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A bouquet of matroids is a combinatorial structure that generalizes the properties of matroids.
Given an independence system %, there exist several bouquets of matroids having the same family
$ of independent sets. We show that the collection of these geometries forms in general a meet
semi-lattice and, in some cases, a lattice (for instance, when . is the family of the stable sets in
a graph). Moreover, one of the bouquets that correspond to the highest elements in the meet
semi-lattice provides the smallest decomposition of $ into matroidal families, such that the rank
functions of the different matroids have the same values for common sets. In the last section, we
give sharp bounds on the performance of the greedy algorithm, using parameters of some special
bouquets in the semi-lattice.
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1. Independence systems and bouquets of matroids

An independence system $ on X is a nonempty family of subsets of a ground set X
having the following property:

ScTed$ = Se 4.
Anindependence system (IS, for short) is a matroid if it satisfies the following axiom:
S, Ted, |T|=|S|+1 = JecT\S suchthat Suec s

A set belonging to the family $ of an IS is called independent, otherwise it is
dependent and minimally dependent sets are circuits of the IS. The rank of a set
Ac X is the maximum cardinality of an independent subset of A, and the rank
Sunction r(-) of an IS on X is the set function associating to every subset of X its
rank. A subset A of S is a flat (or closed set) if r(Aux)>r(A) for all xe X —A.
The closure operator o associates with subset A< X the set: o(A)=
{xe X:r(Aux)=r(A)}, and if ¥ is a matroid, then o(A) is the smallest flat
containing A.

A whole wealth of combinatorial optimization problems can be formulated as
the problem of maximizing a set function over the family of independent sets of a
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particular IS: Consider for instance all the combinatorial packing problems on
graphs, such as the spanning tree, matching, and vertex packing problems. Hence
the study of structural properties of independence systems and matroids has been
a subject of conspicuous research efforts, and our paper can be seen as a further
attempt to study the relationships between independence systems and matroids. We
assume a basic knowledge of definitions and properties of matroids and indepen-
dence systems; however, our paper is self-contained, and we refer to [9] as a reference
for the subjects treated here.

Let # be an independence system on X. There are two ‘“‘dual” ways for interpreting
S

(i) As an intersection of matroids. For instance, if & denotes the set of circuits
of #, i.e., the set of minimal dependent subsets of X, define for every De @: $° =
{I<X,D¢ I}. Then $ =("),_, #" holds clearly. Let p denote the minimum number
of matroids whose intersection is equal to %, then p<|%|. However, this bound is
far from being sharp.

(ii) As a union of matroids. For instance, if % denotes the set of bases of .%,
define for every Be B: S5 ={I< X, 1< B}. Then $=|J,_, $5 holds clearly. In
[2], a Boolean procedure is proposed for determining the different maximal matroids
contained in .$. However, there is in general no “compatibility” between the different
matroids whose union gives $. For instance, as the following example shows, the
different rank functions defined in each matroid do not coincide on every subset of
X common to the groundsets of the matroids.

Example. Let X ={1,2,3,4,5} and # be the IS on X whose bases are:
{1,2,3},{1,2,4},{3,4,5}. Then $=¢,0.9, where ¥, is the IS with bases:
{1,2,3},{1,2,4} and %, is the IS with basis: {3, 4, 5}. #, is a matroid on X, =
{1, 2, 3,4} with rank function r, and %, is a matroid on X,=1{3,4, 5} with rank
function r,. Since r,({3,4})=1 and r,({3,4})=2,r, and r, do not coincide on
3,4} =X, X;.

The concept of bouquet of matroids provides a particular union of matroids, called
squashed union, in which the compatibility between the different matroids is pre-
served. So, for example, it will be possible to define in this structure a rank function
which coincides in each matroid with its own rank function. Let us mention that
bouquets of matroids are in fact a particular case of F-squashed geometries, this
latter concept having been introduced by Deza and Frankl in [6] (see also [5]).
Consider a clutter %; then %-squashed geometries are a generalization of the
matroidal structure in which the flats, in addition to satisfying some axioms similar
to the matroidal axioms, have to be contained in some element of %. Injection
geometries (see [5]) and permutation geometries (see [3]) are also particular in-
stances of F-squashed geometries. :

In the next paragraphs, we define bouquets of matroids and give their axiomati-
zations through the flats, the independent sets, the rank function, and the circuits.
Equivalence between these different sets of axioms is proved for the sake of clarity
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and completeness. We refer to [8] for an extensive treatment of axiomatizations of
squashed geometries and bouquets of matroids.

1.1. On matroid axioms

It is a well-known fact that a matroid can be equivalently defined through the axioms
of its independent sets, circuits, rank function, closure operator and flats (or closed
sets). Equivalence between the first four of them is proved in [9]. We could not find
the axiomatization for the family of flats; hence we introduce it here and prove its
equivalence with the axiomatization for the closure operator, since flat axioms for
bouquets of matroids depend on this result and are extensively used in our treatment.

Closure axioms [9]. A function o: 2% - 2% is the closure operator of a matroid on
X if and only if for all A, B X; x,ye X:

(cl) A= o(A);

(c2) A< B> o(A)c o(B);

(c3) a(A)=0o(a(A));

(c4) if ygo(A),yeoc(AUx), then xe c(AU y).

Flat axioms. A family % of subsets of X is the family of flats of a matroid of rank
s on X if and only if ¥ can be partitioned into subfamilies: ¥°, 9, ..., 9’ satisfying:
(fl) FnF'e$9forall F,F'e¥,
(f2) if Fe 9, F'e 9’ and F< F’ (i.e, F is properly contained in F'), then i <j;
(f3) if Fe %' (i<s) and x € X — F, then there exists (a unique flat) F'e 4" such
that Fux< F'.

Remark 1.1. The set %' is exactly the family of flats having rank i for i€ [0, s].
Axioms (f1), (f2) imply easily that |%°|=1. In fact, the unique flat F, in 9° is the
(possible empty) set of elements of rank 0. Also, axioms (f1), (f2) imply the unique-
ness property of the flat F’ satisfying (f3).

Remark 1.2. Given a flat Fe ¥ a chain of length k is a sequence of flats:
F,, F,,..., F.=F such that F;¢ F, < - - < F,. It is easy to show that F e ¥ if and
only if i is the length of any maximal chain of flats between F, and F.

Equivalence between the axioms for flats and closure operator is now proved as
follows:

Suppose first that o is the closure operator of a matroid .# on X with rank function
r(+). Define the families: ¥={F<c X:o(F)=F} and 9 ={Fec %: r(F)=i} for
i€[0, s]. Axiom (f1) can be easily deduced from (c1). Suppose Fe 4', F'e 4’ and
F g F'; take x € F'— F, then x ¢ o(F) = F, which implies r(F u x) > r(F) and there-
fore i <j, and (f2) is verified. If Fe 4’ (i<s) and xe€ X — F, then F'=o(F U x) has
rank i+ 1, hence it belongs to %', and its uniqueness follows from (f1), (f2).
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Suppose now that 9= %U- - - U ¥ satisfies (f1), (f2), (f3). For A< X, define:
o(A)=[(F: Fe % F 2 A). Then, from (f1), o(A) is indeed the smallest flat of ¥
containing A. Thus, (c1), (c2), (¢3) are clearly satisfied. Let us verify (c4). Suppose
yeo(Aux),yeo(A) and F=0(A)e 4 (i<s). Then, 0(AUx), o(AUy) are two
flats of ¥'*' containing F U y and, by the uniqueness property in (f3), we deduce
that: o(Au x) =c(Auwy), which achieves the proof of (c4).

1.2. Definition and axiomatizations of bouquets of matroids

Let us first define a bouquet of matroids through its flats.

Axiomatization through flats. A family g of subsets of X is the set of flats of a
bouquet of matroids on X if and only if there exists a clutter X, ..., X, of subsets
of X (ie., X;# X; Vi#je[l, m]) such that:

(F1) g U, 2%,

(F2) ¢n 2% is the family of flats of a matroid on X; for all ie[1, m];

(F3) GnG'egforall G, Gey.

Define %, = gn 9% forie[1, m]. Then, ¢=% U -u 4,isthe bunch (or bouquet)
of the matroids %. Notice that X, ..., X, are indeed the maximal flats of g. Thus,
# 1s a matroid on X if and only if m=1 and X, = X.

For all ie[1, m], let us denote by r, #;, &;, o; the rank function, the family of
independent sets, the family of circuits (or stigmas), the closure operator, respec-
tively, of the matroid ¥, on X;. Then, we are naturally led to define the rank function
r, the family # of independent sets, the family & of circuits, the closure operator
o for the bouquet of matroids as follows:

® For any subset AelJ" 2%, if Ac X for some ie[1, m], then r(A)=r,(A)
and o(A) = o,(A). Therefore, r, o are defined only for subsets of |, 27; however,
they can be extended to 2™ by setting: r(A) =00, 0(A)=X uU{w} (w being an
arbitrary element that does not belong to X) for any subset Ac X, Ag ], 2%,

® The family of independent sets is: =%, u---U.$,.

® The family of circuits is the family & of all minimal dependent sets, i.e., D £ .4,
but D—xe # for all xe D. Therefore, & can be partitioned into & = ¥ u € where

9=90(U Qxf)=,9’1u-~-u3’m, F=Fn2%,

i=1

being thus the family of circuits for the matroid ¥ on X;; and =9 -%=
P —J", 2. Elements of ¥ are called stigmas and elements of € are called critical
sets.

We now give sets of axioms for characterizing the rank function, the family of
independent sets, the family of circuits, the closure operator of a bouquet of matroids.
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Axiomatization through the rank function. A set function r is the rank of a bouquet
of matroids on X if and only if there exists a clutter X, ..., X,, of subsets of X
such that:

(R1) r is defined on \J", 27;

(R2) r|yx is the rank function of a matroid on X, for all ie[1, m];

(R3) r((X;nXj))ux)=r(X;nX;)+1for all xe X;— X, and i,je[1, m].

Axiomatization through the independent sets. A family ¥ of subsets of X is the
family of independent sets of a bouquet of matroids on X if and only if there exists
a clutter X, ..., X,, of subsets of X such that:

(I fcU, 2%,

(12) ¥ n 2% is the family of independent sets of a matroid on X; forallie[1, m];

(I3) If T e $n 2%~ 2% and xeX;,~X;, then Tuxed foralli#je[l, m].

Remark 1.3. Any independence system .# is indeed the family of independent sets
of a bouquet of matroids: Choose for X, ..., X,, the bases (i.e., maximal indepen-
dent sets) of #; then its family € of critical sets is empty.

Remark 1.4. If ¥ is a bouquet of matroids, i.e., satisfies (I1), (12), (I3), then $ is
clearly an independence system and we recall that its rank function is defined by:
r(A)y=Max(|I|: Ic A, I ¥) for all Ac E. Then r and the rank function for the
bouquet of matroids coincide on any subset belonging to ||, 9%,

Axiomatization through the circuits. A family & of subsets of X is the family of
circuits of a bouquet of matroids on X if and only if & can be partitioned into two
subfamilies ¥, € satisfying:

(D1) D D' for all D# D'e 9,

(D2) VS#S'e¥,VxeSn S, there exists D'e ¥ such that D' SU S’ —x;

(D3) VS ¥, VCe € VYxe S C, there exists C'e € such that C'c Su C —x.

Remark 1.5. (D2) implies clearly that ¥~ 2% is a matroidal family of circuits.
Therefore, the following version of (D2) is also satisfied (see [9]):

(D2) VS#S'e¥,VxeSnS VyeS—§, if SUS ¢ €* then there exists S"¢ &¥
such that ye $” and $"< S U S’ —x, where

¢*={Ac X:3Cec % CcA.

Axiomatization through the closure operator. A set function o is the closure operator
of a bouquet of matroids on X if and only if there exists a clutter X,,..., X,, of
subsets of X such that:

(C1) o is defined on | 7", 27%;

(C2) olyx is the closure operator of a matroid on X, for all i€[1, m].
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Remark 1.6. The conditions (F3), (R3), (I3), (D3) ensure the compatibility between
the different matroids 9, composing the bouquet.

We now show that there is equivalence between the different axiomatizations for
bouquets of matroids by proving the equivalence between the following com-
binatorial structures:

(i) a family ¢ satisfying (F1), (F2), (F3);

(ii) a set function r satisfying (R1), (R2), (R3);

(iii) a family # satisfying (11), (12), (13);

(iv) a family @ satisfying (D1), (D2), (D3);

(v) a set function o satisfying (C1), (C2).
We show the following implications: (i)=>(ii)=>(iii) =>(iv)=(v)=>(i).

Proof of (i)y=>(ii)
Suppose g¢ satisfies (F1), (F2), (F3). Let r; be the rank function of the matroid g n 2%
on X, for ie[1, m].

Lemma A. If Ac X;n X, for i#je[1, m], then r,(A) = r,(A).

Proof. We first show that the lemma holds for all A€ 4. Take k=r,(A); by Remark
1.2, there exists a chain of flats of ¢gn 2™ F,, F,,..., F.= A such that Fog F, <

- -2 F; however, F,, ..., F, also form a chain of flats ofymfzxf, which implies
r;(A)=k=r;(A) and by the same argument, r;,(A) < r,(A); thus, r,(A)=r,(A). O

Hence, it is legitimate to define a rank function r on |, 2% by: r(A)=r(A)
if A< X;. Thus, (R1), (R2) are clearly satisfied and (R3) follows from the fact that
X;, X; are flats of M;, M;, hence, by property (F3), X; 1 X; is also a flat.

Proof of (ii)=>(iii)
Suppose r is a rank function satisfying (R1), (R2), (R3). Define the families:

ﬂ={IeU£’2x": r(I)=]I|}, Fi=5n2% forie[l, m].
i=1

Then, (I1) is trivially satisfied and (I2) follows from (R2). Let us prove (I3): Suppose
Ief IcX;nX; and x€ X;— X;. Choose I,€.$ such that: 1< < X;nX; and
[Io| = r(X; n X;) (which is possible in the matroid .#; or .%;). We deduce from (R3)
that Iyu x € #; and therefore Tuxe 4.

Proof of (iii)=>(iv)

Suppose # satisfies (I1), (12), (13); thus, # is an independence system. Let & be its
family of circuits (i.e., of minimal dependent sets); then & satisfies clearly (D1).
Define: ¥, =D n 2% forie[l,m], ¥=%,U- - U, and € =D — . We now prove
in Lemmas C and D that the collection ¥, € satisfies (D2), (D3).
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of X, the following two statements are equivalent:

BN
RS

Lemma B. For any subset
(a) AgU, 2%
(b) There exists C € € such that C < A.

Proof. (b)—>(a) follows from the definition of 4. To prove (a)— (b), take Ag
U, 2%. Let C be a minimal subset of A not belonging to | _J;", 2% In order to
prove that C € €, we have to verify that C—xe.$ for all xe C. Suppose on the
contrary that C —x & % for some x € C. Let I € # be a maximal independent subset
of C—x and ye C—1—x. By construction of €, there exists i,je[1l, m] such
that C—x< X; and C—y< X;. Apply (I3) to the independent set I < X; n X; and
the point y € X; — X; and deduce that I Uy € $, which contradicts the maximality
of L O

Lemma C. If S#S'e¥, xeSnS’, then there exists D€ @ such that D= Su S'—x.

Proof. Lemma C is clearly satisfied when Su S'c X; for some i€[1, m], since
¥ N 2% is the family of circuits of the matroid on X;. Thus, we can assume that
SuS'#X; for all ie[1, m]. Suppose on the contrary that SuU S'—xe #. Take
i€[1, m] such that SU S -x< X, and je[1, m] such that S< X,. Apply (I3) to
the independent set S—x< X;nX; and the point xe X;— X, and deduce that
Sec 4, yielding a contradiction. Hence, SUS'—x2 . and therefore contains a
circuit of . [

LemmaD. IfSe ¥, Cc 6, xeSnC,thenthereexists C'€ €suchthatC'c Su C —x.

Proof. Suppose on the contrary that SU C—-xc X; for some ie[1, m]. Take
jel1, m] such that S< X;. Apply (I3) to the independent set S—x< X, X, and
the point xe X; - X; and deduce again Se.$, which is impossible. Therefore,
SuC—-xg\J/L, 2% and, by Lemma B, contains an element of €. [J

Proof of (iv)=>(v)

Suppose 9, &, € satisfy (D1), (D2), (D3). Let X,, ..., X,, be the maximal subsets
of X that do not contain any element of €. Then, by (D2), &, = ¥~ 2% is a matroidal
family of circuits; therefore, we can define the corresponding matroidal closure
operator o; on 2% by: for A< X;,

og(A)=Au{xeX,—A:3S5 ¥, xe Sc Aux}.
Lemma E. If Ac X,n X, then 0;(A) = 0;(A).

Proof. Suppose for contradiction that there exists x € o;(A) —o;(A). Then, there
exists § € & such that xe S< Au x and, moreover, x € X; — X;. Let C € € such that
xeCc X;ux. Apply (D3) to S€ &, C e 6, xe S C for obtaining the existence of
C'e € such that C'< SU C —x < X, yielding a contradiction. O
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It is now legitimate to define the following operator o on {J]_, 2%: if Ac X,
then o(A) =o;(A). \Then, (C1), (C2) are trivially satisfied.

Proof of (v)=(i)
Suppose o satisfies (C1), (C2) and define:

g-—-{Ae CJ 2% 0(A)=A}.
i=1

Then, (F2) follows from (C2). Let us verify (F3). If G, G'e g, then o(Gn G')c
o(G)no(G')=Gn G, which yields therefore the equality: (GG )=Gn G’
and thus Gn G'e g

Given any IS # on X, there may exist several bouquets of matroids having ¥ as
IS. For instance, consider the IS.$ on X ={1,2,3,4} whose bases are:
{1,2};{1,3};{2,3} and {1,4}. Then S =5,V I 5U Ipny Fq and also: I =
(recall that ¥, ,, denotes the IS with base {1,2}).

Let us denote by £ the set of all bouquets of matroids ¢ having # as IS. If m
denotes the number of maximal flats in g, we are interested in finding some element
g of £ providing minimum value for this parameter m, since this particular bouquet
of matroids will often be used in our treatment. In the next section, an extensive
study of the structure of £ is made which provides the minimum value of m.

2. The meet semi-lattice £

Let 4 be an IS on X, & its set of circuits and & the set of all bouquets of matroids
having $ as independence system. Any element ¢ of £ is characterized by the
partition of & into ¥ v € and therefore is denoted by g(¥, €) (or simply by 4(¥)), &¥
its set of stigmas, € its set of critical subsets of X and the set (&, ¥) must satisfy
axioms (D2) and (D3). For two bouquets of matroids g,, ¢, of &, notice that ¥, < %,
is equivalent to 4,< €, since &, u 6, =%, u €, =%. Let us introduce an order on
Z as follows:

#1(F1, €)= g:(F5, 6,) if and only if ¥, F,.

Proposition 2.1. 7 is a meet semi-lattice, that is, any two elements g,, g, of £ have
a meet g, A g, which is defined by: g, r g, = g(F1"Fs, €U 6,). Moreover, the least
element of & is (0, D).

Proof. Define ¥=%,n%,, €= %,0 €6,. It is easy to verify that &, € satisfy axioms
(D2) and (D3). Furthermore, g(¥, €) is clearly the meet of g, g,. It is also clear
that ¢(@, &) belongs to £ and is smaller than every element of 4 O
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We now wish to investigate whether % is a lattice, i.e., any two elements g¢;, ¢,
of Z have a join g, v g, in Z. Let us first make the following observation.

Proposition 2.2. The following two statements are equivalent:
(a) & is a lattice;
(b) & has a greatest element.

Proof. The implication (a)-> (b) is trivially satisfied. Suppose now that £ has a
greatest element g(%,, €,). Let ¢,(¥F;, 6;) and g,(¥,, €,) be two distinct elements
of £ Let ¢(¥, €) be a minimal element of £ such that g= 4, and g=g,. It is
enough to verify that there is uniqueness of such a minimal element since then it
will be the upper bound g, v 4, of ¢;, ¢». Suppose on the contrary that ¢'(¥', €')
is another minimal element of £ such that ¢'= ¢, and ¢'= g,. Therefore, ga ¢ is
also an element of £ such that: g ¢'= 4, and g ¢'= 4,. Hence, by minimality of
¢, 4, we deduce that g ¢’ = g= 4, yielding a contradiction. [

Let us now introduce the following family:
€={DecP:3AD'c %, D'# D,Axe D~ D’ with Du D'—xe $}.

It is easy to see, by using axioms (D2), (D3), that €< &, i.e., ¥< ¥ =% — € holdr
for all bouquets g(¥, €) in &. Therefore, if (&, €) =7 is a bouquet of matroic ,
then it is in fact the greatest element of £ and % is indeed a lattice.

By construction, the family & satisfies the following property:

(D0) VSeP VDeP VxeSnD,AD'eP, D'cSuD-x.

Hence, the collection &, € satisfies axiom (D2) but, in general, axiom (* 3) is not
verified.

Let us now describe the atoms of the semi-lattice £. Recall that ar element g of
Z is an atom if and only if, for all g’€ £ distinct from the least eier :nt of £ such
that g'c g, we have ¢'= 4

Proposition 2.3. (a) The atoms of & are the bouquets of matroid: g({S}, @ —{S})
forall Se &.

(b) £ is atomic, that is, every element g(¥, €) of £ with ¥ # ¢ .s the join of atoms
of £, more precisely, we have:

2%, €)= S\/y #({S}, 2 —~{S}).

Proof. The proof of (a) is easy. Let us now verify (b). T: e ¢(¥, €) in Z; then
(&, €)= g({S}, D —{S}) for all S€ ¥ and, thus,

97, €)= S\/y #({S}, 2 —~{S}).

Define the element of £:
HI', €)= S\/y g({S}, D —{S}).
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Then, we have &' 2 & which implies the inequality: ¢(¥', €') = ¢(¥, €) and, there-
fore, equality:

WS, €)=9(F', €)= SVy 2({8}, 2—-{S}H
holds. [1
We now give a class of independence systems for which % is a lattice.

Theorem 2.4. Suppose ¥ is the family of the stable sets of a graph G=(V, E) with V
as set of vertices and E as set of edges. Then, £ is a lattice whose least element is
#(0, D) and whose greatest element is g(¥, €).

An example of construction of such a lattice is given in the next paragraph.

Notice that, in this case, an edge e belongs to & if and only if, for each edge e’
adjacent to e, there exists an edge e” adjacent to e and e’; that is, there exists no
maximal clique of G containing a unique endnode of e (Figure 1).

Proof of Theorem 2.4. It is enough to prove that ¢(#, €) is a bouquet of matroids,
i.e., satisfies (D2), (D3). (D2) being trivially verified, we show that (D3) holds.
Suppose by contradiction that there exists Se &, C = €, xe S~ C suchthat SU C —x
contains no element of €. Let us denote S by {x, y}, C by {x, z}; then, by (D0), §'=
{y, z} is an edge of #. Since C € €, there exists C'={u, v} e € such that ue Cn C’
and CuC'—ued.

Let us first suppose that u =x. Apply (D0) to S, C’, x€ S~ C’ for obtaining that
{y, v}€ 9. Apply (DO) to §', {y, v}, y€ S’ ~{y, v} for obtaining that {z, v} ¢ &, which
contradicts the assumption: Cu C'—u={v, z} € .$ (Figure 2).

We now suppose that u =z Apply (D0) to §’, C', z€ S’ C’ for obtaining that
{y,v}e . Apply (DO) to S,{y, v}, ye Sn{y, v} for obtaining that {x, v} € @, which
contradicts the assumption: Cu C'—z={x, v}e.# (Figure 3). [

e e
—'_e'n_
Fig. 1

cl
X v
P
c
-
S
y §' z
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Fig. 3

In the general case when .$ is an arbitrary IS, we have the following result.
Proposition 2.5. Z is a lattice if and only if g £.

Proof. If gc %, then it is the greatest element of £ and thus Z is a lattice. Suppose
now that £ is a lattice with g(%,, 6,) as greatest element. If z¢ %, then we have:
Fox P. Choose S€ P—F,. Then, by Proposition 2.3(a), #({S}, @ —{S}) e &, thus
#({S}, @ —{S}) < ¢(%,, 6,), which implies S € ¥,, yielding a contradiction. [

Remark 2.6. Though 7 is not, in general, a bouquet of matroids, we can derive from
%, € a decomposition of . into a union (not squashed, in general) of matroids.
More precisely, let Z,,..., Z; be the maximal subsets of X that do not contain
any element of €. Then, in view of (D0), ¥~ 2% is a matroidal family of circuits
defining the matroidal IS % n 2%; therefore, we have: $=\J7", $ ~ 2% as a union
of matroids. Also, even when g ¢ %, &, € will be used in the last section for obtaining
sharp bounds on the performance of the greedy algorithm in the IS 4.

We now give an example of an IS # for which 2 is not a bouquet of matroids.
Example. Let ¥ be the IS on X ={1,2,3,4,5} whose set of circuits is: ¥ =
{123, 124, 134, 234, 145} ({1, 2, 3} is denoted by 123, for short). It is easy to see that:

€ =1{124,145,134} and % =1{123,234}.

However, g is not a bouquet of matroids since axiom (D3) is violated (see that
123 #,124€ € and 123 U 124 —1 =234 does not contain any element of €). Hence,
the meet semi-lattice £ is reduced to g(@), #(123), 4(234).

This example shows also that Theorem 2.3 cannot be extended to the case when
all circuits have the same size greater than 2.

2.1. On the number of matroids which compose a bouquet of matroids

For any bouquet of matroids g of %, let m denote the number of its maximal flats;
hence m is also the number of distinct matroids in ¢ whose union gives $. Our aim
is to find some g for which m is minimum. We are going to see that such minimum
value m is provided by some of the maximal elements of &.
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Proposition 2.7. Let ¢,, g, be two bouquets of matroids of & whose respective numbers
of maximal flats are my, m,. If g, < g, then my<m,.

Proof. Let o; denote the closure operator in g, i =1, 2. Recall that we have only
defined o,(A) for all subsets A of X not belonging to €¥, that is, which do not
contain any critical subset of €, for i=1, 2.

We define the mapping 0: ¢, > ¢,,

F— 6(F) = o»(F).

6 is well defined because no flat of g, contains a critical subset of €, since €,< €, .
In Claim 1, we prove that 0 is a surjective mapping from ¢, onto g,. Then we
use this result for showing in Claim 2 that 6 induces a surjective mapping from
(#1)max ONtO (#2)max from which we infer clearly that m, =|(£,)max] = M2 =[(£2) maxl-
Claim 1. 6 is a surjective mapping from g, onto g,.
Proof. We prove the following statement:

For every I ¥, o,(I)=o0,(oy(1)),

which yields easily Claim 1, since if G is any flat of g, and I is a basis of G, then
we have: G = 0,(I) = 05(0o(I)) = 0(0o,(I)) with oy(I) € ¢;. Let I be an independent
subset of £. It is enough to show that o,(o (1)) < o(I). Take x € 0,(o(1)). Then
there exists S, € #, suchthat xe S, < o (I) U x. Let ay, . . ., a, be the distinct elements
of o,(I)\I L x that belong to S,, so S,=Iuxu{a,,...,a,}. Consider a,: since
a, € o, (I)\I, there exists S, € &, such that aq,€ S, c Tua,.

Suppose first that S, U S, ¢ €%, Hence there exists C € €, which is contained in
S,u S,. Since €,< 4,, C € %, and thus x < C. Consider now S, %,, C € 4, with
x € S, n C. Thus there exists C'e€ €, such that C'< S,u C\x < (1), which contra-
dicts o(I) £ €F.

Suppose now that S, U S, €%. We can apply axiom (D'2) to S, € &5, S, € ¥, with
x € 8,\S; and a,€ 8, S,. Hence there exists S3€ &, such that x€ S5 S, U S)\a,.
Therefore we have obtained a stigma She ¥, satisfying: xeSj;cTuxu
{ay,..., a,_1}. Thus we succeeded in deleting one element a, of {a,,..., a,}. We
can repeat the same operation until getting the existence of a stigma S’ € &, satisfying:
x € 8’'c I u x, which proves, therefore, that x € o,(I).

Claim 2. 6 induces a surjective mapping from (¢;)max 00t0 (#2)max-

Proof. We first show that, if F € (#1)max, then 8(F) € (¢:)max- Let I be a basis of F,
hence F = o(I) and therefore 8(F) = 0,(F)= o,(I). Suppose on the contrary that
6(F) is not a maximal flat of 4,, thus there exists G € %, such that G 2 6(F). Choose
an element x € X in G\o,(I). Then I U x ¢ %, otherwise I U x would contain some
circuit D € 9. Either D € &,, which contradicts x € o,(I), or D € ¥,, which contra-
dicts G¢ €%. Define F, = o,(I U x), hence F, is a flat of g, such that F, 2 F, which
contradicts the maximality of F.
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We now verify that, for every G e (g:)max, there exists F € (g;)max such that
G =0(F). Let G€(g2)max, I be a basis of G and F=o0(I). Thus G=6(F). If
F € (¢1)max» then our statement is proved. Otherwise let F, € (¢,)m., containing F.
Therefore G = o,(F) < o,(F,), whichimplies, by maximality of G, that: G = o,(F,) =
o(F). O

Proposition 2.8. The decomposition of ¥ into a squashed union of matroids with minimal
number m of matroids is provided by one of the maximal elements of %.

Proof. It follows clearly from Proposition 2.7. [J

Remark 2.9. For any bouquet of matroids ¢(¥, €) of &, define the new IS $(%€)
whose set of circuits is €. It is easy to see that the bases of #(¥€) are exactly the
maximal flats of g(¥, €). Hence, the number of matroids composing ¢(, €) is
equal to the number of bases of £(%€).

Let us give an example of construction of ¥ when ¥ is a lattice. Let
X={1,2,3,4,5,6,7 and ¥ be the IS on X whose set of circuits is:
9 ={12, 13,23, 45, 46, 56, 57} (we write 12 instead of {1, 2} for sake of brevity).

It is easy to see that € =1{45,56,57} and that the IS .#(€) has the bases:
1235, 123467. Hence the minimum number of matroids whose squashed union gives
# is m =2 (since 7= g(¥, €)c ¥ by Theorem 2.4).

Any element ge.£ is characterized for instance by its family & of stigmas
and therefore denoted by g(¥). The lattice £ has the configuration as shown in
Figure 4. Every element of ¥ provides a different decomposition of # into a
squashed union of matroids. Let wus first list the bases of
147,167, 247, 267, 347, 367, 15, 25, 35. For instance, the bouquet #(12, 46) provides
adecomposition of # into the union of four matroids, more precisely $ = {347, 367} u
{147, 167,247,267} v {15, 25} w {35}. The best possible decomposition of ¥ which
is providled by the bouquet g(@\€) is the following: $=
{147,167, 247, 267, 347, 367} U {15, 25, 35}.

Figure 5 shows the configuration of the set of flats of the bouquet of matroids
#(D\9).

We finally give another example of construction of ¥ when ¥ is not a lattice.
Let X={1,2,3,4,5} and # be the IS on X whose set of circuits is:
@ ={123, 125, 135, 145, 235,24, 34}. It is easy to see that € ={24,34} and that
HF, €)=ge ¥ (see that 145¢ F,24€ € and 145024-4=125¢ F, also 145€ &,
34e € and 1450U34—4=135¢ &). In fact, the meet semi-lattice ¥ has the con-
figuration as shown in Figure 6.

The bases of ¥ are: 12, 13, 14, 15, 23, 25, 35, 45. It can be seen that:

- The bouquet ¢(123, 145) provides a decomposition of £ into four matroids:
F={12,13,23} v {14, 15,45} u {25} U {35}.

- The bouquet (235, 145) too provides a decomposition of # into four matroids:
g ={12}u{13}u {14, 15, 45} U {23, 25, 35}.
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g(D\C)
12
g(12,13,23) g(12,46) g(13,46) 9(23,46)
g(12) g(13) g(23) g(46)
g(¢)
Fig. 4
123467 3-flats
467 1237 12346 1235
2-flats
46 7 123 5 l-flats
O0-flats
¢
Fig. 5

- The bouquet (123,125, 135, 235) provides the best decomposition of £ into
three matroids: ¥ ={12, 13, 15, 23, 25, 35} u {14} u {45}.

This example shows therefore that not every maximal element of £ provides a
best decomposition of 4, even when all maximal elements of £ have the same
height in the meet semi-lattice Z.
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g(123,145) g(123,125,135,235) ™ g(235,145)

g(123) g(125) g(135) g(235) g(145)

g(¢)
Fig. 6

2.2. Intersection and squashed union numbers

Let p be the minimum number of matroids whose intersection is ¥ and m be the
minimum number of matroids whose squashed union is .%. In this section, we wish
to investigate the relationships between these two parameters.

Proposition 2.10. The following inequality holds: p<m+|¥€| for all bouquets of
matroids g(&F, €) of £ composed of m matroids.

Proof. For every subset I < X, we have:

IcX; for some maximal flat X; of g,

Ie f<:>{
I G|=r(G) for all flats Ge g.

Hence:

I»C for all critical subsets C of &,

Ieﬂ@{
I~ Gl<r(G) forall flats Ge g

Since g [0, X;] is the set of flats of a matroid on X;, the IS

Fi={I< X,|I ~» G|<r(G) for all Ge g such that Gc X}

is the set of independent subsets of a matroid on X, for all i€[1, m]. Therefore
can be obtained as the intersection of 4|+ m matroids, hence p<m+|4|. O

Let us give an example of IS for which p=2 but m may be chosen arbitrarily
large. Consider the bipartite graph G(V,, V,, E) with sets of vertices: V,=
{ay,as,...,a,}, Vo={by, b,,..., b,} and set of edges: E={(a;,b;), (ay, ;) for
ie[1, m]}. (See Figure 7.) Let # be the IS of the matchings of G. Its bases are:
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N

az b2

a b

m m
Fig. 7

B,={(a;, b;) foric[1, m]} and B;={(a,, b;)(a;, b;) for i # j and i # 1} for je[2, m].
It is easy to see that the only possible squashed decomposition of $ is: $=5p U
Fp, U -+ Iy, having therefore m matroids. However, it is well known that the
family of matchings in a bipartite graph is a collection of independent sets in the
intersection of two matroids.

The inverse situation may also happen, that is, there exist independence systems
for which m =2 but p may be chosen arbitrarily large. For instance, consider the
IS of the stable sets of the graph K , with vertices 0,1,2,..., p and edges: (0, i)
forie[1, p]. (See Figure 8.) The two maximal stable sets are: {0} and {1, 2, 3,..., p};
therefore, we have m =2. It is easy to see that the minimum number of matroids
whose intersection is £ is equal to p.

Another question arises: Given an IS $ on a finite set X of size n, how big is m
with respect to n, or more precisely, is m always polynomial in terms of n? The
answer is no, as shown by the following example of IS for which m is exponential
with respect to n.

Claim 2.11. There exists an integer k and a collection sf of subsets of X, |X|=n,
satisfying:
() |[A|=kVAe sf;
(ii) [AnB|<k-2VYA* Bed,
(iii) || is exponential with respect to n.

Proof. For every subset A € (i), define:

B(A)={A'e (x),|An A'|=k~-1}.

Fig. 8



M. Conforti, M. Laurent /| Geometric structure of independence systems 271

Hence |%B(A)|=k(n—k). Choose first a subset A, in (i), then a subset A, in
(GN\B(A))U{A,} and recursively a subset A,, in (FN\B(A)U---UB(A,_)u
{A,...,A,-1}. By construction, we have |A;nA;|<k—2 for all i#j Such a
construction is possible if B(A )~ - UB(A,, 1) U{A,,..., A1} < (7). Since the
size of B(A)D)U - UB(A,,_1)U{A,,..., A,_;} is less than m(k(n—k)+1), we
have only to verify that it is possible to choose m exponential in n and satisfying
m<(;)/(k(n—k)+1), which can be easily obtained by choosing, for instance,
k=[in]. The proof of Claim 2.11 is now finished by considering o=
{A,,..., A} O

For all subsets A # B of the preceding family &/, define
€(A,B)={A-a+b,ac A\B, be B\A}

and

P = (Z) % U %A B).

It is clear from Claim 2.11(ii) that 9 contains & Let # be the IS whose set of bases
is B and m, denote the minimum number of matroids whose squashed union is .%.
By construction, no two subsets of &/ can be included in a same matroid; therefore,
m = |f| which infers that m is exponential in terms of n.

3. Independence systems, bouquets of matroids and the greedy algorithm: worst-case
bounds

Let # be an IS on X and w be a nonnegative weight function that is defined on
all elements of X; hence the weight of every subset A of X is defined by: w(A) =
Y ca W(x). Consider the following optimization problem:
Max w(I}). (3.1)
Iey
A natural way for finding a reasonable approximation to the solution of this problem
is provided by the following greedy algorithm:

Start with the empty set and recursively add to the current solution
set S an element x € X with maximum weight among all xe X\ S
such that SuU x € 4. Stop when no such element exists.

It is well known (see [9] for example) that the greedy algorithm provides an optimum
solution to (3.1) for every nonnegative weight function if and only if .# is a matroid.
However, the performance of the greedy algorithm applied to any IS can be measured
by computing a lower bound to the following ratio: p = w(S)/w(B,) where S is a
basis selected by the greedy algorithm (greedy basis) and B, a basis that yields an
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optimum solution to (3.1). If the value of the ratio p is 1, it means that the greedy
algorithm selects an optimum solution and very small values of p indicate a poor
performance.

For every subset A< X, we define:

- The lower rank of A: Lr(A) =Min(|1|, I is a maximal independent subset of A).

- The upper rank of A: Ur(A) =Max(|I}, I is an independent subset of A).

So, the quantity Min,. x(Lr(A)/Ur(A)) can be interpreted as a measure of how
much # differs from being a matroid.

Edmonds, also Baumgarten [1], proved the following inequality:

i ET(A)
0= Gea) 62

(for a proof, see also [7]). It is shown in [7] that, if # is the intersection of p
matroids, then:

Lr(A) 1
Min—————r( )1

acx Ur(A) p’ (3:3)

Also the following bound is proved in [4]:
p= h/r, (3.4)

where r is the rank of %, i.e., r=max(]I], I € #) and h+1 is the girth of 4, i.e.,
h+1=min(|D|, De 2), P being the set of circuits of J.

Let ¢ be a bouquet of matroids whose IS is 4. We give bounds for the value
Min . x(Lr(A)/Ur(A)) and for p, in function of parameters of g, also in function
of the families &, € introduced in Section 2. Moreover, we will see that the choice
of g among the maximal elements of £ provides the best possible bound.

Let .# be an IS on X, & be its set of circuits. Let g be a bouquet of matroids with
F as IS, & be its set of stigmas and € be its set of critical subsets satisfying:
@ =S €. In order to give other bounds for the quantity Min . x(Lr(A)/Ur(A))
in terms of the parameters of g, we need some definitions generalizing the notion
of star of a graph.

Definition 3.1. Let €={D,, ..., D;} be a family of circuits of &. & is called a star
of type (1) if the following conditions hold:
(i) There exists an element a € X belonging to ﬂle D,.
(i) There exist pairwise distinct elements of X: x,, ..., x. such that x; € D; for
all ie(1, k].
(iii) Y, D)\a is an independent subset of X.

Let k; denote the maximum number of circuits in a star of type (1).

Remark 3.2. Suppose k, = 1. Hence, for all distinct circuits D, D', if a is an element
of X belonging to D D', then D u D'\ a is not an independent subset of X and
therefore contains a circuit. Thus 9 is the family of circuits of a matroid.
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Proposition 3.3. If € is a star of type (1) of size k=2, then all members of € belong
to € and therefore are critical subsets of .

Proof. Suppose, for instance, that a member D, of € belongs to &. Let D, be
another member of €. Since a € D, n D,, we deduce from axiom (DO0) the existence
of a circuit D such that D < D;u D,\a. Thus we contradict assumption (iii) of
Definition 3.1. O

Definition 34. Let €={D,,..., D,} be a family of circuits of &. € is called a star
of type (2) if and only if:
(i) There exists an element a € X belonging to ﬂ:;l D;.
(ii) There exist some elements X, ..., X, of X such that x; € D\
all ie[t1, k].
(iil) {x,,..., %} and Uf;l D\ x; are independent subsets of X.

k
J=1,j#i

D; for

Let k, denote the maximum number of circuits in a star of type (2). We also
define k; as the maximum number of circuits in a star of type (2) formed only by
critical subsets of €.

Remark 3.5. If all circuits have size 2, that is, if # is the set of stable sets in a graph,
then both Definitions 3.1 and 3.4 coincide with the definition of a star of a graph
and alSO k2 = k; = kl .

Theorem 3.6. The following inequalities are valid:

1 _ i LA _K(Ae—D 1
k, acx UI'(A) k.H,

where H.+1=Max(|C|, C e €).

Proof. Let us first prove the upper bound. Let €={D,, ..., D, } be a star of type
(1) of size k,. Consider the subset A=Uf;1 D; of X. The set Uf;, D\a=A\a is
an independent subset of A of maximum size, hence Ur(A) =|A|—1. Let us show
that Uf;l D\ x; 1s an independent subset of X. Suppose by contradiction that there
exists a circuit D which is contained in U’;':l D\ x,. Since Uf‘:l D\ac #, a belongs
to D. Choose an element x € D —a; thus x,, x,, ..., X, X are distinct elements of
X. Hence {D,, ..., D, , D} is a star of type (1) with k;+1 circuits which yields a
contradiction. Therefore, Uf;l D\Xx; is a maximal independent subset of A; thus
Lr(A)<|A|—-k,. Since |A|<1+k,H,, we have:

Lr(A) _|Al-k,_k(H.—1)+1
Ur(A) |Al-1 kH

(See that x> (x—k;)/(x—1) is increasing since k,;=1.)
We now prove the lower bound. Let A be a subset of X and I, U be two maximal
independent subsets of A such that: {I|=Lr(A) and |U|=Ur(A). If |U|=|I|, then
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Lr(A) = Ur(A). Otherwise, for every element x € U\ [ since I U x £ .9, there exists
a circuit D such that: xe DcTu x.

We now define a bipartite graph G(V,, V,, E) where: V,=1\U, V,=U\I and
E is defined as follows: For any element x€ U\I and ae I\U, (a, x)€ E if and
only if there exists D€ & such that {a, x}< D < Iux. We count in two ways the
total number of edges, which is obviously equal to:

Y degx= ) dega

xe UNTI acI\U

Since U contains no circuit, every element x € U\I is connected to at least one
element of I\ U and therefore:

Y degx=|U\I|.

xe UNT
Consider now an element ae I\U and x;, x,, ..., x, the elements of U\I that

are connected to a. Thus, there exist some circuits D,, D,,..., D, such that:
{a,x}c D,cTux for all ie(1,t]. Hence {D;,..., D} is a star of type (2) and
thus deg a <k,. Therefore, we have:

Y dega<k)|I\U|

acI\U
Consequently, we obtain:

1 Inuj

I\Ulk,=|U\I|, which yields —

A slight change in the proof of Theorem 3.6 enables us to improve the lower
bound for the value Min - x(Lr(A)/Ur(A)) in the sense that the new bound does
not involve all circuits of & but only the critical subsets of €.

Theorem 3.7. The following bounds hold:

- nLr(A) k(H ~-1)+1
1+ K5 acx Ur(A) kH

where H,+1=Max(|C|, C € €).

Proof. We have only to prove the lower bound. We consider again a subset A of
X, I, U two independent subsets of A such that [I|=Lr(A), |U|=Ur(A). Let X, be
a maximal flat of g containing I. We partition U into U = U, u U, where U, = U n X
and U,= U\ X,. Again, for every element x € U\ there exists a circuit D such
that xe D < I ux. We show that D is a stigma if and only if x € X,. If x belongs
to X;, then D is clearly a stigma since D < X,. Suppose now that D is a stigma
and x £ X,. Since D e ¥, there exists a maximal flat X, of g, X, # X, such that
Dc X,. Since D\xe %, D\x< X;n X5, x€ X,\ X, the independence axiom (I2)
implies that D € .4, which yields a contradiction.
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We now define in the same way as before a bipartite graph G(U,, I\ U, E) where
U,, I\U are its sets of vertices and the set E of edges is defined as in the proof of
Theorem 3.6. Since a circuit containing a € I\ U, x € U, and contained in I U x can
only be a critical subset of €, we obtain therefore the inequality:

@) [IN\Ulk5=|Uy|.

Let us prove:

Gi) [I\U[= U\

Suppose by contradiction that: |U)\I|>|I\U|. Hence we have: |U;|>|I|. Since I
and U, are both contained in X, these are independent subsets of the matroid
#0108, X;] on X, and, therefore, there exists an element x € U,\I suchthat Tuxe ¢
which contradicts the maximality of L

Thus, we infer from (i) and (ii) that:

|[UNI| = Uo|+|UNI| < I\ UJ (k3 +1)
and therefore:

[/|U=1/(1+k5). O
Remark 3.8. Consider two bouquets of matroids of & satisfying: ¢(¥, €) < ¢(¥', €’),
then €’ < 6, which implies

1/(1+ks)<1/(1+kS),

therefore, the best possible value for the lower bound 1/(1+k3) in Theorem 3.7 is
provided by a maximal element of the meet semi-lattice & and thus, by g(¥, 6),
when £ is a lattice.

Let us now derive bounds for the greedy ratio p. Let X,,..., X,, denote the
maximal flats of a bouquet of matroids g having # as IS.

Lemma 3.9. We have: H,<m—1, where: H,+1=Max(|C|, C<c ¥%).

Proof. Let C be a critical subset of €. Since C is not included in any X; and for
every element x € C, C\x is included in some X, the lemma follows. [

Let A be the collection of subsets of [1, m] defined by:

A={A§[1,m]: U Xi;éX}.

icA

Lemma 3.10. Suppose H, = 1. Then the maximum size k, of a star of type (1) is given
by:

k1=Max[r(U X,-U X,.),AeA].

ieA iZA



276 M. Conforti, M. Laurent /] Geometric structure of independence systems

Proof. Let €={C,,..., Cy} astar of type (1) of size k,. We know that its members
are all critical subsets of €. Since H.=1, every C; has size 2 and can be written
Ci={a,x;} where a,x;,x,...,x, are distinct elements of X. Moreover,
I={x,,...,x,} is an independent subset of X. Define A ={ic[1, m], I n X, # 0}
Then aclJ,., X; and I <J,_, X\, , Xi, which implies:

k1=‘1|$r(u XIXUX,) and UX,#X.
icA i£A icA

Equality in the preceding inequality is easy to see. []

Corollary 3.11. Let p denote the greedy ratio, i.e., p=w(S)/w(B,), where S is a greedy
basis and B, an optimum solution to the problem (3.1). Then the following bound holds:

p=Min(l/(1+r(X\X))) foralli,je[1, m]).

Proof. We first prove the corollary in the case m =2. Lemma 3.9 yields H. =1 and
therefore all critical sets have size 2. We infer from Lemma 3.10 that k, =
Max(r( X\ X5), r(X,\X,)). Since all critical subsets have size 2, we have k; = k5.
We now obtain from Theorem 3.7 and inequality (3.2) that:

p = Min A = Min( ! ! )
acx Ur(A) 1+ r(X\X2)" 1+ r( X\ X,)

We now prove the corollary in the general case. Consider a greedy solution S,
an optimum solution By and two maximal flats X;, X; of ¢ such that X;2> .S and
X;2 B,. If X;=X;, then p=1. Otherwise, consider the set of flats of g that are
contained in X; or in Xj. It is still a bouquet of matroids and it has only two maximal
flats: X; and X;. Therefore, we infer from the preceding case that

1 1
= Mi .
p= ‘“(1+r<Xi\X,-)’ 1+r<X,—\Xi)> =

Let us now treat as an application of the preceding results the case of the IS of
the stable sets of a graph.
Proposition 3.12. Let G =(V, E) be a graph and .$ be the set of stable sets of G. Then
i LA 1
P v Ur(A) k

where k is the maximum size of a star of G.

Proof. Since all circuits have size 2, we have H.=1 and k, =k, = k. Therefore,
Theorem 3.6 yields: Min,_(Lr(A)/Ur(A))=1/k. OO
Remark 3.13. It is easy to see that the same result holds when $ is the set of
matchings of G, i.e.,
. Lr(A) 1
=Min——-=—
P et Un(A) K

k being equal to 2 except k=1 in the matroidal case (see also [7]).
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Corollary 3.14. Let ¥ be the set of stable sets of the graph G, p be the minimum number
of matroids whose intersection is ¥ and k be the maximum size of a star of G. Then k < p.

Proof. The inequality (3.3) and Proposition 3.12 yield trivially the result. [J

Propesition 3.15. For any IS, we have p = k, where k, is the maximum size of a star
of type (1).

Proof. Let 4,, %,,..., %, be matroids with respective sets of circuits &,, @»,..., D,
such that: $=%,nFn---NnF,. Let €={D,,..., D, } be a star of type (1). For
every i€[1, k], since D; £ 4, there exists «; €[1, p] such that D; ¢ #, which yields
easily that D; e 9, . Suppose that there exists i # j€[1, k;] such that «; = ;. Hence
D;, D; are two distinct circuits of %,,. Since a € D;n D;, the circuit axioms in the
matroidal family 9%, imply the existence of D € 9, such that D < D;u D;\a which
contradicts the assumption U:ll D\aeg. O
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