167,280 research outputs found

    Cooperative surmounting of bottlenecks

    Full text link
    The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines superconductors, charge density waves, and transport processes of macromolecules, to name but a few. The underlying activated processes present the multidimensional extension of the Kramers problem of a single Brownian particle. In comparison to the latter case, however, the dynamics ensuing from the interactions of many coupled units can lead to intriguing novel phenomena that are not present when only a single degree of freedom is involved. In this review we report on a variety of such phenomena that are exhibited by systems consisting of chains of interacting units in the presence of potential barriers. In the first part we consider recent developments in the case of a deterministic dynamics driving cooperative escape processes of coupled nonlinear units out of metastable states. The ability of chains of coupled units to undergo spontaneous conformational transitions can lead to a self-organised escape. The mechanism at work is that the energies of the units become re-arranged, while keeping the total energy conserved, in forming localised energy modes that in turn trigger the cooperative escape. We present scenarios of significantly enhanced noise-free escape rates if compared to the noise-assisted case. The second part deals with the collective directed transport of systems of interacting particles overcoming energetic barriers in periodic potential landscapes. Escape processes in both time-homogeneous and time-dependent driven systems are considered for the emergence of directed motion. It is shown that ballistic channels immersed in the associated high-dimensional phase space are the source for the directed long-range transport

    Surmounting collectively oscillating bottlenecks

    Full text link
    We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal parameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains

    Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations

    Get PDF
    The motion of pedestrians is subject to a wide range of influences and exhibits a rich phenomenology. To enable precise measurement of the density and velocity we use an alternative definition using Voronoi diagrams which exhibits smaller fluctuations than the standard definitions. This method permits examination on scales smaller than the pedestrians. We use this method to investigate the spatial and temporal variation of the observables at bottlenecks. Experiments were performed with 180 test subjects and a wide range of bottleneck parameters. The anomalous flow through short bottlenecks and non-stationary states present with narrow bottlenecks are analysed

    Restricted trees: simplifying networks with bottlenecks

    Get PDF
    Suppose N is a phylogenetic network indicating a complicated relationship among individuals and taxa. Often of interest is a much simpler network, for example, a species tree T, that summarizes the most fundamental relationships. The meaning of a species tree is made more complicated by the recent discovery of the importance of hybridizations and lateral gene transfers. Hence it is desirable to describe uniform well-defined procedures that yield a tree given a network N. A useful tool toward this end is a connected surjective digraph (CSD) map f from N to N' where N' is generally a much simpler network than N. A set W of vertices in N is "restricted" if there is at most one vertex from which there is an arc into W, thus yielding a bottleneck in N. A CSD map f from N to N' is "restricted" if the inverse image of each vertex in N' is restricted in N. This paper describes a uniform procedure that, given a network N, yields a well-defined tree called the "restricted tree" of N. There is a restricted CSD map from N to the restricted tree. Many relationships in the tree can be proved to appear also in N.Comment: 17 pages, 2 figure
    corecore