754 research outputs found

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Utilizing Data Mining Techniques and Ensemble Learning to Predict Development of Surgical Site Infections in Gynecologic Cancer Patients

    Get PDF
    Surgical site infections are costly to both patients and hospitals, increase patient mortality, and are the most common form of a hospital acquired infection. Gynecological cancer surgery patients are already at higher risk of developing an infection due to the suppression of their immune system. This research leverages popular data mining techniques to create a prediction model to identify high risk patients. Implemented techniques include logistic regression, naive Bayes, recursive partitioning and regression trees, random forest, feed forward neural network, k-nearest neighbor, and support vector machines with linear kernel. Weighted stacked generalization was implemented to improve upon the individual base level model’s performance. The chosen meta level classifiers were support vector machines with linear kernel, logistic regression, and k-nearest neighbor. The result is a model that identifies high-risk patients immediately following a surgical procedure with an AUC of 0.6864, accuracy of 0.6744, sensitivity of 0.7, and specificity of 0.6728

    Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics

    Get PDF
    In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance data learning is of great importance and challenge in many real applications. Dealing with a minority class normally needs new concepts, observations and solutions in order to fully understand the underlying complicated models. We try to systematically review and solve this special learning task in this dissertation.We propose a new ensemble learning framework—Diversified Ensemble Classifiers for Imbal-anced Data Learning (DECIDL), based on the advantages of existing ensemble imbalanced learning strategies. Our framework combines three learning techniques: a) ensemble learning, b) artificial example generation, and c) diversity construction by reversely data re-labeling. As a meta-learner, DECIDL utilizes general supervised learning algorithms as base learners to build an ensemble committee. We create a standard benchmark data pool, which contains 30 highly skewed sets with diverse characteristics from different domains, in order to facilitate future research on imbalance data learning. We use this benchmark pool to evaluate and compare our DECIDL framework with several ensemble learning methods, namely under-bagging, over-bagging, SMOTE-bagging, and AdaBoost. Extensive experiments suggest that our DECIDL framework is comparable with other methods. The data sets, experiments and results provide a valuable knowledge base for future research on imbalance learning. We develop a simple but effective artificial example generation method for data balancing. Two new methods DBEG-ensemble and DECIDL-DBEG are then designed to improve the power of imbalance learning. Experiments show that these two methods are comparable to the state-of-the-art methods, e.g., GSVM-RU and SMOTE-bagging. Furthermore, we investigate learning on imbalanced data from a new angle—active learning. By combining active learning with the DECIDL framework, we show that the newly designed Active-DECIDL method is very effective for imbalance learning, suggesting the DECIDL framework is very robust and flexible.Lastly, we apply the proposed learning methods to a real-world bioinformatics problem—protein methylation prediction. Extensive computational results show that the DECIDL method does perform very well for the imbalanced data mining task. Importantly, the experimental results have confirmed our new contributions on this particular data learning problem

    Classification Problem in Imbalanced Datasets

    Get PDF
    Classification is a data mining task. It aims to extract knowledge from large datasets. There are two kinds of classification. The first one is known as complete classification, and it is applied to balanced datasets. However, when it is applied to imbalanced ones, it is called partial classification or a problem of classification in imbalanced datasets, which is a fundamental problem in machine learning, and it has received much attention. Considering the importance of this issue, a large amount of techniques have been proposed trying to address this problem. These proposals can be divided into three levels: the algorithm level, the data level, and the hybrid level. In this chapter, we will present the classification problem in imbalanced datasets, its domains of application, its appropriate measures of performances, and its approaches and techniques

    Class prediction for high-dimensional class-imbalanced data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance.</p> <p>Results</p> <p>Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers.</p> <p>Conclusions</p> <p>Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class-imbalanced data are exacerbated when dealing with high-dimensional data. Researchers using class-imbalanced data should be careful in assessing the predictive accuracy of the classifiers and, unless the class imbalance is mild, they should always use an appropriate method for dealing with the class imbalance problem.</p

    A balanced iterative random forest for gene selection from microarray data

    Get PDF
    Background: The wealth of gene expression values being generated by high throughput microarray technologies leads to complex high dimensional datasets. Moreover, many cohorts have the problem of imbalanced classes where the number of patients belonging
    corecore