6,372 research outputs found
Interstellar dust in the BOOMERanG maps
Interstellar dust (ISD) emission is present in the mm-wave maps obtained by the BOOMERanG experiment at intermediate and high Galactic latitudes. We find that, while being sub-dominant at the lower frequencies (90,150, 240 GHz), thermal emission from ISD is dominant at 410 GHz, and is well correlated with the IRAS map at 100 µm. We find also that the angular power spectrum of ISD fluctuations at 410 GHz is a power law, and its level is negligible with respect to the angular power spectrum of the Cosmic Microwave Background (CMB) at 90 and 150 GHz
Constraining Quintessence with the New CMB Data
The CMB data recently released by BOOMERANG and MAXIMA suggest that the
anisotropy spectrum has a third peak in the range 800<l_3<900. A combination of
this result with constraints from large-scale structure permit us to
differentiate between different quintessence models. In particular, we find
that inverse power law models with power \alpha >1 are disfavoured. Models with
more than 5% quintessence before last scattering require a spectral index
greater than 1. These constraints are compared with supernovae observations. We
also show that the CMB alone now provides strong evidence for an accelerating
universe.Comment: 5 pages, 5 figures, replaced with version which appears in journal.
Discussion on supernovae bounds and references adde
The Quintessential CMB, Past & Future
The past, present and future of cosmic microwave background (CMB) anisotropy
research is discussed, with emphasis on the Boomerang and Maxima balloon
experiments. These data are combined with large scale structure (LSS)
information and high redshift supernova (SN1) observations to explore the
inflation-based cosmic structure formation paradigm. Here we primarily focus on
a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot},
Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and
experimental variables, we find the current CMB+LSS+SN1 data gives
Omega_{tot}=1.04\pm 0.05, consistent with (non-baroque) inflation theory.
Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s
=1.03 \pm 0.07. The CDM density, omega_{cdm}=0.17\pm 0.02, is in the expected
range, but the baryon density, omega_b=0.030\pm 0.004, is slightly larger than
the current nucleosynthesis estimate. Substantial dark energy is inferred,
Omega_Q\approx 0.68\pm 0.05, and CMB+LSS Omega_Q values are compatible with the
independent SN1 estimates. The dark energy equation of state, parameterized by
a quintessence-field pressure-to-density ratio w_Q, is not well determined by
CMB+LSS (w_Q<-0.3 at 95%CL), but when combined with SN1 the resulting w_Q<-0.7
limit is quite consistent with the w_Q=-1 cosmological constant case. Though
forecasts of statistical errors on parameters for current and future
experiments are rosy, rooting out systematic errors will define the true
progress.Comment: 14 pages, 3 figs., in Proc. CAPP-2000 (AIP), CITA-2000-6
ℓ-space spectroscopy of the Cosmic Microwave Background with the BOOMERanG experiment
The BOOMERanG experiment has recently produced detailed maps of the Cosmic Microwave Background, where sub-horizon structures are resolved with good signal to noise ratio. A power spectrum (spherical harmonics) analysis of the maps detects three peaks, at multipoles ℓ = (213_(-13)^(+10)),(541_(-32)^(+20))(845_(-25)^(+12)). In this paper we discuss the data analysis and the implications of these results for cosmology
Evidence against or for topological defects in the BOOMERanG data ?
The recently released BOOMERanG data was taken as ``contradicting topological
defect predictions''. We show that such a statement is partly misleading.
Indeed, the presence of a series of acoustic peaks is perfectly compatible with
a non-negligible topological defects contribution. In such a mixed perturbation
model (inflation and topological defects) for the source of primordial
fluctuations, the natural prediction is a slightly lower amplitude for the
Doppler peaks, a feature shared by many other purely inflationary models. Thus,
for the moment, it seems difficult to rule out these models with the current
data.Comment: 4 pages, 1 figure. Some changes following extraordinarily slow
referee Reports and new data. Main results unchanged (sorry
From Equivalence Principles to Cosmology: Cosmic Polarization Rotation, CMB Observation, Neutrino Number Asymmetry, Lorentz Invariance and CPT
In this paper, we review the approach leading to cosmic polarization rotation
observation and present the current status with an outlook. In the study of the
relations among equivalence principles, we found that long-range
pseudoscalar-photon interaction is allowed. Pseudoscalar-photon interaction
would induce a rotation of linear polarization of electromagnetic wave
propagating with cosmological/astrophysical distance. In 2002, DASI
successfully observed the polarization of the cosmological microwave background
radiation. In 2003, WMAP observed the correlation of polarization with
temperature anisotropy at more than 10 sigma in the cosmological microwave
background. From this high polarization-temperature correlation in WMAP
observation, we put a limit of 0.1 rad on the rotation of linear polarization
of cosmological microwave background (CMB) propagation. Pseudoscalar-photon
interaction is proportional to the gradient of the pseudoscalar field. From
phenomenological point of view, this gradient could be neutrino number
asymmetry current, other density current, or a constant vector. In these
situations, Lorentz invariance or CPT may or may not effectively be violated.
In this paper, we review and compile various results. Better accuracy in CMB
polarization observation is expected from PLANCK mission to be launched next
year. A dedicated CMB polarization observer in the future would probe this
fundamental issue more deeply.Comment: 9 pages, 2 figures, a few references with corresponding text change
added in this version, invited talk given in VIII Asia-Pacific International
Conference on Gravitation and Astophysics (ICGA8), August 29 - September 1,
2007, Nara Women's University, Japan, submitted to Progress of Theoretical
Physics Supplemen
Looking for a varying in the Cosmic Microwave Background
We perform a likelihood analysis of the recently released BOOMERanG and
MAXIMA data, allowing for the possibility of a time-varying fine-structure
constant. We find that in general this data prefers a value of that
was smaller in the past (which is in agreement with measurements of
from quasar observations). However, there are some interesting degeneracies in
the problem which imply that strong statements about can not be made
using this method until independent accurate determinations of
and are available.
We also show that a preferred lower value of comes mainly from the
data points around the first Doppler peak, whereas the main effect of the
high- data points is to increase the preferred value for
(while also tightening the constraints on and ). We comment on
some implications of our results.Comment: 15 pages; submitted to Phys. Rev.
Generalized Chaplygin Gas Model: Dark Energy - Dark Matter Unification and CMBR Constraints
The generalized Chaplygin gas (GCG) model allows for an unified description
of the recent accelerated expansion of the Universe and the evolution of energy
density perturbations. This dark energy - dark matter unification is achieved
through an exotic background fluid whose equation of state is given by , where is a positive constant and .
Stringent constraints on the model parameters can be obtained from recent WMAP
and BOOMERanG bounds on the locations of the first few peaks and troughs of the
Cosmic Microwave Background Radiation (CMBR) power spectrum as well as SNe Ia
data.Comment: 9 pages, 2 figures; essay selected for an honorable mention by the
Gravity Research Foundation, 200
Symmetry breaking through a sequence of transitions in a driven diffusive system
In this work we study a two species driven diffusive system with open
boundaries that exhibits spontaneous symmetry breaking in one dimension. In a
symmetry broken state the currents of the two species are not equal, although
the dynamics is symmetric. A mean field theory predicts a sequence of two
transitions from a strongly symmetry broken state through an intermediate
symmetry broken state to a symmetric state. However, a recent numerical study
has questioned the existence of the intermediate state and instead suggested a
single discontinuous transition. In this work we present an extensive numerical
study that supports the existence of the intermediate phase but shows that this
phase and the transition to the symmetric phase are qualitatively different
from the mean-field predictions.Comment: 19 pages, 12 figure
- …