15 research outputs found

    Boosted Bellman Residual Minimization Handling Expert Demonstrations

    No full text
    International audienceThis paper addresses the problem of batch Reinforcement Learning with Expert Demonstrations (RLED). In RLED, the goal is to find an optimal policy of a Markov Decision Process (MDP), using a data set of fixed sampled transitions of the MDP as well as a data set of fixed expert demonstrations. This is slightly different from the batch Reinforcement Learning (RL) framework where only fixed sampled transitions of the MDP are available. Thus, the aim of this article is to propose algorithms that leverage those expert data. The idea proposed here differs from the Approximate Dynamic Programming methods in the sense that we minimize the Optimal Bellman Residual (OBR), where the minimization is guided by constraints defined by the expert demonstrations. This choice is motivated by the the fact that controlling the OBR implies controlling the distance between the estimated and optimal quality functions. However, this method presents some difficulties as the criterion to minimize is non-convex, non-differentiable and biased. Those difficulties are overcome via the embedding of distributions in a Reproducing Kernel Hilbert Space (RKHS) and a boosting technique which allows obtaining non-parametric algorithms. Finally, our algorithms are compared to the only state of the art algorithm, Approximate Policy Iteration with Demonstrations (APID) algorithm, in different experimental settings

    Deep Q-learning from Demonstrations

    Full text link
    Deep reinforcement learning (RL) has achieved several high profile successes in difficult decision-making problems. However, these algorithms typically require a huge amount of data before they reach reasonable performance. In fact, their performance during learning can be extremely poor. This may be acceptable for a simulator, but it severely limits the applicability of deep RL to many real-world tasks, where the agent must learn in the real environment. In this paper we study a setting where the agent may access data from previous control of the system. We present an algorithm, Deep Q-learning from Demonstrations (DQfD), that leverages small sets of demonstration data to massively accelerate the learning process even from relatively small amounts of demonstration data and is able to automatically assess the necessary ratio of demonstration data while learning thanks to a prioritized replay mechanism. DQfD works by combining temporal difference updates with supervised classification of the demonstrator's actions. We show that DQfD has better initial performance than Prioritized Dueling Double Deep Q-Networks (PDD DQN) as it starts with better scores on the first million steps on 41 of 42 games and on average it takes PDD DQN 83 million steps to catch up to DQfD's performance. DQfD learns to out-perform the best demonstration given in 14 of 42 games. In addition, DQfD leverages human demonstrations to achieve state-of-the-art results for 11 games. Finally, we show that DQfD performs better than three related algorithms for incorporating demonstration data into DQN.Comment: Published at AAAI 2018. Previously on arxiv as "Learning from Demonstrations for Real World Reinforcement Learning

    Self-Imitation Advantage Learning

    Get PDF
    Self-imitation learning is a Reinforcement Learning (RL) method that encourages actions whose returns were higher than expected, which helps in hard exploration and sparse reward problems. It was shown to improve the performance of on-policy actor-critic methods in several discrete control tasks. Nevertheless, applying self-imitation to the mostly action-value based off-policy RL methods is not straightforward. We propose SAIL, a novel generalization of self-imitation learning for off-policy RL, based on a modification of the Bellman optimality operator that we connect to Advantage Learning. Crucially, our method mitigates the problem of stale returns by choosing the most optimistic return estimate between the observed return and the current action-value for self-imitation. We demonstrate the empirical effectiveness of SAIL on the Arcade Learning Environment, with a focus on hard exploration games.Comment: AAMAS 202
    corecore