21 research outputs found

    Rigidity theory for matroids

    Get PDF
    This is the author's accepted manuscript.Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint frameworks in Rd in terms of the structure of the underlying graph G. The goal of this article is to broaden the foundations of combinatorial rigidity theory by replacing G with an arbitrary representable matroid M. The ideas of rigidity independence and parallel independence, as well as Laman's and Recski's combinatorial characterizations of 2-dimensional rigidity for graphs, can naturally be extended to this wider setting. As we explain, many of these fundamental concepts really depend only on the matroid associated with G (or its Tutte polynomial), and have little to do with the special nature of graphic matroids or the field R. Our main result is a “nesting theorem” relating the various kinds of independence. Immediate corollaries include generalizations of Laman's Theorem, as well as the equality of 2-rigidity and 2-parallel independence. A key tool in our study is the space of photos of M, a natural algebraic variety whose irreducibility is closely related to the notions of rigidity independence and parallel independence. The number of points on this variety, when working over a finite field, turns out to be an interesting Tutte polynomial evaluation

    Stable sets versus independent sets

    Get PDF
    Let G=(V, E) be a graph and let L(G) be the set of stable sets of G. The matroidal number of G, denoted by m(G), is the smallest integer m such that L(G)=J1∪J2∪⋯∪Jm for some matroids Mi=(V,Ji)(i=1,2,...,m). We characterize the graphs of matroidal number at most m for all m≥1. For m≤3, we show that the graphs of matroidal number at most m can be characterized by excluding finitely many induced subgraphs. We also consider a similar problem which replaces \u27union\u27 by \u27intersection\u27. © 1993

    Two Studies in Representation of Signals

    Get PDF
    The thesis consists of two parts. In the first part deals with a multi-scale approach to vector quantization. An algorithm, dubbed reconstruction trees, is proposed and analyzed. Here the goal is parsimonious reconstruction of unsupervised data; the algorithm leverages a family of given partitions, to quickly explore the data in a coarse-to-fine multi-scale fashion. The main technical contribution is an analysis of the expected distortion achieved by the proposed algorithm, when the data are assumed to be sampled from a fixed unknown probability measure. Both asymptotic and finite sample results are provided, under suitable regularity assumptions on the probability measure. Special attention is devoted to the case in which the probability measure is supported on a smooth sub-manifold of the ambient space, and is absolutely continuous with respect to the Riemannian measure of it; in this case asymptotic optimal quantization is well understood and a benchmark for understanding the results is offered. The second part of the thesis deals with a novel approach to Graph Signal Processing which is based on Matroid Theory. Graph Signal Processing is the study of complex functions of the vertex set of a graph, based on the combinatorial Graph Laplacian operator of the underlying graph. This naturally gives raise to a linear operator, that to many regards resembles a Fourier transform, mirroring the graph domain into a frequency domain. On the one hand this structure asymptotically tends to mimic analysis on locally compact groups or manifolds, but on the other hand its discrete nature triggers a whole new scenario of algebraic phenomena. Hints towards making sense of this scenario are objects that already embody a discrete nature in continuous setting, such as measures with discrete support in time and frequency, also called Dirac combs. While these measures are key towards formulating sampling theorems and constructing wavelet frames in time-frequency Analysis, in the graph-frequency setting these boil down to distinguished combinatorial objects, the so called Circuits of a matroid, corresponding to the Fourier transform operator. In a particularly symmetric case, corresponding to Cayley graphs of finite abelian groups, the Dirac combs are proven to completely describe the so called lattice of cyclic flats, exhibiting the property of being atomistic, among other properties. This is a strikingly concise description of the matroid, that opens many questions concerning how this highly regular structure relaxes into more general instances. Lastly, a related problem concerning the combinatorial interplay between Fourier operator and its Spectrum is described, provided with some ideas towards its future development

    Tropical varieties, maps and gossip

    Get PDF
    Tropical geometry is a relatively new field of mathematics that studies the tropicalization map: a map that assigns a certain type of polyhedral complex, called a tropical variety, to an embedded algebraic variety. In a sense, it translates algebraic geometric statements into combinatorial ones. An interesting feature of tropical geometry is that there does not exist a good notion of morphism, or map, between tropical varieties that makes the tropicalization map functorial. The main part of this thesis studies maps between different classes of tropical varieties: tropical linear spaces and tropicalizations of embedded unirational varieties. The first chapter is a concise introduction to tropical geometry. It collects and proves the main theorems. None of these results are new. The second chapter deals with tropicalizations of embedded unirational varieties. We give sufficient conditions on such varieties for there to exist a (not necessarily injective) parametrization whose naive tropicalization is surjective onto the associated tropical variety. The third chapter gives an overview of the algebra related to tropical linear spaces. Where fields and vector spaces are the central objects in linear algebra, so are semifields and modules over semifields central to tropical linear algebra and the study of tropical linear spaces. Most results in this chapter are known in some form, but scattered among the available literature. The main purpose of this chapter is to collect these results and to determine the algebraic conditions that suffice to give linear algebra over the semifield a familiar feel. For example, under which conditions are varieties cut out by linear polynomials closed under addition and scalar multiplication? The fourth chapter comprises the biggest part of the thesis. The techniques used are a combination of tropical linear algebra and matroid theory. Central objects are the valuated matroids introduced by Andreas Dress and Walter Wenzl. Among other things the chapter contains a classification of functions on a tropical linear space whose cycles are tropical linear subspaces, extending an old result on elementary extensions of matroids by Henry Crapo. It uses Mikhalkin’s concept of a tropical modification to define the morphisms in a category whose objects are all tropical linear spaces. Finally, we determine the structure of an open submonoid of the morphisms from affine 2-space to itself as a polyhedral complex. Finally, the fifth and last chapter is only indirectly related to maps. It studies a certain monoid contained in the tropicalization of the orthogonal group: the monoid that is generated by the distance matrices under tropical matrix multiplication (i.e. where addition is replaced by minimum, and multiplication by addition). This monoid generalizes a monoid that underlies the well-known gossip problem, to a setting where information is transmitted only with a certain degree accuracy. We determine this so-called gossip monoid for matrices up to size 4, and prove that in general it is a polyhedral monoid of dimension equal to that of the orthogonal group

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore