Making the long code shorter. In Proc. 53th IEEE Symp. on Foundations
of Comp. Science (FOCS), pages 370–379, 2012.

3 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of Reed-Muller codes. In Proc. 51st IEEE Symp. on Founda-
tions of Comp. Science (FOCS), pages 488–497, 2010.

4 Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele
Viola. Bounded independence fools halfspaces. SIAM J. Computing, 39(8):3441–3462, 2010.
(Prelimimary version in 50th FOCS, 2009).

5 Irit Dinur and Venkatesan Guruswami. PCPs via low-degree long code and hardness for
constrained hypergraph coloring. In Proc. 54th IEEE Symp. on Foundations of Comp.
Science (FOCS), pages 340–349, 2013.

6 Irit Dinur, Prahladh Harsha, Srikanth Srinivasan, and Girish Varma. Derandomized graph
product results using the low degree long code. arXiv:1411.3517, 2014.

7 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate
coloring. SIAM J. Computing, 39(3):843–873, 2009. (Preliminary version in 38th STOC,
2006).

8 Irit Dinur and Igor Shinkar. On the conditional hardness of coloring a 4-colorable graph
with super-constant number of colors. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen,
and José D. P. Rolim, editors, Proc. 13th International Workshop on Randomization and
Approximation Techniques in Computer Science (APPROX), volume 6302 of LNCS, pages
138–151. Springer, 2010.

9 Venkat Guruswami, Prahladh Harsha, Johan Håstad, Srikanth Srinivasan, and Girish
Varma. Super-polylogarithmic hypergraph coloring hardness via low-degree long codes.
In Proc. 46th ACM Symp. on Theory of Computing (STOC), pages 614–623, 2014.

10 Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multivariate poly-
nomials over small prime fields. SIAM J. Computing, 42(2):536–562, 2013. (Preliminary
version in 52nd FOCS, 2011).

11 Daniel M. Kane and Raghu Meka. A PRG for Lipschitz functions of polynomials with
applications to sparsest cut. In Proc. 45th ACM Symp. on Theory of Computing (STOC),
pages 1–10, 2013.

12 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
J. Computer and System Sciences, 74(3):335–349, 2008. (Preliminary version in 18th IEEE
Conference on Computational Complexity, 2003).

13 Subhash Khot and Rishi Saket. Hardness of coloring 2-colorable 12-uniform hypergraphs
with 2(logn)Ω(1) colors. In Proc. 55th IEEE Symp. on Foundations of Comp. Science (FOCS),
pages 206–215, 2014.

14 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM J. Computing, 42(3):1275–1301, 2013. (Preliminary Version in 42nd
STOC, 2010).

15 Girish Varma. A note on reducing uniformity in Khot-Saket hypergraph coloring hardness
reductions. arXiv:1408.0262, 2014.

STACS 2015


	Introduction
	Derandomized graph products
	Derandomized ``majority is stablest'' result
	Application to graph coloring


	Preliminaries
	Low degree polynomials
	Fourier analysis of functions on subspace of low degree polynomials

	Derandomized Product K3
	Proof of Theorem 1.2

	Derandomized Majority is Stablest
	Proof of Lemma 4.8


