510 research outputs found

    Boolean Function Analysis on High-Dimensional Expanders

    Get PDF
    We initiate the study of Boolean function analysis on high-dimensional expanders. We describe an analog of the Fourier expansion and of the Fourier levels on simplicial complexes, and generalize the FKN theorem to high-dimensional expanders. Our results demonstrate that a high-dimensional expanding complex X can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing |X(k)|=O(n) points in comparison to binom{n}{k+1} points in the (k+1)-slice (which consists of all n-bit strings with exactly k+1 ones)

    Boolean functions on high-dimensional expanders

    Full text link
    We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high-dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analog of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analog is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. Our random-walk definition and the decomposition have the additional advantage that they extend to the more general setting of posets, encompassing both high-dimensional expanders and the Grassmann poset, which appears in recent work on the unique games conjecture. We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a constant-degree high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only X(k1)=O(n)|X(k-1)|=O(n) points in contrast to (nk)\binom{n}{k} points in the (k)(k)-slice (which consists of all nn-bit strings with exactly kk ones).Comment: 48 pages, Extended version of the prior submission, with more details of expanding posets (eposets

    Locally Testable Codes and Cayley Graphs

    Full text link
    We give two new characterizations of (\F_2-linear) locally testable error-correcting codes in terms of Cayley graphs over \F_2^h: \begin{enumerate} \item A locally testable code is equivalent to a Cayley graph over \F_2^h whose set of generators is significantly larger than hh and has no short linear dependencies, but yields a shortest-path metric that embeds into 1\ell_1 with constant distortion. This extends and gives a converse to a result of Khot and Naor (2006), which showed that codes with large dual distance imply Cayley graphs that have no low-distortion embeddings into 1\ell_1. \item A locally testable code is equivalent to a Cayley graph over \F_2^h that has significantly more than hh eigenvalues near 1, which have no short linear dependencies among them and which "explain" all of the large eigenvalues. This extends and gives a converse to a recent construction of Barak et al. (2012), which showed that locally testable codes imply Cayley graphs that are small-set expanders but have many large eigenvalues. \end{enumerate}Comment: 22 page

    Dimension Expanders via Rank Condensers

    Get PDF
    An emerging theory of "linear algebraic pseudorandomness: aims to understand the linear algebraic analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the role of the size of subsets. In this work, we study and highlight the interrelationships between several such algebraic objects such as subspace designs, dimension expanders, seeded rank condensers, two-source rank condensers, and rank-metric codes. In particular, with the recent construction of near-optimal subspace designs by Guruswami and Kopparty as a starting point, we construct good (seeded) rank condensers (both lossless and lossy versions), which are a small collection of linear maps F^n to F^t for t<<n such that for every subset of F^n of small rank, its rank is preserved (up to a constant factor in the lossy case) by at least one of the maps. We then compose a tensoring operation with our lossy rank condenser to construct constant-degree dimension expanders over polynomially large fields. That is, we give a constant number of explicit linear maps A_i from F^n to F^n such that for any subspace V of F^n of dimension at most n/2, the dimension of the span of the A_i(V) is at least (1+Omega(1)) times the dimension of V. Previous constructions of such constant-degree dimension expanders were based on Kazhdan\u27s property T (for the case when F has characteristic zero) or monotone expanders (for every field F); in either case the construction was harder than that of usual vertex expanders. Our construction, on the other hand, is simpler. For two-source rank condensers, we observe that the lossless variant (where the output rank is the product of the ranks of the two sources) is equivalent to the notion of a linear rank-metric code. For the lossy case, using our seeded rank condensers, we give a reduction of the general problem to the case when the sources have high (n^Omega(1)) rank. When the sources have constant rank, combining this with an "inner condenser" found by brute-force leads to a two-source rank condenser with output length nearly matching the probabilistic constructions

    From Graphs to Keyed Quantum Hash Functions

    Get PDF
    We present two new constructions of quantum hash functions: the first based on expander graphs and the second based on extractor functions and estimate the amount of randomness that is needed to construct them. We also propose a keyed quantum hash function based on extractor function that can be used in quantum message authentication codes and assess its security in a limited attacker model

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Outlaw distributions and locally decodable codes

    Get PDF
    Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in~LL_\infty~norm) with a small number of samples. We coin the term `outlaw distributions' for such distributions since they `defy' the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently `smooth' functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and from hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters.Comment: A preliminary version of this paper appeared in the proceedings of ITCS 201

    Quantum Locally Testable Codes

    Full text link
    We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition together with a simplification, denoted sLTCs, for the special case of stabilizer codes, together with some basic results using those definitions. The most crucial parameter of such codes is their soundness, R(δ)R(\delta), namely, the probability that a randomly chosen constraint is violated as a function of the distance of a word from the code (δ\delta, the relative distance from the code, is called the proximity). We then proceed to study limitations on qLTCs. In our first main result we prove a surprising, inherently quantum, property of sLTCs: for small values of proximity, the better the small-set expansion of the interaction graph of the constraints, the less sound the qLTC becomes. This phenomenon, which can be attributed to monogamy of entanglement, stands in sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an upper bound on the soundness when the code is defined on poor small-set expanders (a bound which turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the classical case. Many open questions are raised regarding what possible parameters are achievable for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the result of Ben-Sasson et. al. by which PCPPs imply LTCs with related parameters, carries over to the sLTCs. This creates a first link between qLTCs and quantum PCPs.Comment: Some of the results presented here appeared in an initial form in our quant-ph submission arXiv:1301.3407. This is a much extended and improved version. 30 pages, no figure
    corecore