36,974 research outputs found

    Bootstrap for neural model selection

    Full text link
    Bootstrap techniques (also called resampling computation techniques) have introduced new advances in modeling and model evaluation. Using resampling methods to construct a series of new samples which are based on the original data set, allows to estimate the stability of the parameters. Properties such as convergence and asymptotic normality can be checked for any particular observed data set. In most cases, the statistics computed on the generated data sets give a good idea of the confidence regions of the estimates. In this paper, we debate on the contribution of such methods for model selection, in the case of feedforward neural networks. The method is described and compared with the leave-one-out resampling method. The effectiveness of the bootstrap method, versus the leave-one-out methode, is checked through a number of examples.Comment: A la suite de la conf\'{e}rence ESANN 200

    Forecasting realized volatility models:the benefits of bagging and nonlinear specifications

    Get PDF
    We forecast daily realized volatilities with linear and nonlinear models and evaluate the benefits of bootstrap aggregation (bagging) in producing more precise forecasts. We consider the linear autoregressive (AR) model, the Heterogeneous Autoregressive model (HAR), and a non-linear HAR model based on a neural network specification that allows for logistic transition effects (NNHAR). The models and the bagging schemes are applied to the realized volatility time series of the S&P500 index from 3-Jan-2000 through 30-Dec-2005. Our main findings are: (1) For the HAR model, bagging successfully averages over the randomness of variable selection; however, when the NN model is considered, there is no clear benefit from using bagging; (2) including past returns in the models improves the forecast precision; and (3) the NNHAR model outperforms the linear alternatives.

    Wavelet Neural Networks: A Practical Guide

    Get PDF
    Wavelet networks (WNs) are a new class of networks which have been used with great success in a wide range of application. However a general accepted framework for applying WNs is missing from the literature. In this study, we present a complete statistical model identification framework in order to apply WNs in various applications. The following subjects were thorough examined: the structure of a WN, training methods, initialization algorithms, variable significance and variable selection algorithms, model selection methods and finally methods to construct confidence and prediction intervals. In addition the complexity of each algorithm is discussed. Our proposed framework was tested in two simulated cases, in one chaotic time series described by the Mackey-Glass equation and in three real datasets described by daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results have shown that the proposed algorithms produce stable and robust results indicating that our proposed framework can be applied in various applications

    Learning by Asking Questions

    Full text link
    We introduce an interactive learning framework for the development and testing of intelligent visual systems, called learning-by-asking (LBA). We explore LBA in context of the Visual Question Answering (VQA) task. LBA differs from standard VQA training in that most questions are not observed during training time, and the learner must ask questions it wants answers to. Thus, LBA more closely mimics natural learning and has the potential to be more data-efficient than the traditional VQA setting. We present a model that performs LBA on the CLEVR dataset, and show that it automatically discovers an easy-to-hard curriculum when learning interactively from an oracle. Our LBA generated data consistently matches or outperforms the CLEVR train data and is more sample efficient. We also show that our model asks questions that generalize to state-of-the-art VQA models and to novel test time distributions

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    No Spare Parts: Sharing Part Detectors for Image Categorization

    Get PDF
    This work aims for image categorization using a representation of distinctive parts. Different from existing part-based work, we argue that parts are naturally shared between image categories and should be modeled as such. We motivate our approach with a quantitative and qualitative analysis by backtracking where selected parts come from. Our analysis shows that in addition to the category parts defining the class, the parts coming from the background context and parts from other image categories improve categorization performance. Part selection should not be done separately for each category, but instead be shared and optimized over all categories. To incorporate part sharing between categories, we present an algorithm based on AdaBoost to jointly optimize part sharing and selection, as well as fusion with the global image representation. We achieve results competitive to the state-of-the-art on object, scene, and action categories, further improving over deep convolutional neural networks
    corecore