2,524 research outputs found

    A survey of cost-sensitive decision tree induction algorithms

    Get PDF
    The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field

    Combination of linear classifiers using score function -- analysis of possible combination strategies

    Full text link
    In this work, we addressed the issue of combining linear classifiers using their score functions. The value of the scoring function depends on the distance from the decision boundary. Two score functions have been tested and four different combination strategies were investigated. During the experimental study, the proposed approach was applied to the heterogeneous ensemble and it was compared to two reference methods -- majority voting and model averaging respectively. The comparison was made in terms of seven different quality criteria. The result shows that combination strategies based on simple average, and trimmed average are the best combination strategies of the geometrical combination

    The Impacts of Machine Learning in Financial Crisis Prediction

    Get PDF
    The most complicated and expected issue to be handled in corporate firms, small-scale businesses, and investors’ even governments are financial crisis prediction. To this effect, it was of interest to us to investigate the current impact of the newly employed technique that is machine learning (ML) to handle this menace in all spheres of business both private and public. The study uses systematic literature assessment to study the impact of ML in financial crisis prediction. From the selected works of literature, we have been able to establish the important role play by this method in the prediction of bankruptcy and creditworthiness that was not handled appropriately by others method. Also, machine learning helps in data handling, data privacy, and confidentiality. This study presents a leading approach to achieving financial growth and plasticity in corporate organizations. We, therefore, recommend a real-time study to investigate the impact of ML in FCP. &nbsp

    CMA – a comprehensive Bioconductor package for supervised classification with high dimensional data

    Get PDF
    For the last eight years, microarray-based class prediction has been a major topic in statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory results or may even be inapplicable in the p > n setting where the number of predictors by far exceeds the number of observations, hence the term “ill-posed-problem”. Careful model selection and evaluation satisfying accepted good-practice standards is a very complex task for inexperienced users with limited statistical background or for statisticians without experience in this area. The multiplicity of available methods for class prediction based on high-dimensional data is an additional practical challenge for inexperienced researchers. In this article, we introduce a new Bioconductor package called CMA (standing for “Classification for MicroArrays”) for automatically performing variable selection, parameter tuning, classifier construction, and unbiased evaluation of the constructed classifiers using a large number of usual methods. Without much time and effort, users are provided with an overview of the unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation framework underlying CMA can also be beneficial in statistical research for comparison purposes, for instance if a new classifier has to be compared to existing approaches. CMA is a user-friendly comprehensive package for classifier construction and evaluation implementing most usual approaches. It is freely available from the Bioconductor website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html

    Improvement of alzheimer disease diagnosis accuracy using ensemble methods

    Get PDF
    Nowadays, there is a significant increase in the medical data that we should take advantage of that. The application of the machine learning via the data mining processes, such as data classification depends on using a single classification algorithm or those complained as ensemble models. The objective of this work is to improve the classification accuracy of previous results for Alzheimer disease diagnosing. The Decision Tree algorithm with three types of ensemble methods combined, which are Boosting, Bagging and Stacking. The clinical dataset from the Open Access Series of Imaging Studies (OASIS) was used in the experiments. The experimental results of the proposed approach were better than the previous work results. Where the Random Forest (Bagging) achieved the highest accuracy among all algorithms with 90.69%, while the lowest one was Stacking with 79.07%. All these results generated in this paper are higher in accuracy than that done before

    CMA – a comprehensive Bioconductor package for supervised classification with high dimensional data

    Get PDF
    For the last eight years, microarray-based class prediction has been a major topic in statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory results or may even be inapplicable in the p > n setting where the number of predictors by far exceeds the number of observations, hence the term “ill-posed-problem”. Careful model selection and evaluation satisfying accepted good-practice standards is a very complex task for inexperienced users with limited statistical background or for statisticians without experience in this area. The multiplicity of available methods for class prediction based on high-dimensional data is an additional practical challenge for inexperienced researchers. In this article, we introduce a new Bioconductor package called CMA (standing for “Classification for MicroArrays”) for automatically performing variable selection, parameter tuning, classifier construction, and unbiased evaluation of the constructed classifiers using a large number of usual methods. Without much time and effort, users are provided with an overview of the unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation framework underlying CMA can also be beneficial in statistical research for comparison purposes, for instance if a new classifier has to be compared to existing approaches. CMA is a user-friendly comprehensive package for classifier construction and evaluation implementing most usual approaches. It is freely available from the Bioconductor website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357
    • …
    corecore