3 research outputs found

    A sequential handwriting recognition model based on a dynamically configurable CRNN

    Get PDF
    Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods

    Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts

    Get PDF
    Offline Arabic Handwriting Recognition (OAHR) has recently become instrumental in the areas of pattern recognition and image processing due to its application in several fields, such as office automation and document processing. However, OAHR continues to face several challenges, including the high variability of the Arabic script and its intrinsic characteristics such as cursiveness, ligatures, and diacritics, the unlimited variation in human handwriting, and the lack of large public databases. In this paper, we have introduced a novel context-aware model based on deep neural networks to address the challenges of recognizing offline handwritten Arabic text, including isolated digits, characters, and words. Specifically, we have proposed a supervised Convolutional Neural Network (CNN) model that contextually extracts optimal features and employs batch normalization and dropout regularization parameters to prevent overfitting and further enhance its generalization performance when compared to conventional deep learning models. We employed numerous deep stacked-convolutional layers to design the proposed Deep CNN (DCNN) architecture. The proposed model was extensively evaluated, and it was observed to achieve excellent classification accuracy when compared to the existing state-of-the-art OAHR approaches on a diverse set of six benchmark databases, including MADBase (Digits), CMATERDB (Digits), HACDB (Characters), SUST-ALT (Digits), SUST-ALT (Characters), and SUST-ALT (Names). Further comparative experiments were conducted on the respective databases using the pre-trained VGGNet-19 and Mobile-Net models; additionally, generalization capabilities experiments on another language database (i.e., MNIST English Digits) were conducted, which showed the superiority of the proposed DCNN model
    corecore